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Abstract

We solve the isomorphism problem in the context of abstract algebraic logic and of
π-institutions, namely the problem of when the notions of syntactic and semantic equiva-
lence among logics coincide. The problem is solved in the general setting of categories of
modules over quantaloids. We prove that these categories are strongly complete, strongly
cocomplete, and (Epi,Mono)-structured. We prove a duality property, a characterization
of monos in virtue of Yoneda Lemma, and as a consequence of this and of the dual-
ity, a characterization of epis. We introduce closure operators and closure systems on
modules over quantaloids, and its associated morphisms. We show that, up to isomor-
phism, epis are morphisms associated with closure operators, and as a consequence that
Epi = RegEpi, and by duality Mono = RegMono. This is fundamental in the proof of the
strong amalgamation property.

The notions of (semi-)interpretability and (semi-)representability are introduced and
studied. We introduce cyclic modules, and provide a characterization for cyclic projective
modules as those having a g-variable. From this we obtain that categories of modules over
(small) quantaloids have enough injectives and projectives.

Finally, we explain how every π-institution induces a module over a quantaloid, and
thus the theory of modules over quantaloids can be considered as an abstraction of the
theory of π-institutions.

1 Introduction

In order to study the property of algebraizability for sentential logics, and the equivalence
between deductive systems in general, Blok and Jónsson introduced the notion of equiva-
lence between structural closure operators on a set X acted on by a monoid M , or an M -set
(see [BJ06]). As usual, given a monoid (M, ·, 1), an M -set consists of a set X and a monoid
action ? : M ×X → X, where 1 ? x = x and a ? (b ? x) = (a · b) ? x, for all a, b ∈M and x ∈ X.
While the use of closure operators to encode entailment relations is very well known, the action
of the monoid is introduced to formalize the notion of structurality, that is, “entailments are
preserved by uniform substitutions,” a property usually required for logics.

Given an M -set 〈X, ·〉, a closure operator C on X is structural on 〈X, ·〉 if and only if it
satisfies the following property: for every σ ∈ M , and every Γ ⊆ X, σ · CΓ ⊆ C(σ · Γ), where
σ · Γ = {σ · ϕ : ϕ ∈ Γ}. This can be shortly written as follows:

∀σ ∈M, σC 6 Cσ. (Str)

This is known as the structurality property for C, since it takes the following form, when
expressed in terms of `C , the closure relation on X associated with the closure operator C
(defined by ϕ ∈ CΓ iff Γ `C ϕ): for every Γ ⊆ X, every ϕ ∈ X, and every σ ∈M ,

Γ `C ϕ ⇒ σ · Γ `C σ · ϕ.
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For ever σ ∈ M , a unary operation Cσ on Cl(C), the lattice of theories or closed sets of
C, is defined in the following way: Cσ(Γ) = C(σ · Γ). The expanded lattice of theories of a
structural closure operator C is defined as the structure 〈Cl(C), (Cσ)σ∈M 〉.

In their approximation, Blok and Jónsson define two structural closure operators on two
M -set s to be equivalent if their expanded lattices of theories are isomorphic. Later, they
prove that under certain hypotheses (the existence of basis), this is equivalent to the existence
of conservative and mutually inverse interpretations, which is the original idea of equivalence
between deductive systems emerging from the work of Blok and Pigozzi. This equivalence
between the lattice-theoretic property of having isomorphic expanded lattices of theories, and
the semantic property of being mutually interpretable is known by the name of the Isomorphism
Theorem. And the problem of determining in which situations there exists an Isomorphism
Theorem is called the Isomorphism Problem.

The first Isomorphism Theorem was proved by Blok and Pigozzi in [BP89] for algebraiz-
able sentential logics, and later it was obtained for k-dimensional deductive systems by them
in [BP92] and for Gentzen systems by Rebagliato and Verdú in [RV95]. But there is not a
general Isomorphism Theorem for structural closure operators on M -set s, as there are coun-
terexamples for that (see [GFér]).

