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Large networks have become increasingly popular over the last
decades, and their modeling and investigation have led to
interesting and new ways to apply analytical and statistical
methods. The introduction of exponential random graphs has
aided in this pursuit, as they are able to capture a wide variety of
common network tendencies by representing a complex global
structure through a set of tractable local features. This talk will
give an overview of phase transitions in large exponential random
graphs. The main techniques that we use are variants of statistical
mechanics but the exciting new theory of graph limits, which has
rich ties to many parts of mathematics and beyond, also plays an
important role in the interdisciplinary inquiry. Some open problems
and conjectures will be presented.
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Erd3s-Rényi graph G(n, p): n vertices; include edges independently
with probability p.

Empirical study of network structure shows that “transitivity is the
outstanding feature that differentiates observed data from a
pattern of random ties”. Modeling transitivity (or lack thereof) in a
way that makes statistical inference feasible however has proved to
be rather difficult.

One direction is using exponential random graph models. They are
particularly useful when one wants to construct models that
resemble observed networks as closely as possible, but without
going into detail of the specific process underlying network
formation.



Probability space: The set G, of all simple graphs G, on n vertices.
Probability mass function:

P3(Gn) = exp (n(B1t(Hr, Ga) + .+ Bit(Hho Ga) = 7))

= (1,..., Bk are real parameters and Hy, ..., Hy are pre-chosen
finite simple graphs. Each H; has vertex set [ki] = {1, ..., ki}
and edge set E(H,). By convention, we take H; to be a single
edge.

= Graph homomorphism hom(H;, G,) is a random vertex map
V(H;) — V(G,) that is edge-preserving. Homomorphism

. hom(H;,G,
density t(H;, G,) = \‘V(()G,,()WHI))N

= Normalization constant:

—log > exp (n*(But(Hy, Gp) + .. + Bit(Hi, Gn))) -
Gnr€Gh



Bi=0 fori>2:
PI(Gn) = exp (n(But(Hh, G,) = 7))
= oxp (281 E(Go)| — n*vf).
Erd3s-Rényi graph G(n, p),
PA(G) = pECPI(1 = ) (2) G0,
Include edges independently with probability p = €251 /(1 4 €2%1).

(5)
() = ¥ e aIEGH) - (1)

1—
Gn€Gn P



What happens with general 3,7

Problem: Graphs with different numbers of vertices belong to
different probability spaces!

Solution: Theory of graph limits (graphons)! (Lovasz and
coauthors; earlier work of Aldous and Hoover)



What happens with general 3,7

Problem: Graphs with different numbers of vertices belong to
different probability spaces!

Solution: Theory of graph limits (graphons)! (Lovasz and
coauthors; earlier work of Aldous and Hoover)

Graphon space W is the space of all symmetric measurable
functions h(x, y) from [0,1]2 into [0,1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x, y) denotes the
probability of putting an edge between x and y.



Example: Erdés-Rényi graph G(n, p), h(x,y) = p.
Example: Any G, € G,,

[ 1, if ([nx],[ny]) is an edge in Gp;
hix.y) = { 0, otherwise.




Large deviation and Concentration of measure:

n—oo

P = lim ¢? = max <5lt(Hl, h) + ... + Bt(Hy, h) —/ l(h)dxdy) ,
hew [071]2

where:

t(H,', h) = / H h(X,', Xj)Xm...kal.,
k;
1% (i) EHy

and /:]0,1] — R is the function

l(u) = fulogu—k 1 — u)log(l — u).

2(



Let F* be the set of maximizers. G, lies close to F* with high
probability for large n.

B2, ..., Bk > 0: G, behaves like the Erdés-Rényi graph G(n, u*),
where u* € [0, 1] maximizes

1 1
Bru+ ... + Brul EHOI — 5ulogu — 5(1 — u)log(1 — u).

(Chatterjee and Varadhan; Chatterjee and Diaconis; Haggstrom
and Jonasson; Bhamidi, Bresler, and Sly)



Take H; a single edge and H a triangle. Fix the edge parameter
1. Let the triangle parameter 85 vary from 0 to co. Then 151,52
loses its analyticity at at most one value of 5. (Radin and Y)

25

transition curve

0.5 ——"
critical point




The line 81 = — 9 is of particular importance. The edge-triangle
model transitions from an Erdds-Rényi type almost complete graph
(81 > —[2) to an Erdés-Rényi type almost empty graph

(B1 < —p2). (Y)

Region I: nearly complete
graphs

'~ 1.620,437)

Region II: sparse
graphs
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Upper bound: complete subgraph on e'/2n vertices.

Lower bound for e < 1/2: complete bipartite graph with 1 — 2e
fraction of edges randomly deleted.

Lower bound for e > 1/2: complicated scallop curves where
boundary points are complete multipartite graphs. (Razborov and
others)



Take 1 = afs + b. Fix aand b. Let n — oo and then let
By — —o0. G, exhibits . (Y, Rinaldo, and
Fadnavis; Mavi and Y; related work in Handcock; Rinaldo,
Fienberg, and Zhou)
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—_B,=60,p,=-110,n=30

__B,=80,B,=-40,n=30



Picture the simple graph G, as a realization of an Erdds-Rényi
graph G(n,.5). Let A, be the adjacency matrix of G, and tr(-)
denote the trace of a matrix.

Alternate perspective for probability mass function:

P3(Gy) = exp (ﬁltr(A%) + Py - W)

s By =0: 2 =log M(28,)/2.
= By — —00: woﬁo = log M(2p31) /4.

M(0) = (1 + exp(#))/2 is the moment generating function for
Bernoulli (.5) distribution.



