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abstract. Petr Hájek identified the logic BL, that was later shown

to be the logic of continuous t-norms on the unit interval, and de-

fined the corresponding algebraic models, BL-algebras, in the context

of residuated lattices. The defining characteristics of BL-algebras are

representability and divisibility. In this short note we survey recent

developments in the study of divisible residuated lattices and attribute

the inspiration for this investigation to Petr Hájek.

1 Introduction

Petr Hájek’s book helped place fuzzy logic on firm mathematical ground. In
particular, in view of the truth-functionality of the logic, he developed the
algebraic theory of the corresponding models, which he situated within the
study of residuated lattices. Moreover, he identified precisely the logic of
continuous t-norms, by introducing Basic Logic BL.

Basic Logic generalizes three important and natural fuzzy logics, namely
 Lukasiewicz logic, Product logic and Gödel logic, and allows for the study of
their common features. It turns out that BL-algebras, the algebraic models
of BL, are in a sense made up of these three types of models. Arbitrary
BL-algebras are subdirect products of BL-chains, which in turn are ordinal
sums of MV-chains, Product-chains and Gödel-chains (though the latter are
implicit within the ordinal sum construction).

Within commutative integral bounded residuated lattices, BL-algebras are
exactly the representable and divisible ones. Representability as a subdirect
product of chains (a.k.a. semilinearity) is often considered synonymous to
fuzziness of a logic. It corresponds to the total order on the unit interval of
the standard t-norms, and presents a natural view of fuzzy logic as pertaining
to (linearly-ordered) degrees of truth.

On the other hand, divisibility renders the meet operation definable in
terms of multiplication and its residual(s). It corresponds to the property of
having a natural ordering in semigroups. Divisibility has also appeared in
the study of complementary semigroups, in the work of Bosbach [Bo82], and
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in the study of hoops, as introduced by Büchi and Owens [BO]. This shows
that it is a natural condition, appearing not only in logic, but also in algebra.
While residuation corresponds to the left-continuity of a t-norm on the unit
interval, basic logic captures exactly the semantics of continuous t-norms on
the unit interval, as was shown later.

On a personal note, we would like to mention that Petr Hájek’s book
has been influential in developing some of the theory of residuated lattices
and also connecting it with the study of logical systems. The book had
just appeared shortly before a seminar on residuated lattices started at Van-
derbilt University, organized by Constantine Tsinakis and attended by both
authors of this article. The naturality of the definition of divisibility and its
encompassing nature became immediately clear and generalized BL-algebras
(or GBL-algebras) were born. These are residuated lattices (not necessarily
commutative, integral, contractive or bounded) that satisfy divisibility: if
x ≤ y, there exist z, w with x = zy = yw. It turns out that the representable
commutative bounded GBL-algebras are exactly the BL-algebras. In other
words, GBL-algebras are a generalization of BL-algebras that focuses on and
retains the divisibility property. Examples include lattice-ordered groups,
their negative cones, (generalized) MV-algebras and Heyting algebras.

Despite their generality, GBL-algebras decompose into direct products of
lattice-ordered groups and integral GBL-algebras, so it is these two subvari-
eties that are of main interest. From [Mu86] it follows that MV-algebras are
certain intervals in abelian ℓ-groups and in [GT05] it is shown that GMV-
algebras are certain convex sublattices in ℓ-groups. Also, BL-chains (the
building blocks of BL-algebras) are essentially ordinal sums of parts of ℓ-
groups (MV-chains and product chains). It is interesting that recent work
has shown that algebras in many natural classes of GBL-algebras (including
commutative, as well as k-potent) are made from parts of ℓ-groups put (in
the form of a poset product) into a Heyting algebra grid. The poset product
decomposition does not work for all GBL-algebras, but it is an open problem
to find BL-algebras that are not locally parts of ℓ-groups, if such algebras
exist.

2 BL-algebras as residuated lattices

2.1 Residuated lattices

A residuated lattice is a structure (L,∧,∨, ·, \, /, 1), where (L,∧,∨) is a
lattice, (L, ·, 1) is a monoid and the law of residuation holds; i.e., for all
a, b, c ∈ L,

a · b ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Sometimes the expression x→ y is used for x\y, while y ← x (or x  y)
is used for y/x. The corresponding operations are called the residuals of
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multiplication. FL-algebras are expansions (L,∧,∨, ·, \, /, 1, 0) of residuated
lattices with an additional constant operation 0.

Residuated lattices and FL-algebras are called commutative if multiplica-
tion is commutative, integral if 1 is the greatest element, representable (or
semilinear) if they are subdirect products of chains, and divisible if they
satisfy:

If x ≤ y, there exist z, w such that x = zy = yw.

In commutative residuated lattices we have x\y = y/x, and we denote the
common value by x→ y.

An FLo-algebra, also known as a bounded residuated lattice, is an FL-
algebra in which 0 ≤ x for all x. In this case 0 is also denoted by ⊥. Moreover,
it turns out that ⊤ = 0/0 = 0\0 is the top element. Integral FLo-algebras
are also known as FLw-algebras, and in the presence of commutativity as
FLew-algebras.1 For more on residuated lattices see [GJKO].

2.2 BL-algebras

It turns out that BL-algebras, as defined by P. Hájek, are exactly the rep-
resentable and divisible algebras within the class of integral commutative
bounded residuated lattices (i.e., within FLew-algebras).

THEOREM 1 [BT03] [JT02] A residuated lattice is representable iff it satis-
fies [z\((x ∨ y)/x)z ∧ 1] ∨ [w((x ∨ y)/y)/w ∧ 1] = 1.

The next result then follows easily.

COROLLARY 2 An integal, commutative residuated lattice is representable
iff it satisfies (x→ y) ∨ (y→ x) = 1 (prelinearity).

P. Hájek defined BL-algebras using the prelinearity condition, which cap-
tures representability in the integral, commutative case. He also used the
simplified form of divisibility x∧y = x(x→y), which we will see is equivalent
to the general form in the integral commutative case; actually integrality fol-
lows from this particular form of divisibility, by setting x = 1. The variety
(i.e. equational class) of BL-algebras is denoted by BL.