In turn, Voutsadakis studied in [Vou03] the notion of equivalence of π-institutions at dif-
ferent levels (quasi-equivalence and deductive equivalence) and identified term π-institutions,
for which a certain kind of Isomorphism Theorem also holds. The notion of π-institution was
introduced by Fiadeiro and Sernadas in their article [FS88] and can be viewed as a general-
ization of deductive systems allowing multiple sorts. They constitute a very wide categorical
framework embracing sentential logics, Gentzen systems, etc., as they include structural clo-
sure operators on M -set s as a particular case. Therefore, a general Isomorphism Theorem for
π-institutions is not possible (see [GF06]).

Sufficient conditions for the existence of an Isomorphism Theorem were provided in [GFér]
and [GF06] for structural closure operators on M -set s (and graduated M -set s), and π-in-
stitutions that encompass all the previous known cases. The first complete solution of the
Isomorphism Problem was found for closure operators on modules over residated complete
lattices, or quantales (see [GT09]). In this article, the modules providing an Isomorphism
Theorem are identified as the projective modules. In particular, cyclic projective modules are
characterized in several ways, from which the Isomorphism Theorem for k-deductive systems
follows, and also for Gentzen systems, using that coproducts of projectives are projective. The
Isomorphism Problem for π-institutions remained open.

In this article we present a solution for the Isomorphism Problem in the general framework
of closure operators on modules over quantaloids, and as a particular case for π-institutions.
In order to do that, the theory of modules over quantaloids and of closure operators on them
is developed in a categorical way. This yields a very rich theory with many nice properties:
We prove that there exists a duality in the categories of modules over quantaloids, that they
are strongly complete and strongly cocomplete, that they are (Epi,Mono)-structured, that
they have enough injectives and projectives, and that they satisfy the strong amalgamation
property, among others. Many of these results are generalizations of the same results obtained
by Solovyov for categories of modules over quantales (see [Sol08]). We characterize monos and
epis in the categories of modules over quantaloids, and furthermore prove that every epi is
induced by a closure operator on its domain.

We also study the notions of closure system on a module over a quantaloid, and prove that
they are exactly the submodules of the dual module, and that the standard correspondence
between closure operators and closure systems on a set extends to a natural isomorphism.
We introduce the notions of (semi-)interpretability and (semi-)representability of one closure
operator into another and study their relationships. We prove that the set of closure operators
that are interpretable by a given morphism τ is a principal filter of the lattice of closure
operators on its domain. As a consequence, we obtain that every extension of an interpretable
closure operator is also interpretable by the same morphism. One instantiation of this result is
the well-known fact that if a sentential logic has an algebraic semantics, then every extension
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of it also has an algebraic semantics and with the same defining equations. This is the contents
of Theorem 2.15 of [BR03].

One of the main results of the paper is Theorem 9.10, where the modules with the property
that every representation of a closure operator on them into another closure operator is induced
are nicely characterized as the projective ones. This is the key result for Theorem 11.3, which
establishes that every equivalence between two closure operators on projective modules is
induced by mutually inverse interpretations. That is the general solution for the Isomorphism
Problem in the setting of modules over quantaloids.

In the last section we explain in detail how every π-institution induces a closure operator on
a module over a quantaloid, and every translation between π-institutions induces a morphism
in the fibered category of all modules over quantaloids. Thus, we show how the theory of closure
operators on modules over quantaloids is a generalization of the theory of interpretations and
representations of π-institutions.

2 Modules coming from M-set s

We start our study by reviewing modules over a quantale and how every M -set induces a
module over a quantale. Then, we provide a characterization of cyclic and projective modules
coming from M -set s as those whose M -set has a generalized variable, a condition very close
to the property of having a variable (see [GFér]), which is proved to be not necessary (see
Theorem 2.10 and Example 2.11). This will be generalized to modules over quantaloids, in
Section 10 (see Theorem 10.11).