The exponential family of random graphs have popular
counterparts in statistical physics: a hierarchy of models ranging
from the grand canonical ensemble, the canonical ensemble, to the
microcanonical ensemble, with subgraph densities in place of
particle and energy densities, and tuning parameters in place of
temperature and chemical potentials.

The hierarchy

grand canonical ensemble <— exponential random graph

no prior knowledge of the graph is assumed

1

canonical ensemble <— constrained exponential random graph
partial information of the graph is given

i

microcanonical ensemble «<— constrained graph

complete information of the graph is observed beforehand



Let e € [0, 1] be a real parameter that signifies an “ideal” edge
density. What happens if we only consider graphs whose edge
density is close to e, say |e(G,) — ¢ < a?

(conditional) Probability mass function:

Pi’ﬁ(Gn):eXP<"2(51t(Hh n) + -+ Bit(Hie Gn) — ¥ ))'
: 1|e(G,7)—e\<oz'

(conditional) Normalization constant ¢2;§

ws:§=%1og > exp (n*(Brt(H1, Gp) + .. + Bit(Hi, Gn))) -

Gn€gn5‘e(Gn)_e|<O‘



Large deviation and Concentration of measure:

&% = lim lim ¢eﬁ = Bre+

a—0 n—oo

max (@d%mya”+mﬂmmy:4]xmww>
0,1]2

heW:e(h)=e

where:

e(h) = / h(x, y)dxdy,
0,12

t(H;, h):/ H h(xi, xj)dxq....dxy,,
k:
0% (iyeEcHy

and /:[0,1] — R is the function

1(1 — u)log(1 — u).

1
l(u) = iulogu—l— 5

Let F* be the set of maximizers. G, lies close to F* with high
(conditional) probability for large n. (Kenyon and Y)



Take H; a single edge and H a triangle. Fix the “ideal” edge
density e. Let the edge parameter 81 = 0 and the triangle
parameter [ vary from 0 to —oo. Then %72 loses its analyticity
at at least one value of 3. (Kenyon and Y)

0,0““




Special strip: Fix e = % As (35 decreases from 0 to —oo, G,
from Erd6és-Rényi to almost complete bipartite, skipping a large
portion of the e = 1 line. (Kenyon and Y)




Simple graphs are such that the edge weights satisfy a Bernoulli
(.5) distribution. Generalizations?



Simple graphs are such that the edge weights satisfy a Bernoulli
(.5) distribution. Generalizations?

Probability space: The set G, of all edge-weighted undirected
graphs G, on n vertices. Edge weights x;; between vertices i and j
are iid with a common distribution p. This yields probability
measure P,, and associated expectation E,, on G,,.

Probability mass function:

P3(Gn) = exp (n* (Brt(Hh, Go) + -+ + Bit(Hh, Go) — ) ) Pa(Go).

Normalization constant wﬁ:

U =~ Toay (exp (7 (Brt(He, Go) + -+ Bit(He, Go))))



Take 1 = Unif(0,1) as an example.
Large deviation and Concentration of measure:

¥ = lim $f = max (ﬁltwh h) + ... + Bt(Hi, h) — /

hew [0,1]2

I(h) dxdy) ,

where:

t(H;, h) :/ H h(x;, x;)dxq....dxy,,
k:
015 (i e E(Hy)

and /:]0,1] — R is Cramér's conjugate rate function

u) = sup <9u— log </ eeuu(du)>>

o _
= sup <9u—loge 1).
P 0




Let F* be the set of maximizers. G, lies close to F* with high
probability for large n.

B2, ..., Bk > 0: G, behaves like the Erdés-Rényi graph G(n, u*),
where u* € [0, 1] maximizes

Bru+ . + Bl EFN %I(u).

I(u) does not admit closed-form expression; apply duality principle
for Legendre transform. (Y)



Take H; a single edge and Ho a 2-star. Fix the edge parameter f3;.
Let the triangle parameter 35 vary from 0 to co. Then 1152 |oses
its analyticity at at most one value of 5. (Y)

transition
curve

Critical point is (—3, 3).



The line 81 = —p5 is of particular importance. The edge-triangle
model transitions from an Erdés-Rényi type almost complete graph
(81 > —[2) to an Erdés-Rényi type almost empty graph

(B1 < =B2). (Y)

Region I: nearly complete
graphs

'~ (25, +25,)

u'~-128))

Region II: sparse
graphs




Surprisingly (or not), the asymptotics of v* heavily rely on the
distribution y; it is the asymptotics of 6* (the dual of u* following
Legendre duality) that are universal. (DeMuse, Larcomb and Y)

* 0" =201 + B2l E(H2)]) (B1 > —P2)

= 0" =20 (B1 < —fo)



Surprisingly (or not), the asymptotics of v* heavily rely on the
distribution y; it is the asymptotics of 6* (the dual of u* following
Legendre duality) that are universal. (DeMuse, Larcomb and Y)

* 0" =201 + B2l E(H2)]) (B1 > —P2)

= 0" =20 (B1 < —fo)
The universal tendency of the phase transition curve is not intrinsic
to symmetric distributions p. Near degeneracy and universality are
expected when the edge weights are not symmetrically distributed,
except that the universal straight line gets shifted from 5, = —fs.
Example: Take = Bernoulli(p). The universal line is
asymptotically 51 = —f2 —log(p/(1 — p))/2, which corresponds to
an upward shift from $; = —f for p < 1/2 and a downward shift
for p>1/2.



Thank You!:)
BOMESSENE UL

| have two close relatives who graduated from Waseda, both
during the 1930’s, but this is the first time that I'm here! And |
loved everything about it!:) Thank you very much for the
wonderful opportunity!