Representable Heyting algebras, known as Gödel algebras, are exactly the
idempotent (x2 = x) BL-algebras. Moreover, Chang’s MV-algebras are ex-
actly the involutive ((x→0)→0 = x) BL-algebras. For additional subvarieties
of FLw see Table 1 and 3, as well as Figure 1.

1The subscripts e, w are from the names of the rules exchange and weakening in proof
theory that correspond to commutativity and integrality.
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divisible x(x\(x ∧ y)) = x ∧ y = ((x ∧ y)/x)x

prelinear x\y ∨ y\x = 1 = x/y ∨ y/x

linear or chain x ≤ y or y ≤ x

integral x ≤ 1

bottom 0 ≤ x

commutative xy = yx

idempotent xx = x

Table 1. Some residuated lattice axioms

2.3 Algebraization

P. Hájek defined basic logic BL via a Hilbert-style system, whose sole infer-
ence rule is modus ponens; see Table 2.

(sf) (ϕ→ ψ)→ ((ψ→ χ)→ (ϕ→ χ)) (suffixing)
(int) (ϕ · ψ)→ ϕ (integrality)

(com) (ϕ · ψ)→ (ψ · ϕ) (commutativity)
(conj) (ϕ · (ϕ→ ψ))→ (ψ · (ψ→ ϕ)) (conjunction)
(·→) ((ϕ · ψ)→ χ)→ (ϕ→ (ψ→ χ))
(→·) (ϕ→ (ψ→ χ))→ ((ϕ · ψ)→ χ)

(→pl) ((ϕ→ ψ)→ χ)→ (((ψ→ ϕ)→ χ)→ χ) (arrow prelinearity)
(bot) 0→ ϕ

ϕ ∧ ψ := ϕ · (ϕ→ ψ) (conjunction definition)
ϕ ∨ ψ := [(ϕ→ ψ)→ ψ] ∧ [(ψ→ ϕ)→ ϕ] (disjunction definition)
¬ϕ := ϕ→ 0 (negation definition)
1 := 0→ 0 (unit definition)

ϕ ϕ→ ψ

ψ
(mp)

Table 2. Hajek’s basic logic.

Using this system, one defines as usual the notion of proof from assump-
tions. If ψ is a propositional formula in the language of BL, and Φ is a
set of such formulas, then Φ ⊢BL ψ denotes that ψ is provable in BL from
(non-logical, i.e., no substitution instances are allowed) assumptions Φ.

The following results states that ⊢BL is algebraizable (in the sense of Blok
and Piggozzi [BP89]) with respect to the variety BL of BL-algebras. It fol-
lows directly from the more general algebraization of substructural logics by
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Figure 1. Some subvarieties of FLw ordered by inclusion
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FLw FL-algebras with weakening

= integral residuated lattices with bottom

FLew FLw-algebras with exchange

= commutative integral residuated lattices with bottom

GBLw GBL-algebras with weakening

= divisible integral residuated lattices with bottom

GBLew GBLw-algebras with exchange

= commutative GBLw-algebras

psMTL pseudo monoidal t-norm algebras

= integral residuated lattices with bottom and prelinearity

MTL monoidal t-norm algebras

= psMTL with commutativity

psBL pseudo BL-algebras

= psMTL with divisibility

BL basic logic algebras

= MTL with divisibility

HA Heyting algebras

= residuated lattices with bottom and x ∧ y = xy

psMV pseudo MV-algebras

= psBL with x ∨ y = x/(y\x) = (x/y)\x

MV MV-algebras or  Lukasiewicz algebras

= BL-algebras that satisfy ¬¬x = x
= commutative pseudo MV-algebras

MVn MV-algebras generated by n+ 1-chains

= subdirect products of the n+ 1-element MV-chain

GA Gödel algebras or linear Heyting algebras

= BL-algebras that are idempotent
= Heyting algebras with prelinearity

GAn Gödel algebras generated by n+ 1-chains

= subdirect products of the n+ 1-element Heyting chain

Π product algebras

= BL-algebras that satisfy ¬¬x ≤ (x→ xy)→ y(¬¬y)

BA Boolean algebras

= Heyting algebras that satisfy ¬¬x = x
= MV-algebras that are idempotent

Table 3. Some subvarieties of FLw
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residuated lattices given in [GO06].
As usual, propositional formulas in BL are identified with terms of BL.

Recall that for a set E ∪ {s = t} of equations, E |=BL s = t (s = t is a
semantial consequence of E with respect to BL) denotes that for every BL-
algebra B and for every assignment f into B (i.e., for every homomorphism
from the formula/term algebra into B), if f(u) = f(v) for all (u = v) ∈ E,
then f(s) = f(t).

THEOREM 3 For every set Φ∪ {ψ} of propositional formulas and every set
E ∪ {s = t} of equations,

• Φ ⊢BL ψ iff {ϕ = 1 : ϕ ∈ Φ} |=BL ψ = 1

• E |=BL s = t iff {(u→ v)∧ (v→ u) : (u = v) ∈ E} ⊢BL (s→ t)∧ (t→ s)

• ϕ ⊣⊢ (ϕ→ 1) ∧ (1→ ϕ)

• s = t =||=BL (s→ t) ∧ (t→ s) = 1

As a corollary we obtain that the lattice of axiomatic extensions of BL is
dually isomorphic to the subvariety lattice of BL.

3 Fuzzy logics and triangular norms: retaining

representability

Truth in a fuzzy logic comes in degrees. In a so-called standard model, truth
values are taken to be real numbers from the interval [0, 1], while logical
connectives of arity n are interpreted as functions from [0, 1]n to [0, 1]. In
particular, multiplication in a standard model is assumed to be continuous
and a triangular norm (t-norm), namely a binary operation on the interval
[0, 1] that is associative, commutative, monotone and has 1 as its unit ele-
ment. It is easy to see that any such continuous t-norm defines a BL-algebra
structure on [0, 1]. In fact, BL is complete with respect to continuous t-
norms, as proved in [CEGT], where it is shown algebraically that the variety
of BL-algebras is generated by all continuous t-norms.

 Lukasiewicz t-norm (L(x, y) = max{x+y−1, 0}), product t-norm (Π(x, y) =
xy), and Gödel t-norm (G(x, y) = min{x, y}), define three special standard
models of BL. The corresponding logics that extend BL are denoted by  L,
GL and Π.