Recall that a quantale 〈A,
∨
, ·, 1〉 is a join-complete lattice and a monoid such that multi-

plication distributes on both sides over (arbitrary) joins. Note that quantales are definitionally
equivalent to complete residuated lattices, namely algebras 〈A,∧,∨, ·, \, /, 1〉, with a monoid
and a complete lattice reduct such that x · y ≤ z ⇔ x ≤ z/y ⇔ y ≤ x\z, for all x, y, z ∈ A;
however, homomorphisms differ, so quantales and complete residuated lattices give rise to dif-
ferent categories. Also, recall from [GT09] that, given a quantale A = 〈A, ·, 1〉, an A-module is
a pair 〈R, ∗〉, where R is a complete lattice and ∗ : A×R→ R is a biresiduated map satisfying
that for every x ∈ R and a, b ∈ A:

(M1) 1 ∗ x = x,
(M2) a ∗ (b ∗ x) = (ab) ∗ x.

Recall that for partially ordered sets P and Q a map τ : P → Q is called residuated if there
exists a map τ+ : Q → P such that τ(p) ≤ q ⇔ p ≤ τ+(q), for all p ∈ P and q ∈ Q. For
complete lattices P and Q, τ : P → Q is residuated iff it preserves (arbitrary) joins. For
partially ordered sets P, Q and R, a map τ : P ×Q→ R is called biresiduated if the sections
τp : y 7→ τ(p, y) and τq : x 7→ τ(x, q) are residuated for all p ∈ P and q ∈ Q. Note that the last
condition in the definition of a residuated lattice states that multiplication is biresiduated.

Following [GT09], there is a standard way of defining a quantale AM from a monoid M ,
lifting all the operations to the powersets: let A be the complete lattice with universe P(M)
of subsets of M ordered by inclusion, and for every a, b ∈ A, a · b = {σσ′ : σ ∈ a, σ′ ∈ b}.
Then, AM = 〈A, ·, {1M}〉 is a quantale. Analogously, given an M -set 〈X, ·〉 the AM -module
associated with it is defined as follows: take R = P(X) and for every a ∈ A and x ∈ R,
a ∗ x = {σ · ϕ : σ ∈ a, ϕ ∈ x}. Thus, R =

〈
〈P(X),⊆〉, ∗

〉
is an AM -module.

Recall from [GFér] the following notion: an element q ∈ X is a variable for an M -set
〈X, ·〉 if there exists a family κ = {κϕ : ϕ ∈ X} ⊆ M , called a uniform or coherent family of
substitutions, such that

(i) for every ϕ ∈ X, κϕ · q = ϕ,
(ii) for every σ ∈M , and every ϕ ∈ X, σκϕ = κσϕ.

We note that the notion of a variable is a proper generalization of the notion of a basis (in the
sense of Blok and Jónsson): if anM -set has a basis B, then every q ∈ B is a variable; also there
are examples of M -sets with variables that do not have any basis. Using terminology in the
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references that will be introduced later in the paper, we mention that it was proved in [GFér]
that every representation of a structural closure operator on an M -set with a variable into
another is induced, whence these M -set s are well-behaved (see Theorem 34 of [GFér], where
the more general graded-version is established). In [GT09] the A-modules with the property
that every structural representation of a closure operator on them into another is induced are
characterized as the O-projectives, where O = Onto(A-Mod) is the class of all morphisms in
A-Mod that are ontos.

Recall that, if E is a family of morphisms of some category, then an object P of this category
is E-projective if for every ε : R → S in E , any morphism f : P → S can be extended to a
morphism f : P → R such that εf = f :

R

ε

��

P
f
//

∃f
??~

~
~

~
S

An object P is projective if it is Epi-projective, where Epi is the class of all epimorphisms in
this category.

Theorem 2.1 (Galatos-Tsinakis). Let A be a quantale and O = Onto(A-Mod) the class of
all A-morphisms that are ontos. An A-module R is cyclic and O-projective if and only if there
exists u ∈ A such that u = u2 and R ∼= A · u.

We will prove later (see Corollary 6.3) a characterization for Onto(Q-Mod) for an arbi-
trary quantaloid Q, that in particular implies that for every quantale A, Onto(A-Mod) =
Epi(A-Mod), and then the prefix “O-” can be removed in Theorem 2.1. As a consequence of
these results we can establish the following proposition:

Proposition 2.2. Let M be a monoid, 〈X, ·〉 an M -set, R the AM -module associated with
〈X, ·〉. If 〈X, ·〉 has a variable then R is a cyclic and projective AM -module.

