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Probability space: The set Gn of all simple graphs Gn on n vertices.
Probability mass function:

Pβn (Gn) = exp
(
n2(β1e(Gn) + β2t(Gn)− ψβn )

)
.

e(Gn) = 2|E(Gn)|
n2 and t(Gn) = 6|T (Gn)|

n3 are the edge and triangle
densities of Gn.
Normalization constant ψβn :

ψβn =
1

n2
log

∑
Gn∈Gn

exp
(
n2(β1e(Gn) + β2t(Gn))

)
.

Survey: Fienberg, Introduction to papers on the modeling and
analysis of network data I & II. arXiv: 1010.3882 & 1011.1717.



(Razborov and others)



β2 = 0:

Pβn (Gn) = exp
(
n2(β1e(Gn)− ψβn )

)
= exp

(
2β1E (Gn)− n2ψβn

)
.

Erdős-Rényi graph G (n, ρ),

Pρn(Gn) = ρE(Gn)(1− ρ)

(n
2

)
−E(Gn).

Include edges independently with parameter ρ = e2β1/(1 + e2β1).

exp(n2ψβn ) =
∑

Gn∈Gn

exp (2β1E (Gn)) =

(
1

1− ρ

)(n
2

)
.



What happens when β2 6= 0?
Problem: Graphs with different numbers of vertices belong to
different probability spaces!
Solution: Theory of graph limits (graphons)! (Lovász and
coauthors; earlier work of Aldous and Hoover)
Graphon space W is the space of all symmetric measurable
functions h(x , y) from [0, 1]2 into [0, 1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x , y) denotes the
probability of putting an edge between x and y .
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Example: Erdős-Rényi graph G (n, ρ), h(x , y) = ρ.
Example: Any Gn ∈ Gn,

h(x , y) =

{
1, if (dnx , nye) is an edge in Gn;
0, otherwise.



Large deviation:

lim
n→∞

ψβn = max
h∈W

(
β1e(h) + β2t(h)−

∫∫
[0,1]2

I (h)dxdy

)
,

where:

e(h) =

∫
[0,1]

h(x , y)dxdy ,

t(h) =

∫∫∫
[0,1]3

h(x , y)h(y , z)h(z , x)dxdydz ,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).

Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
probability for large n. (Chatterjee and Varadhan; Chatterjee and
Diaconis)



β2 ≥ 0: Let n→∞. Gn behaves like the Erdős-Rényi graph
G (n, u∗), where u∗ ∈ [0, 1] maximizes

l(u) = β1u + β2u
3 − 1

2
u log u − 1

2
(1− u) log(1− u).

(Chatterjee and Diaconis; Häggström and Jonasson; Bhamidi,
Bresler, and Sly)

Critical point is (1
2 log 2− 3

4 ,
9
16). (Radin and Y)



Fix β1. Let n→∞ and then let β2 → −∞. Gn looks like a
complete bipartite graph with 1

1+e2β1
fraction of edges randomly

deleted. (Chatterjee and Diaconis)
Take β1 = aβ2 + b. Fix a and b. Let n→∞ and then let
β2 → −∞. Gn exhibits quantized behavior, jumping from one
complete multipartite graph to another, and the jumps happen
precisely at the normal lines of an infinite polytope.
Idea: Minimize ae + t. (Y, Rinaldo, and Fadnavis; related work in
Handcock; Rinaldo, Fienberg, and Zhou)



What happens if we interchange the limits in n and β2?
Discontinuous transition along critical directions.
Idea: Study the induced probability distribution on
Sn = {(e(Gn), t(Gn)),Gn ∈ Gn} ⊂ [0, 1]2.
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2
 = −110, n = 30
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Fix e. What happens if we only consider graphs whose edge
density is close to e, say |e(Gn)− e| < α?
(conditional) Probability mass function:

Pe,β
n,α(Gn) = exp

(
n2(βt(Gn)− ψe,β

n,α)
)
.

t(Gn) = 6|T (Gn)|
n3 is the triangle density of Gn.

(conditional) Normalization constant ψe,β
n,α:

ψe,β
n,α =

1

n2
log

∑
Gn∈Gn:|e(Gn)−e|<α

exp
(
n2βt(Gn)

)
.



Large deviation:

lim
α→0

lim
n→∞

ψe,β
n,α = max

h∈W:e(h)=e

(
βt(h)−

∫∫
[0,1]2

I (h)dxdy

)
,

where:

e(h) =

∫
[0,1]

h(x , y)dxdy ,

t(h) =

∫∫∫
[0,1]3

h(x , y)h(y , z)h(z , x)dxdydz ,

and I : [0, 1]→ R is the function

I (u) =
1

2
u log u +

1

2
(1− u) log(1− u).

Let F ∗ be the set of maximizers. Gn lies close to F ∗ with high
(conditional) probability for large n. (Kenyon and Y)



Fix e and t. Consider graphons with e(h) = e and t(h) = t that
minimize

∫∫
[0,1]2 I (h)dxdy . Why are we interested?

They are useful for studying exponential models without
constraints:

max
h∈W

(
β1e(h) + β2t(h)−

∫∫
[0,1]2

I (h)dxdy

)

= max
e,t

max
h∈W:e(h)=e,t(h)=t

(
β1e + β2t −

∫∫
[0,1]2

I (h)dxdy

)
,

and with constraints:

max
h∈W:e(h)=e

(
βt(h)−

∫∫
[0,1]2

I (h)dxdy

)

= max
t

max
h∈W:e(h)=e,t(h)=t

(
βt −

∫∫
[0,1]2

I (h)dxdy

)
.



Special strip: Fix e = 1
2 and t ≤ e3. Graphon h(x , y) that

minimizes
∫∫

[0,1]2 I (h)dxdy is given by

h(x , y) =

{
1
2 + ε, if x < 1

2 < y or x > 1
2 > y ;

1
2 − ε, if x , y < 1

2 or x , y > 1
2 ,

where 0 ≤ ε = (e3 − t)
1
3 ≤ 1

2 . (Radin and Sadun)
Then

max
h∈W:e(h)=e

(
βt(h)−

∫∫
[0,1]2

I (h)dxdy

)

= max
ε∈[0, 1

2
]

(
β(e3 − ε3)− I (

1

2
+ ε)

)
.

As β decreases from 0 to −∞, Gn jumps from being Erdős-Rényi
to almost complete bipartite (with ε > 0.47) at β ≈ −2.7, skipping
a large portion of the e = 1

2 line. (Kenyon and Y)



Fix β1 and β2. (macro) Euler-Lagrange equation for the maximizer:

β1 + 3β2

∫
[0,1]

h(x , z)h(y , z)dz =
1

2
log

h(x , y)

1− h(x , y)
.

(Chatterjee and Diaconis)
Fix e and t. (micro) Euler-Lagrange equation for the maximizer:∫

[0,1]
h(x , z)h(y , z)dz = λ+ µ log

h(x , y)

1− h(x , y)
.

Plus: Stronger! Holds for the entire (e, t)-space.
Minus: The relationship between e, t and λ, µ is not as explicit.
(Kenyon and Y)

Thank You!
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