Chang [Ch59] proved that the standard model given by L(x, y) gener-
ates the variety of MV-algebras. Thus,  L is precisely the infinite-valued
 Lukasiewicz logic and it is axiomatized relatively to BL by ¬¬ϕ→ ϕ. Also,
GL is Gödel logic, namely the superintuitionistic logic defined by adding to
BL the axiom ϕ→ ϕ2, and it is the smallest superintuitionistic logic that is
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also a fuzzy logic. Finally, Π is product logic and is defined relatively to BL

by ¬¬ϕ→ (((ϕ→ (ϕ · ψ))→ (ψ · ¬¬ψ)); see [Ci01].

It is easy to see that, due to the completeness of [0, 1], a t-norm is resid-
uated iff it is left-continuous; divisibility provides right-continuity, in this
context. It turns out that the variety of representable FLew-algebras is gen-
erated by left-continuous t-norms; see [JM02]. The corresponding logic is
called monoidal t-norm logic or MTL. Uninorm logic, on the other hand,
corresponds to representable FLeo-algebras, i.e., integrality is not assumed.
The introduction of BL lead to the study of such general fuzzy logics, where
representability is the main defining property, while divisibility is dropped
alltogether. In the rest of the survey, we focus on generalizations that retain
the divisibility property.

4 Generalized BL-algebras: retaining divisibility

4.1 GBL-algebras

A generalized BL-algebra (or GBL-algebra for short) is defined to be a divis-
ible residuated lattice. We begin with presenting some equivalent reformula-
tions of divisibility:

If x ≤ y, there exist z, w such that x = zy = yw.

LEMMA 4 [GT05] The following are equivalent for a residuate lattice L.

1. L is a GBL-algebra.

2. L satisfies ((x ∧ y)/y)y = x ∧ y = y(y\(x ∧ y)).

3. L satisfies the identities (x/y ∧ 1)y = x ∧ y = y(y\x ∧ 1).

Proof. (1) ⇔ (2): Assume that L is a GBL-algebra and x, y ∈ L. Since
x ∧ y ≤ y, there exist z, w such that x ∧ y = zy = yw. Since zy ≤ x ∧ y, we
have z ≤ (x ∧ y)/y, so x ∧ y = zy ≤ ((x ∧ y)/y)y ≤ x ∧ y, by residuation, i.e.
((x ∧ y)/y)y = x ∧ y. Likewise, wo obtain the second equation. The other
direction is obvious.

(2) ⇔ (3): By basic properties of residuation, we get

y ∧ x = y(y\(y ∧ x)) = y(y\y ∧ y\x) = y(1 ∧ y\x).

Likewise, we get the opposite identity.
Conversely assume (3). Note that for every element a ≥ 1, we have 1 =

a(a\1 ∧ 1) ≤ a(a\1) ≤ 1; so, a(a\1) = 1. For a = x\x, we have a2 = a,
by properties of residuation and 1 ≤ a. Thus, a = (1/a)a2 = (1/a)a = 1.
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Consequently, y\y = 1, for every y ∈ L. Using properties of residuation, we
get

y(y\(y ∧ x)) = y(y\y ∧ y\x) = y(1 ∧ y\x) = y ∧ x.

Likewise, we obtain the other equation. �

LEMMA 5 [GT05] Every GBL-algebra has a distributive lattice reduct.

Proof. Let L be a GBL-algebra and x, y, z ∈ L. By Lemma 4 and the fact
that in residuated lattices multiplication distribures over joins, we have

x ∧ (y ∨ z) = [x/(y ∨ z) ∧ 1](y ∨ z)
= [x/(y ∨ z) ∧ 1]y ∨ [x/(y ∨ z) ∧ 1]z
≤ (x/y ∧ 1)y ∨ (x/z ∧ 1)z
= (x ∧ y) ∨ (x ∧ z),

for all x, y, z. Thus, the lattice reduct of L is distributive. �

Integral GBL-algebras, or IGBL-algebras, have a simpler axiomatization.

LEMMA 6 [GT05] IGBL-algebras are axiomatized, relative to residuated lat-
tices, by the equations (x/y)y = x ∧ y = y(y\x).

Proof. One direction holds by Lemma 4. For the converse, note that we
show that the above identity implies integrality for y = e. �

4.2 Lattice-ordered groups and their negative cones

Lattice ordered groups, or ℓ-groups are defined as algebras with a lattice
and a group reduct such that the group multiplication is compatible with the
order, see e.g. [AF88], [Gl99]. Equivalently, they can be viewed as residuated
lattices that satisfy x(x\1) = 1. It is easy to see that ℓ-groups are examples
of (non-integral) GBL-algebas.

Given a residuated lattice L, its negative cone L− is defined to be an
algebra of the same type, with universe L− = {x ∈ L : x ≤ 1}, x\L

−

y =

x\y ∧ 1, y/L
−

x = y/x∧ 1 and where the other operations are the restrictions
to L− of the operations in L. With this definition L− is also a residuated
lattice. The map L 7→ L− preserves divisibility, hence negative cones of
ℓ-groups are also examples of integral GBL-algebras.

Both ℓ-groups and their negative cones are cancellative residuated lattices,
namely their multipliction is cancellative. Equivalently, they satisfy the iden-
tities xy/y = x = y\yx.

THEOREM 7 [BCGJT] The cancellative integral GBL-algebras are exactly
the negative cones of ℓ-groups.
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Consequently, negative cones of ℓ-groups are equationally defined. As
we mentioned, cancellative GBL-algebras in general (witout the asumption
of integrality) include ℓ-groups as well. However, we will see that every
cancellative GBL-algebra is the direct product of an ℓ-group and a negative
cone of an ℓ-group. More generally, we will see that a similar decomposition
exists for arbitrary GBL-algebras.

4.3 GMV-algebras

Recall that an MV-algebra is a commutative bounded residuated lattice that
satisfies the identity x ∨ y = (x→ y)→ y. This identity implies that the
residuated lattice is also integral, divisible and representable, hence MV-
algebras are examples of BL-algebras.