Proof. Let q ∈ X be a variable and κ = {κϕ : ϕ ∈ X} a uniform family of substitutions for q.
If we set u = {κq} ∈ A, then it is immediate that A · u = P(κ). Note that u2 = {κqκq} = u,
since κqκq = κκq·q = κq.

The map f : R → P(κ) = A · u defined by fx = {κϕ : ϕ ∈ x} is bijective with inverse
f−1 : P(κ)→ R defined by f−1(a) = {σ · q : σ ∈ a}. Furthermore, the map f : R→ 〈P(κ),⊆〉
is a residuated map, since f(

⋃
xi) =

⋃
f(xi). Moreover, f(a∗x) = f

(
{σ ·ϕ : σ ∈ a, ϕ ∈ x}

)
=

{κσ·ϕ : σ ∈ a, ϕ ∈ x} = {σ · κϕ : σ ∈ a, ϕ ∈ x} = a · {κϕ : ϕ ∈ x} = a · f(x).
Thus, f : R→ AM ·u is anAM -isomorphism, and in virtue of Theorem 2.1 and Corollary 6.3,

R is cyclic and projective.

In view of the preceding result, the following are natural questions: Under which conditions
can a reciprocal of the preceding proposition be proved? Does every M -set giving rise to a
cyclic and projective AM -module have a variable? We will answer these questions, but in
order to do that, we first need to further analyze the notion of a variable, as well as of cyclic
projective. The following is also a specialization of a theorem in [GT09].

Proposition 2.3 (Galatos-Tsinakis). If 〈X, ·〉 is anM -set and R is the associated AM -module,
then R is cyclic and projective if and only if there exists v ⊆ X and u ⊆M such that:

1. u ∗ v = v,
2. for every x ⊆ X, there exists vx ⊆M , such that vx ∗ v = x,
3. for every a ⊆M , (a ∗ v/v)u = au.

Remark 2.4. Note that condition 3. can be rewritten in the following terms: for every π ∈M ,
and a ⊆M ,

{π} ∗ v ⊆ a ∗ v ⇒ {π}u ⊆ au. (1)
It follows that, for every a, b ⊆M ,

b ∗ v = a ∗ v ⇒ bu = au. (2)
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The next proposition shows that having a variable is pretty close to having a cyclic and
projective associated module.

Proposition 2.5. If 〈X, ·〉 is an M -set, p ∈ X and κ = {κϕ : ϕ ∈ X} ⊆ M , then p is a
variable for 〈X, ·〉 with uniform family of substitutions κ if and only if

(i’) for every ϕ ∈ X, κϕκp = κϕ,
(ii’) for every ϕ ∈ X, κϕ · p = ϕ,
(iii’) for every π, σ ∈M , π · p = σ · p⇒ πκp = σκp.

Proof. If p is a variable for 〈X, ·〉 with uniform family of substitutions κ, then (ii’) is trivial.
By (ii) and (i) we obtain:

κϕκp = κκϕ·p = κϕ,

whence we have (i’). Finally, let π, σ be elements in M such that π · p = σ · p. Therefore, by
(ii), πκp = κπ·p = κσ·p = σκp.

Suppose now that p and κ satisfy (i’), (ii’) and (iii’), and let us prove (ii), since (i) is trivial
by (ii’). For every σ ∈M , we have that

σκϕ · p = σ · ϕ = κσ·ϕ · p,

and therefore, by (iii’), σκϕκp = κσ·ϕκp. And then, in virtue of (i’), σκϕ = κσ·ϕ.

Remark 2.6. Note that (ii’) and (iii’) implies that, in particular κ2
p = κp, since κp ·p = p = id·p.

In fact, Condition (i’) in the preceding proposition is somehow redundant. It cannot be
derived from the other two, as the next example shows, but given p and κ satisfying (ii’)
and (iii’), we can modify κ in order to obtain another κ′ satisfying all the three properties.

