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Probability space: The set G, of all simple graphs G, on n vertices.
Probability mass function:

PY(G,) = exp <n2(ﬁle(G,,) + Bat(Gp) — 1/15)) )
e(Gn) = 2Ee) and ¢(G,) =

densities of G
Normalization constant @/}ﬁ:

6| T(Gn)|
n3

are the edge and triangle

IogZexp (B1e(Gn) + B2t(Gp))) -

Gnegn

Survey: Fienberg, Introduction to papers on the modeling and
analysis of network data | & Il. arXiv: 1010.3882 & 1011.1717.
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(Razborov and others)



B2 = 0:
PA(Gn) = exp (n*(Bre(Ga) — )
= exp (261E(G,,) - nzw,?) .

Erd3s-Rényi graph G(n, p),

PE(Gn) = pE(E) (1 = p){a) £,
Include edges independently with parameter p = e2% /(1 + ™).

(3)
exp(n?yl) = Y exp (281E(Gy)) = <1> “

Ga G 1-p



What happens when (3, # 07

Problem: Graphs with different numbers of vertices belong to
different probability spaces!

Solution: Theory of graph limits (graphons)! (Lovasz and
coauthors; earlier work of Aldous and Hoover)



What happens when (3, # 07

Problem: Graphs with different numbers of vertices belong to
different probability spaces!

Solution: Theory of graph limits (graphons)! (Lovasz and
coauthors; earlier work of Aldous and Hoover)

Graphon space W is the space of all symmetric measurable
functions h(x, y) from [0, 1] into [0,1]. The interval [0, 1]
represents a ‘continuum’ of vertices, and h(x,y) denotes the
probability of putting an edge between x and y.



Example: Erdés-Rényi graph G(n, p), h(x,y) = p.
Example: Any G, € G,,

[ 1, if ([nx, ny]) is an edge in Gp;
h(x,y) = { 0, otherwise.




Large deviation:

. 5 _
im0 ,rgaWX<ﬂle( )+ fot(h //[01 dxdy>7

where:

e(h) = / h(x, y)dxdy,
[0,1]

t(h) = ///{07113 h(x,y)h(y, z)h(z, x)dxdydz,

and / : [0,1] — R is the function

1 1
I(u) = §u|ogu—|— —(1—u)log(1l — u).

5
Let F* be the set of maximizers. G, lies close to F* with high
probability for large n. (Chatterjee and Varadhan; Chatterjee and
Diaconis)



B> > 0: Let n — oco. G, behaves like the Erdés-Rényi graph
G(n, u*), where u* € [0, 1] maximizes
1 1
I(u) = Bru+ Bou® — Eulog u— 5(1 — u)log(1 — u).

(Chatterjee and Diaconis; Haggstrom and Jonasson; Bhamidi,
Bresler, and Sly)

transition curve

critical point

Critical point is (1 log2 — 3 %) (Radin and Y)



Fix 31. Let n — oo and then let o — —oco. G, looks like a
complete bipartite graph with l—i-c%ﬁl fraction of edges randomly
deleted. (Chatterjee and Diaconis)
Take 1 = af> + b. Fix aand b. Let n — oo and then let

B> — —00. G, exhibits quantized behavior, jumping from one
complete multipartite graph to another, and the jumps happen
precisely at the normal lines of an infinite polytope.

Idea: Minimize ae + t. (Y, Rinaldo, and Fadnavis; related work in
Handcock; Rinaldo, Fienberg, and Zhou)
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What happens if we interchange the limits in n and (527
Discontinuous transition along critical directions.

Idea: Study the induced probability distribution on

So = {(e(Gy), t(Gn)), Gn € Gn} C [0,1]%.

__B,=80,8,=-40,n=30



Fix e. What happens if we only consider graphs whose edge
density is close to e, say |e(G,) — e| < a?
(conditional) Probability mass function:

P5(Gy) = exp (nz(ﬂt(G,,) — wﬁg)) :
t(Gp) = 6‘T,53G”)| is the triangle density of G,.
(conditional) Normalization constant wﬁ;ﬁ:

w,?jg = % log Z exp (n2ﬁt(G,,)) .

GnEGn:|e(Gn)—el<a



Large deviation:

. . e _ _
olan;IO nln;o wn,a hel/glf(ﬁ):e <ﬁt(h) //[071]2 I(h)dXdy> ’

where:

e(h) = / h(x, y)dxdy,
[0,1]

t(h) = / / /[071]3 h(x, y)h(y, 2)h(z, x)dxdydz,

and / : [0,1] — R is the function

I(u) = %ulogu + %(1 — u)log(1 — u).

Let F* be the set of maximizers. G, lies close to F* with high
(conditional) probability for large n. (Kenyon and Y)



Fix e and t. Consider graphons with e(h) = e and t(h) =t that
minimize ffo 12 [(h)dxdy. Why are we interested?

They are usefu for studying exponential models without
constraints:

max (51e( + Bot(h // dxdy)
[0,1]2
= - h)dxd
ngatxhevve() e, t(h)= t(le+/62t //[01 Xy)’

and with constraints:

max // h)dxdy
heWw:e(h)= [0,1]2
= max max // h)dxdy
t  heW:e(h)=e,t(h)=t ( [0,1]2



Special strip: Fix e = % and t < e3. Graphon h(x, y) that
minimizes ff[o 1 I(h)dxdy is given by

1 : 1 1 .
5t+e6 ifx<s<yorx>35>y,

h(x,y) = { I

56 ifx,y<%orx,y>%,

where 0 < e = (&3 — t)% < 3. (Radin and Sadun)

Then
t(h) — h)dxd
hEVULa(i (ﬁ //[0 1]2 X y)

1

= max <ﬁ(e3 —)—I(Z + e)> .
e€[0,4] 2

As 3 decreases from 0 to —oo, G, jumps from being Erdés-Rényi

to almost complete bipartite (with € > 0.47) at  ~ —2.7, skipping

a large portion of the e = 3 line. (Kenyon and Y)



Fix 51 and (2. (macro) Euler-Lagrange equation for the maximizer:

h(x, y)

1
h(x, 2)h(y, z)dz = 3 log 1— h(x,y)

B1 + 352/

[0.,1]

(Chatterjee and Diaconis)
Fix e and t. (micro) Euler-Lagrange equation for the maximizer:

h(x,y)

h(x,z)h(y,z)dz= A+ plog —————.
/[071] (x,2)h(y, z) log 52705

Plus: Stronger! Holds for the entire (e, t)-space.
Minus: The relationship between e, t and A, i is not as explicit.
(Kenyon and Y)
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Thank You!