It turns out that MV-algrebras are intervals in abelian ℓ-groups. If G =
(G,∧,∨, ·, \, /, 1) is an abelian ℓ-group and a ≤ 1, then Γ(G, a) = ([a, 1],∧,∨, ◦,→, 1, a)
is an MV-algebra, where x ◦ y = xy ∨ a, and x→ y = x\y ∧ 1. (A version
where a ≥ 1 also yields an MV-algebra.) If M is an MV-algebra then there
is an abelian ℓ-group G and an element a ≤ 1 such that M ∼= Γ(G, a); see
[Ch59], [Mu86].

Generalized MV-algebras, or GMV-algebras, are generalizations of MV-
algebras in a similar way as GBL-algebras generalize BL-algebras, and are
defined as residuated lattices that satisfy x/((x∨y)\x) = x∨y = (x/(x∨y))\x.
As with GBL-algebras, GMV-algebras have alternative characterizations.

LEMMA 8 [BCGJT] A residuated lattice is a GMV algebra iff it satisfies
x ≤ y ⇒ y = x/(y\x) = (x/y)\x.

THEOREM 9 [BCGJT] Every GMV-algebra is a GBL-algebra.

Proof. We make use of the quasi-equational formulation from the preceding
lemma. Assume x ≤ y and let z = y(y\x). Note that z ≤ x and y\z ≤ x\z,
hence

x\z = ((y\z)/(x\z))\(y\z)
= (y\(z/(x\z)))\(y\z) since (u\v)/w = u\(v/w)
= (y\x)\(y\z) since z ≤ x⇒ x = z/(x\z)
= (y(y\x)\z since u\(v\w) = vu\w
= z\z.

Therefore x = z/(x\z) = z/(z\z) = z, as required. The proof of x = (x/y)y
is similar. �

LEMMA 10 [BCGJT]
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(i) Every integral GBL-algebra satisfies the identity (y/x)\(x/y) = x/y
and its opposite.

(ii) Every integral GMV-algebra satisfies the identity x/y ∨ y/x = e and its
opposite.

(iii) Every integral GMV-algebra satisfies the identities x/(y∧z) = x/y∨x/z,
(x ∨ y)/z = x/z ∨ y/z and the opposite ones.

(iv) Every commutative integral GMV-algebra is representable.

It will be shown in Section 5 that the assumption of integrality in condition
(iv) is not needed. They do not have to be intervals, but they are convex
sublattices in ℓ-groups. More details can be found in [GT05], while the
standard reference for MV-algebras is [CDM00].

Ordinal sum constructions and decompositions have been used extensively
for ordered algebraic structures, and we recall here the definition for integral
residuated lattices. Usually the ordinal sum of two posets A0,A1 is defined
as the disjoint union with all elements of A0 less than all elements of A1

(and if A0 has a top and A1 has a bottom, these two elements are often
identified). However, for most decomposition results on integral residuated
lattices a slightly different point of view is to replace the element 1 of A0 by
the algebra A1. The precise definition for an arbitrary number of summands
is as follows.

Let I be a linearly ordered set, and for i ∈ I let {Ai : i ∈ I} be a family
of integral residuated lattices such that for all i 6= j, Ai ∩Aj = {1} and 1 is
join irreducible in Ai. Then the ordinal sum

⊕

i∈I Ai is defined on the set
⋃

i∈I Ai by

x · y =











x ·i y if x, y ∈ Ai for some i ∈ I

x if x ∈ Ai \ {1} and y ∈ Aj where i < j

y if y ∈ Ai \ {1} and x ∈ Aj where i < j.

The partial order on
⊕

i∈I Ai is the unique partial order ≤ such that 1 is the
top element, the partial order ≤i on Ai is the restriction of ≤ to Ai, and if
i < j then every element of Ai \ {1} precedes every element of Aj . Finally,
the lattice operations and the residuals are uniquely determined by ≤ and
the monoid operation.

It not difficult to check that this construction again yields an integral
residuated lattice, and that it preserves divisibility and prelinearity. If I =
{0, 1} with 0 < 1 then the ordinal sum is simply denoted by A0 ⊕A1. The
assumption that 1 is join-irreducible can be omitted if A1 has a least element
m, since if x ∧0 y = 1 in A0 then x ∧ y still exists in A0 ⊕A1 and has value
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m. If 1 is join-reducible in A0 and if A1 has no minimum then the ordinal
sum cannot be defined as above. However an “extended” ordinal sum may
be obtained by taking the ordinal sum of (A0 ⊕ 2) ⊕ A1, where 2 is the
2-element MV-algebra.

The following representation theorem was proved by Agliano and Mon-
tagna [AM03].

THEOREM 11 Every linearly ordered commutative integral GBL-algebra A

can be represented as an ordinal sum
⊕

i∈I Ai of linearly ordered commutative
integral GMV-algebras. Moreover A is a BL-algebra iff I has a minimum i0
and Ai0 is bounded.

Thus ordinal sums are a fundamental construction for BL-algebras, and com-
mutative integral GMV-algebras are the building blocks.

4.4 Pseudo BL-algebras and pseudo MV-algebras

Pseudo BL-algebras [DGI02] [DGI02b] are divisible prelinear integral bounded
residuated lattices, i.e., prelinear integral bounded GBL-algebras. Similarly,
pseudo MV-algebras are integral bounded GMV-algebras (in this case prelin-
earity holds automatically). Hence BL-algebras and MV-algebras are exactly
the commutative pseudo BL-algebras and pseudo MV-algebras respectively,
but the latter do not have to be commutative. They do not have to be repre-
sentable either, as prelinearity is equivalent to representability only under the
assumption of commutativity. By a fundamental result of [Dv02], all pseudo
MV-algebras are obtained from intervals of ℓ-groups, as with MV-algebras in
the commutative case. Hence any nonrepresentable ℓ-group provides exam-
ples of nonrepresentable pseudo MV-algebras. The tight categorical connec-
tions between GMV-algebras and ℓ-groups (with a strong order unit) have
produced new results and interesting research directions in both areas [Ho05],
[DH07], [DH09].

The relationship between noncommutative t-norms and pseudo BL-algebras
is investigated in [FGI01]. In particular it is noted that any continuous t-norm
must be commutative. Hájek [Ha03a] shows that noncommutative pseudo
BL-algebras can be constructed on “non-standard” unit intervals, and in
[Ha03b] it is shown that all BL-algebras embed in such pseudo BL-algebras.