Example 2.7. Let X = {p, q, 0} be a set with three elements, and κp, κq, κ0 : X → X the maps
determined by:

p � κp // p
q � // 0
0 � // 0

p � κq // q
q � // q

0 � // 0

p � κ0 // 0
q � // 0
0 � // 0

Let M the monoid generated by these three maps, and 〈X, ·〉 the M -set determined by
σ ·ϕ = σϕ, for σ ∈M and ϕ ∈ X. It is straightforward to prove that, if id is the identity map
on X and τ = κqκp, then M = {id, κp, κq, κ0, τ} and the multiplication table is:

κp κq κ0 τ
κp κp κ0 κ0 κ0

κq τ κq κ0 τ
κ0 κ0 κ0 κ0 κ0

τ τ κ0 κ0 κ0

By definition, τp = q and τq = τ0 = 0. For π, σ ∈ M , π 6= σ, we have that π · p = σ · p
if and only if {π, σ} = {κp, id} or {π, σ} = {κq, τ}. And then, since κpκp = κp = id κp and
κqκp = τ = τκp, we have that p and κ = {κp, κq, κ0} satisfy (ii’) and (iii’). But, κqκp = τ 6= κq,
and then they do not satisfy (i’).

Proposition 2.8. If 〈X, ·〉 is an M -set, and p ∈ X and κ = {κϕ : ϕ ∈ X} ⊆ M satisfy
(ii’) and (iii’), then p is a variable for 〈X, ·〉 with uniform family of substitutions κ′ defined by
κ′ϕ = κϕκp.

Proof. By Remark 2.6, κ2
p = κp, or in other words κ′p = κp. Therefore, condition (iii’) for p

and κ′ is trivially satisfied.
Now, for every ϕ ∈ X, κ′ϕ · p = κϕκp · p = κϕ · p = ϕ. Moreover, κ′ϕκ′p = κϕκpκp = κϕκ

2
p =

κϕκp = κ′ϕ, which concludes the proof.
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Comparing the conditions in Proposition 2.3 and in Proposition 2.5, we observe that 2. and
3. are very similar to (ii’) and (iii’), respectively, where κp plays the role of u and p stands
for v. Indeed, if p is a variable for 〈X, ·〉 with uniform family of substitutions κ, and we
take v = {p} and u = {κp}, then the tree conditions of Proposition 2.3 are satisfied, which
constitutes another proof that the associated AM -module R is cyclic and projective.

But, if we are under the hypotheses of Proposition 2.3 and we search for a variable of 〈X, ·〉
it seems that we have to reduce v and u to singletons. Indeed, this inspires the following
definition, and we say that p is a generalized variable when v is just the singleton v = {p}.

Definition 2.9. A generalized variable or g-variable for an M -set 〈X, ·〉 is an element p ∈ X
such that there exist u ⊆M , satisfying the following three conditions:

1’. u ∗ {p} = {p},
2’. for every ϕ ∈ X, there exists vϕ ∈M , such that vϕ · p = ϕ,
3’. for every π, σ ∈M , if π · p = σ · p, then {π}u = {σ}u.

We can now prove the following characterization.

Theorem 2.10. Let 〈X, ·〉 be an M -set and R the associated AM -module. R is cyclic and
projective if and only if 〈X, ·〉 has a g-variable.

Proof. Suppose that 〈X, ·〉 has a g-variable p and that u ⊆ M and vϕ ∈ M for every ϕ ∈ X
satisfy conditions 1’., 2’., and 3’. Let v = {p}, and for every x ⊆ X, let vx = {vϕ : ϕ ∈ x}. It
is easy to check that conditions 1. and 2. are satisfied in virtue of 1’. and 2’. In order to prove
3., suppose that π ∈ M and a ⊆ M are such that {π} ∗ {p} ⊆ a ∗ {p}, that is, π · p ∈ a ∗ {p},
and let us show that {π}u ⊆ au. Since π · p ∈ a ∗ {p}, there exists σ ∈ a such that π · p = σ · p,
and by 3’., {π} ∗ u = {σ}u ⊆ au.