As for Boolean algebras, Heyting algebras and MV-algebras, the constant
0 can be used to define unary negation operations −x = 0/x and ∼x = x\0.
For pseudo BL-algebras, these operations need not coincide. Pseudo MV-
algebras are involutive residuated lattices which means the negations satisfy
∼−x = x = −∼x. However, for pseudo BL-algebras this identity need not
hold, and for quite some time it was an open problem whether the weaker
identity ∼−x = −∼x might also fail. Recently it was noted in [DGK09] that
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an example from [JM06] shows the identity can indeed fail, and a construction
is given to show that there are uncountably many varieties of pseudo BL-
algebras in which it does not hold.

We conclude this brief section with an important result on the struc-
ture of representable pseudo BL-algebras. Dvurečenskij [Dv07] proved that
the Agliano-Montagna decomposition result extends to the non-commutative
case.

THEOREM 12 Every linearly ordered integral GBL-algebra A can be repre-
sented as an ordinal sum

⊕

i∈I Ai of linearly ordered integral GMV-algebras.
Moreover A is a pseudo BL-algebra iff I has a minimum i0 and Ai0 is
bounded.

As a consequence it is shown that representable pseudo BL-algebras satisfy
the identity ∼−x = −∼x, and that countably complete representable pseudo
BL-algebras are commutative. Further results and references about pseudo
BL-algebras can be found in [Ha03], [Dv07], [Io08] and [DGK09].

4.5 Hoops and pseudo-hoops

Hoops, originally introduced in [BO] by Büchi and Owens under an equivalent
definition, can be defined as algebras A = (A, ·,→, 1), where (A, ·, 1) is a
commutative monoid and the following identities hold:

x→ x = 1 x(x→ y) = y(y→ x) (xy)→ z = y→ (x→ z)

It is easy to see that the relation defined by a ≤ b iff 1 = a → b is a
partial order and that A is a hoop iff (A, ·,→, 1,≤) is an integral residuated
partially ordered monoid that satisfies x(x→ y) = y(y→ x). Actually, if A

is a hoop, then (A,≤) admits a meet operation defined by x∧ y = x(x→ y).
Consequently, every hoop satisfies divisibility. It turns out that not all hoops
have a lattice reduct; the ones that do are exactly the join-free reducts of
commutative integral GBL-algebras. Also, among those, the ones that satisfy
prelinearity are exactly the reducts of BL-algebras and are known as basic
hoops. If a hoop satisfies

(x→ y)→ y = (y→ x)→ x

then it admits a join given by x ∨ y = (x→ y)→ y. Such hoops are known
as Wajsberg hoops and as  Lukasiewicz hoops and they are term equivalent to
commutative integral GMV-algebras.

More on hoops and Wajsberg hoops can be found in [AFM07], [BF00],
[BP94] and their references. Pseudo-hoops are the non-commutative gener-
alizations of hoops. Their basic properties are studied in [GLP05]. The join
operation is definable in representable pseudo hoops, hence they are term-
equivalent to integral representable GBL-algebras.
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RRL representable residuated lattices

= residuated lattices that are subdirect products of residuated chains
= residuated lattices with 1 ≤ u\((x ∨ y)\x)u ∨ v((x ∨ y)\y)/v

GBL generalized BL-algebras

= divisible residuated lattices

GMV generalized MV-algebras

= residuated lattices with x ∨ y = x/((x ∨ y)\x) = (x/(x ∨ y))\x

Fleas = integral residuated lattices with prelinearity

GBH generalized basic hoops

= divisible integral residuated lattices

BH basic hoops

= commutative prelinear generalized basic hoops

WH Wajsberg hoops

= commutative integral generalized MV-algebras

LG lattice-ordered groups or ℓ-groups

= residuated lattices that satisfy 1 = x(x\1)

RLG representable ℓ-groups

= ℓ-groups with 1 ≤ (1\x)yx ∨ 1\y

CLG commutative ℓ-groups

LG− negative cones of lattice-ordered groups

= cancellative integral generalized BL-algebras

RLG− negative cones of representable ℓ-groups

= cancellative integral representable generalized BL-algebras

CLG− negative cones of commutative ℓ-groups

= cancellative basic hoops

Br Brouwerian algebras

= residuated lattices with x ∧ y = xy

RBr representable Brouwerian algebras

= Brouwerian algebras that satisfy prelinearity
= basic hoops that are idempotent

GBA generalized Boolean algebras

= Brouwerian algebras with x ∨ y = (x\y)\y
= Wajsberg hoops that are idempotent

Table 4. Some subvarieties of RL
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Figure 2. Some subvarieties of RL ordered by inclusion
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5 Decomposition of GBL-algebras

The structure of ℓ-groups has been studied extensively in the past decades.
The structure of GMV-algebras has essentially been reduced to that of ℓ-
groups (with a nucleus operation), and GMV-algebras are parts of ℓ-groups.
The study of the structure of GBL-algebras has proven to be much more
difficult. Nevertheless, the existing results indicate that ties to ℓ-groups exist.
We first show that the study of GBL-algebras can be reduced to the integral
case, by showing that every GBL-algebra is the direct product of an ℓ-group
and an integral GBL-algebra. This result was proved in the dual setting of
DRl-monoids in [Ko96] and independently in the setting of residuated lattices
in [GT05]. With hindsight, the later result can, of course, be deduced by
duality from the former. The presentation below follows [GT05].

An element a in a residuated lattice L is called invertible if a(a\1) = 1 =
(1/a)a, and it is called integral if 1/a = a\1 = 1. We denote the set of
invertible elements of L by G(L) and the set of integral elements by I(L).
Recall that a positive element a is an element that satisfies a ≥ 1.

Note that a is invertible if and only if there exists an element a−1 such
that aa−1 = 1 = a−1a. In this case a−1 = 1/a = a\1. It is easy to see that
multiplication by an invertible element is an order automorphism.

LEMMA 13 [GT05] Let L be a GBL-algebra.

(i) Every positive element of L is invertible.

(ii) L satisfies the identities x/x = x\x = 1.

(iii) L satisfies the identity 1/x = x\1.

(iv) For all x, y ∈ L, if x ∨ y = 1 then xy = x ∧ y.

(v) L satisfies the identity x = (x ∨ 1)(x ∧ 1).

Proof. For (i), note that if a is a positive element in L, a(a\1) = 1 = (1/a)a,
by definition; that is, a is invertible. For (ii), we argue as is the proof of
Lemma 4.

By (ii) and residuation, we have x(1/x) ≤ x/x = 1, hence 1/x ≤ x\1.
Likewise, x\1 ≤ 1/x.

For (iv), we have x = x/1 = x/(x∨y) = x/x∧x/y = 1∧x/y = y/y∧x/y =
(y ∧ x)/y. So, xy = ((x ∧ y)/y)y = x ∧ y.

Finally, by Lemma 4, (1/x ∧ 1)x = x ∧ 1. Moreover, by (i) x ∨ 1 is
invertible and (x ∨ 1)−1 = 1/(x ∨ 1) = 1/x ∧ 1. Thus, (x ∨ 1)−1x = x ∧ 1, or
x = (x ∨ 1)(x ∧ 1). �
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The following theorem shows that if L is a GBL-algebra then the sets G(L)
and I(L) are subuniverses of L. We denote the corresponding subalgebras
by G(L) and I(L).

THEOREM 14 [GT05] Every GBL-algebra L is isomorphic to G(L)× I(L).

Proof. We begin with a series of claims.
Claim 1: G(L) is a subuniverse of L.

Let x, y be invertible elements. It is clear that xy is invertible. Addition-
ally, for all x, y ∈ G(L) and z ∈ L, z ≤ x−1y ⇔ xz ≤ y ⇔ z ≤ x\y. It follows
that x\y = x−1y, hence x\y is invertible. Likewise, y/x = yx−1 is invertible.

Moreover, x∨ y = (xy−1 ∨ 1)y. So, x∨ y is invertible, since every positive
element is invertible, by Lemma 13(i), and the product of two invertible
elements is invertible. By properties of residuation, x ∧ y = 1/(x−1 ∨ y−1),
which is invertible, since we have already shown that G(L) is closed under
joins and the division operations.
Claim 2: I(L) is a subuniverse of L.

Note that every integral element a is negative, since 1 = 1/a implies 1 ≤
1/a and a ≤ 1. For x, y ∈ I(L), we get:

1/xy = (1/y)/x = 1/x = 1, so xy ∈ I(L).

1/(x ∨ y) = 1/x ∧ 1/y = 1, so x ∨ y ∈ I(L).

1 ≤ 1/x ≤ 1/(x ∧ y) ≤ 1/xy = 1, so x ∧ y ∈ I(L).

1 = 1/(1/y) ≤ 1/(x/y) ≤ 1/(x/1) = 1/x = 1, so x/y ∈ I(L).

Claim 3: For every g ∈ (G(L))− and every h ∈ I(L), g ∨ h = 1.
Let g ∈ (G(L))− and h ∈ I(L). We have 1/(g∨h) = 1/g∧1/h = 1/g∧1 =

1, since 1 ≤ 1/g. Moreover, g ≤ g ∨ h, so 1 ≤ g−1(g ∨ h). Thus, by the
GBL-algebra identities and properties of residuation

1 = (1/[g−1(g ∨ h)])[g−1(g ∨ h)]
= ([1/(g ∨ h)]/g−1)g−1(g ∨ h)
= (1/g−1)g−1(g ∨ h)
= gg−1(g ∨ h)
= g ∨ h.

Claim 4: For every g ∈ (G(L))− and every h ∈ I(L), gh = g ∧ h.
In light of Lemma 13(iv), g−1h = (g−1h∨1)(g−1h∧1). Multiplication by g

yields h = (h∨g)(g−1h∧1). Using Claim 3, we have gh = g(g−1h∧1) = h∧g,
since multiplication by an invertible element is an order automorphism.
Claim 5: For every g ∈ G(L) and every h ∈ I(L), gh = hg.
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The statement is true if g ≤ 1, by Claim 4. If g ≥ 1 then g−1 ≤ 1, thus
g−1h = hg−1, hence hg = gh. For arbitrary g, note that both g ∨ 1 and
g ∧ 1 commute with h. Using Lemma 13(iv), we get gh = (g ∨ 1)(g ∧ 1)h =
(g ∨ 1)h(g ∧ 1) = h(g ∨ 1)(g ∧ 1) = hg.
Claim 6: For every x ∈ L, there exist gx ∈ G(L) and hx ∈ I(L), such that
x = gxhx.

By Lemma 13(iv), x = (x ∨ 1)(x ∧ 1). Since 1 ≤ x ∨ 1 and 1 ≤ 1/(x ∧ 1),
by Lemma 13(i), these elements are invertible. Set gx = (x∨ 1)(1/(x∧ 1))−1

and hx = (1/(x∧ 1))(x∧ 1). It is clear that x = gxhx, gx is invertible and hx

is integral.
Claim 7: For every g1, g2 ∈ G(L) and h1, h2 ∈ I(L), g1h1 ≤ g2h2 if and only
if g1 ≤ g2 and h1 ≤ h2.

For the non-trivial direction we have

g1h1 ≤ g2h2 ⇒ g−1

2 g1h1 ≤ h2 ⇒ g−1

2 g1 ≤ h2/h1 ≤ e⇒ g1 ≤ g2.

Moreover,

g−1

2 g1 ≤ h2/h1 ⇒ e ≤ g−1

1 g2(h2/h1)
⇒ 1 = [1/g−1

1 g2(h2/h1)]g−1

1 g2(h2/h1)
⇒ 1 = [(1/(h2/h1))/g−1

1 g2]g−1

1 g2(h2/h1)
⇒ 1 = g−1

2 g1g
−1

1 g2(h2/h1)
⇒ 1 = h2/h1

⇒ h1 ≤ h2.