Suppose now that R is cyclic and projective and let v ⊆ X, u ⊆ M and for every x ⊆ X,
vx ⊆M be elements satisfying conditions 1., 2., and 3.

Let p ∈ v, for every ϕ ∈ X, let vϕ ∈ v{ϕ}, and u′ = {vp}u. We will show that 1’., 2’., and
3’. are satisfied by u′, p and vϕ. Note that, for every ϕ ∈ X, {vϕ} ∗ {p} ⊆ v{ϕ} ∗ v = {ϕ}, and
therefore vϕ · p = ϕ. Then, we have that,

u′ ∗ {p} ⊆ u′ ∗ v = ({vp}u) ∗ v = {vp} ∗ (u ∗ v) = {vp} ∗ v ⊆ v{p} ∗ v = {p},

whence we obtain that u′ ∗ {p} = u′ ∗ v = {p}.
Suppose now that π, σ ∈M are such that π · p = σ · p. Hence,

({π}u′) ∗ v = {π} ∗ (u′ ∗ v) = {π} ∗ {p} = {π · p} = {σ} ∗ {p} = {σ} ∗ (u′ ∗ v)
= ({σ}u′) ∗ v.

Since we are assuming 3., in particular by (2) we obtain that {π}u′u = {σ}u′u. Let us prove
that u′u = u′, and we will be done. Since v = u ∗ v, we have {vp} ∗ v = ({vp}u) ∗ v = u′ ∗ v,
and then by (2),

u′ = {vp}u = u′u.

Hence, under the hypotheses of Proposition 2.3, we can always reduce v to a singleton, but
we cannot do the same with u, as it is shown by the next example.
Example 2.11. Let X = {p, s1, s2} be a set with three elements, and κ1, κ2, e1, e2 : X → X the
maps determined by:

p � κ1 // p
s1

� // s1

s2
� // s1

p � κ2 // p
s1

� // s2

s2
� // s2

p � e1 // s1

s1
� // s1

s2
� // s1

p � e2 // s2

s1
� // s2

s2
� // s2

Let M the monoid generated by these three maps, and 〈X, ·〉 the M -set determined by
σ ·ϕ = σϕ, for σ ∈M and ϕ ∈ X. It is straightforward to prove that, if id is the identity map
on X then M = {id, κ1, κ2, e1, e2}.
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It is easy to check that, by taking u = {κ1, κ2}, vp = κ1, vs1 = e1 and vs2 = e2, conditions
1’. and 2’. are satisfied. Moreover, for every π, σ ∈M , π 6= σ, we have that π · p = σ · p if and
only if π, σ ∈ {κ1, κ2, id}. But, we have the equations

u = {id}u = {κ1}u = {κ2}u,

which prove that condition 3’. is also satisfied. That is, 〈X, ·〉 has a g-variable, p.
Nevertheless, thisM -set does not have a variable. The only possible candidate for a variable

is p, and therefore the only candidates for κp are id, κ1 and κ2. If we take κp = id, then it
does not satisfy condition (iii’), because κ1 id = κ1 6= κ2 = κ2 id. Analogously, the inequalities
κ1κ1 = κ1 6= κ2 = κ2κ1 and κ2κ2 = κ2 6= κ1 = κ1κ2 show that neither κ1 nor κ2 can be taken
to be κp. Hence, p cannot be a variable.

3 The monoidal structure of the category S`

Let us denote by S` the category of join-complete lattices. That is, the objects of S` are
join-complete lattices and its arrows are maps preserving arbitrary joins. It is well known
that join-complete lattices are complete lattices, and that the maps between complete lattices
preserving arbitrary joins are exactly the residuated maps.

Given R,S,T ∈ S`, a map f : R × S → T is biresiduated (with respect to R, S and
T) if it is residuated in each variable, that is, for every a ∈ R, and every b ∈ S, the maps
f(a,_) : S → T and f(_ , b) : R → T are residuated. Since all the considered lattices
are complete, being biresiduated is equivalent to preserving arbitrary joins in each variable
separately. Note that, since S` has products, if R,S ∈ S` then R × S ∈ S`, but a map f
biresiduated with respect to R, S, and T, is not in general a residuated map from R × S to
T. That is, biresiduated maps are not, in general, morphisms of S`. Nevertheless, we will also
use the arrow notation R×S→ T to denote biresiduated maps, and hope no confusion arises
from this practice.