By Claims 1 and 2, G(L) and I(L) are subalgebras of L. Define f :
G(L) × I(L)→ L by f(g, h) = gh. We will show that f is an isomorphism.
It is onto by Claim 6 and an order isomorphism by Claim 7. So, it is a
lattice isomorphism, as well. To verify that f preserves the other operations
note that gg′hh′ = ghg′h′, for all g, g′ ∈ G(L) and h, h′ ∈ I(L), by Claim
5. Moreover, for all g, g′, ḡ ∈ G(L) and h, h′, h̄ ∈ I(L), ḡh̄ ≤ gh/g′h′ if and
only if ḡh̄g′h′ ≤ gh. By Claim 5, this is equivalent to ḡg′h̄h′ ≤ gh, and, by
Claim 7, to ḡg′ ≤ g and h̄h′ ≤ h. This is in turn equivalent to ḡ ≤ g/g′

and h̄ ≤ h/h′, which is equivalent to ḡh̄ ≤ (g/g′)(h/h′) by Claim 7. Thus,
for all g, g′ ∈ G(L) and h, h′ ∈ I(L), gh/g′h′ = (g/g′)(h/h′) and, likewise,
g′h′\gh = (g′\g)(h′\h). �

COROLLARY 15 Every GBL-algebra is the direct product of an ℓ-group and
an integral GBL-algebra.

Combining this with Theorem 7 immediately gives the following result.

COROLLARY 16 Every cancellative GBL-algebra is the direct product of an
ℓ-group and the negative cone of an ℓ-group.
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6 Further results on the structure of GBL-algebras

In this section we briefly summarize results from a series of papers [JM06]
[JM09] [JM10]. The collaboration that lead to these results started when the
second author and Franco Montagna met at a wonderful ERCIM workshop
on Soft Computing, organized by Petr Hájek in Brno, Czech Republic, in
2003. This is yet another example how Petr Hájek’s dedication to the field
of fuzzy logic has had impact far beyond his long list of influential research
publications.

6.1 Finite GBL-algebras are commutative

LEMMA 17 If a is an idempotent in an integral GBL-algebra A, then ax =
a ∧ x for all x ∈ A. Hence every idempotent is central, i.e. commutes with
every element.

Proof. Suppose aa = a. Then ax ≤ a ∧ x = a(a\x) = aa(a\x) = a(a ∧ x) ≤
ax. �

In an ℓ-group only the identity is an idempotent, hence it follows from
the decomposition result mentioned above that idempotents are central in all
GBL-algebras.

In fact, using this lemma, it is easy to see that the set of idempotents in a
GBL-algebra is a sublattice that is closed under multiplication. In [JM06] it
is proved that this set is also closed under the residuals.

THEOREM 18 The idempotents in a GBL-algebra A form a subalgebra,
which is the largest Brouwerian subalgebra of A.

By the results of the preceding section, the structure of any GBL-algebra
is determined by the structure of its ℓ-group factor and its integral GBL-
algebra factor. Since only the trivial ℓ-group is finite, it follows that any finite
GBL-algebra is integral. A careful analysis of one-generated subalgebras in
a GBL-algebra gives the following result.

THEOREM 19 [JM06] Every finite GBL-algebra and every finite pseudo-BL-
algebra is commutative.

Since there exist noncommutative GBL-algebras, such as any noncommu-
tative ℓ-group, the next result is immediate.

COROLLARY 20 The varieties GBL and psBL are not generated by their
finite members, and hence do not have the finite model property.
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B∂

B B

〈⊤,⊤〉

⊥† = ⊤

Figure 3.

As mentioned earlier, BL-algebras are subdirect products of ordinal sums
of commutative integral GMV-chains, and a similar result holds without com-
mutativity for representable GBL-algebras. So it is natural to ask to what
extent GBL-algebras are determined by ordinal sums of GMV-algebras and
Heyting algebras. We briefly recall a construction of a GBL-algebra that
does not arise from these building blocks.

For a residuated lattice B with top element ⊤, let B∂ denote the dual
poset of the lattice reduct of B. Now we define B† to be the ordinal sum of
B∂ and B×B, i.e., every element of B∂ is below every element of B×B (see
Figure 3). Note that B† has ⊤ as bottom element, so to avoid confusion, we
denote this element by ⊥†. A binary operation · on B† is defined as follows:

〈a, b〉 · 〈c, d〉= 〈ac, bd〉
〈a, b〉 · u = u/a
u · 〈a, b〉 = b\u
u · v = ⊤ = ⊥†

Note that even if B is a commutative residuated lattice, · is in general non-
commutative.

LEMMA 21 • For any residuated lattice B with top element, the algebra
B† defined above is a bounded residuated lattice.
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• If B is nontrivial, then B† is not a GMV-algebra, and if B is subdirectly
irreducible, so is B†.

• B† is a GBL-algebra if and only if B is a cancellative GBL-algebra.

6.2 The Blok-Ferreirim decomposition result for normal

GBL-algebras

Building on work of Büchi and Owens [BO], Blok and Ferreirim [BF00] proved
the following result.

PROPOSITION 22 Every subdirectly irreducible hoop is the ordinal sum of a
proper subhoop H and a subdirectly irreducible nontrivial Wajsberg hoop W.

This result was adapted to BL-algebras in [AM03]. To discuss further
extensions to GBL-algebras we first recall some definitions about filters and
congruences in residuated lattices.

A filter of a residuated lattice A is an upward closed subset F of A which
contains 1 and is closed under the meet and the monoid operation. A filter F
is said to be normal if aF = Fa for all a ∈ A, or equivalently if a\(xa) ∈ F
and (ax)/a ∈ F whenever x ∈ F and a ∈ A. A residuated lattice is said to
be normal if every filter of it is a normal filter. A residuated lattice is said
to be n-potent if it satisfies xn+1 = xn, where xn = x · . . . · x (n times). Note
that n-potent GBL-algebras are normal ([JM09]).

In every residuated lattice, the lattice of normal filters is isomorphic to
the congruence lattice: to any congruence θ one associates the normal filter
Fθ = ↑{x : (x, 1) ∈ θ}. Conversely, given a normal filter F , the set θF of all
pairs (x, y) such that x\y ∈ F and y\x ∈ F is a congruence such that the
upward closure of the congruence class of 1 is F . Hence a residuated lattice
is subdirectly irreducible if and only if it has a smallest nontrivial normal
filter.

In [JM09] the following result is proved.

THEOREM 23 (i) Every subdirectly irreducible normal integral GBL-algebra
is the ordinal sum of a proper subalgebra and a non-trivial integral sub-
directly irreducible GMV-algebra.

(ii) Every n-potent GBL-algebra is commutative and integral.

A variety V has the finite embeddability property (FEP) iff every finite
partial subalgebra of an algebra in V partially embeds into a finite algebra
of V. The FEP is stronger than the finite model property: for a finitely
axiomatized variety V, the finite model property implies the decidability of
the equational theory of V, while the FEP implies the decidability of the
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universal theory of V. With the help of the ordinal sum decomposition, the
following result is proved in [JM09].

THEOREM 24 The variety of commutative and integral GBL-algebras has
the FEP.

However, by interpreting the quasiequational theory of ℓ-groups into that
of GBL-algebras, it is shown that without the assumption of commutativity
the quasiequational theory of GBL-algebras is undecidable. The decidability
of the equational theory of GBL-algebras is currently an open problem.

6.3 Poset products

The success of ordinal sum decompositions for subclasses of GBL-algebras
has prompted the use of some generalizations to obtain representation and
embedding theorems for larger subclasses. The poset product uses a partial
order on the index set to define a subset of the direct product. Specifically, let
I = (I,≤) be a poset, assume {Ai : i ∈ I} is a family of residuated lattices,
and that for nonmaximal i ∈ I each Ai is integral, and for nonminimal i ∈ I
each Ai has a least element denoted by 0. The poset product of {Ai : i ∈ I}
is

∏

I

Ai = {f ∈
∏

i∈I

Ai : f(i) = 0 or f(j) = 1 for all i < j in I}.

The monoid operation and the lattice operations are defined pointwise. The
residuals are defined by

(f\g)(i) = f(i)\ig(i) if f(j) ≤j g(j) for all j > i, and 0 otherwise,

(f/g)(i) = f(i)/ig(i) if f(j) ≤j g(j) for all j > i, and 0 otherwise.

The poset product is distinguished visually from the direct product since the
index set is a poset I rather than just an index set I. If I is an antichain then
the poset product reduces to the direct product, and if I is a finite chain, the
poset product gives the ordinal sum over the reverse order of I. In [JM09]
the following is proved.

THEOREM 25 (i) The poset product of a collection of residuated lattices
is a residuated lattice, which is integral (divisible, bounded respectively)
when all factors are integral (divisible, bounded respectively).

(ii) Every finite GBL-algebra can be represented as the poset product of a
finite family of finite MV-chains.

The next result, from [JM10], extend this to larger classes of GBL-algebras,
but in this case one only gets an embedding theorem.
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THEOREM 26 Every n-potent GBL-algebra embeds into the poset product of
a family of finite and n-potent MV-chains.

Every normal GBL-algebra embeds into a poset product of linearly ordered
integral bounded GMV-algebras and linearly ordered ℓ-groups.

For Heyting algebras the above theorem reduces to the well-known embedding
theorem into the complete Heyting algebra of all upward closed subsets of
some poset.

Various properties can be imposed on poset products to obtain embedding
theorems for other subclasses of GBL-algebras. The follow result from [JM10]
collects several of them.

THEOREM 27 A GBL-algebra is

• a BL-algebra iff it is isomorphic to a subalgebra A of a poset product
⊗

i∈I
Ai such that

(a) each Ai is a linearly ordered MV-algebra,

(b) I = (I,≤) is a root system, i.e. every principal filter of I is linearly
ordered, and

(c) the function on I which is constantly equal to 0 is in A;

• an MV-algebra iff it is isomorphic to a subalgebra A of a poset product
⊗

i∈I
Ai such that conditions (a) and (c) above hold and

(d) I = (I,≤) is a poset such that ≤ is the identity on I;

• representable iff it is embeddable into a poset product
⊗

i∈I
Ai such that

each Ai is a linearly ordered GMV-algebra and (b) holds;

• an abelian ℓ-group iff it is embeddable into a poset product
⊗

i∈I
Ai

such that each Ai is a linearly ordered abelian ℓ-group and condition
(d) above holds;

• n-potent iff it is embeddable into a poset product of linearly ordered
n-potent MV-algebras;

• a Heyting algebra iff it is isomorphic to a subalgebra A of a poset prod-
uct

⊗

i∈I
Ai where condition (c) holds and in addition

(e) every Ai is the two-element MV-algebra;

• a Gödel algebra iff it is isomorphic to a subalgebra A of a poset product
⊗

i∈I
Ai where (b), (c) and (e) hold;

• a Boolean algebra iff it is isomorphic to a subalgebra A of a poset prod-
uct

⊗

i∈I
Ai where (c), (d) and (e) hold.
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Of course this survey covers only some of the highlights of a few research
papers concerned with GBL-algebras and related classes. Volumes have been
written about BL-algebras, MV-algebras, ℓ-groups and Heyting algebras, as
well as about many other algebras that satisfy divisibility, and the reader
is encouraged to explore the literature further, starting with the references
below.
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[AM03] P. Aglianò and F. Montagna, Varieties of BL-algebras I: general properties, Jour-
nal of Pure and Applied Algebra 181, (2003), 105–129.

[AF88] M. Anderson and T. Feil, “Lattice Ordered Groups, An Introduction”, D. Reidel
Publishing Company, Dordrecht, Boston, Lancaster, Tokyo 1988.

[BCGJT] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis, Cancellative Residuated
Lattices, Algebra Universalis 50 (1), (2003), 83–106.

[BF00] W. J. Blok and I. M. A. Ferreirim, On the structure of hoops, Algebra Universalis
43 (2000), 233–257.

[BP89] W. J. Blok and D. Pigozzi, Algebraizable Logics, Mem. Amer. Math. Soc. 396
(1989).

[BP94] W. J. Blok and D. Pigozzi, On the structure of Varieties with Equationally De-
finable Principal Congruences III, Algebra Universalis 32 (1994), 545-608.

[BT03] K. Blount and C. Tsinakis, The structure of residuated lattices, International
Journal of Algebra and Computation 13(4), (2003), 437–461.

[Bo82] B. Bosbach, Residuation groupoids, Result. Math. 5 (1982) 107-122.
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