In the same manner as bilinear maps can be “encoded” by linear maps via the tensor product
of vectorial spaces, biresiduated maps can also be “encoded” by residuated maps, as we explain
in what follows.

As it is mentioned in [JT84], for every R,S ∈ S` there exist a complete lattice R⊗ S and
a biresiduated map R× S → R⊗ S that is universal among all the biresiduated maps. That
is, every biresiduated map f : R× S→ T factorizes through it via a unique residuated map:

R× S //

f
%%JJJJJJJJJJ R⊗ S

∃! f
��
�
�
�

T

The tensor product of R and S is defined as the codomain R⊗S of this universal biresiduated
map. It is therefore unique up to isomorphism. The image of a pair 〈x, y〉 ∈ R × S in the
tensor product is denoted by x ⊗ y. The tensor product can be constructed by the standard
methods as a quotient of R × S by the congruence generated by 〈

∨
xi, y〉 ≡

∨
〈xi, y〉 and

〈x,
∨
yi〉 ≡

∨
〈x, yi〉, for arbitrary families {xi : i ∈ I} ⊆ R and {yi : i ∈ I} ⊆ S, and elements

x ∈ R, y ∈ S. The interested reader is referred to the general study of bimorphisms1 developed
in [BN76] for more details about this kind of constructions.

On the other direction, since the composition gh of a residuated map g with a biresiduated
map h is biresiduated, there exists a bijection between biresiduated maps R × S → T and
residuated maps R⊗ S→ T, and in this sense we say that we “encode” biresiduated maps by
residuated maps.

The map assigning to every pair of complete lattices their tensor product extends to a
bifunctor ⊗ : S` × S` → S` in the following way: if 〈f, g〉 : 〈R,S〉 → 〈R′,S′〉 is a morphism

1There is another notion of bimorphism: that of a morphism in a category that is simultaneously epi and
mono (see [AHS06]). We do not use the term bimorphism with this sense.
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in S` × S`, then consider the residuated map f × g : R × S → R′ × S′. The composition of
f ×g with the universal map R′×S′ → R′⊗S′ is biresiduated, and therefore, by the universal
property of R⊗ S, the following diagram can be completed:

R× S //

f×g
�� %%LLLLLLLLLL R⊗ S

f⊗g
��
�
�
�

R′ × S′ // R′ ⊗ S′

〈x, y〉 � //
_

��

x⊗ y_

��
�
�
�

〈fx, fy〉 � // (f ⊗ g)(x⊗ y) = fx⊗ gy

It is straightforward to prove that there exist natural isomorphisms λ : 2 ⊗ R → R,
ρ : R⊗ 2→ R, and α : (R⊗ S)⊗T→ R⊗ (S⊗T) that endow (S`,⊗,2) with a structure of
monoidal category. Furthermore, it is a symmetric monoidal category, since there also exists a
natural isomorphism c : R ⊗ S → S ⊗R, sending x ⊗ y to y ⊗ x, for every x ∈ R and y ∈ S,
and satisfying the corresponding coherent axioms.

There are other remarkable properties of the monoidal structure of S` that are worth
mentioning, although we will no make an extensive use of them. For instance, for a fixed an
object S ∈ S`, the functor _ ⊗ S : S` → S` is a left adjoint of the hom-functor S`(S,_) :
S`→ S`, since there exists a natural isomorphism:

S`(R⊗ S,T) ∼= S`
(
R,S`(S,T)

)
.

Another important property is that 2, the unit of the monoidal category, is a dualizer of S`,
since R∂ ∼= S`(R,2), and therefore, there exists an isomorphism R⊗ S ∼= S`(R,S∂)∂ .

4 Quantaloids and modules over quantaloids

This section is devoted to the definition and study of the first properties of categories enriched
over S` and enriched functors between them, which are known as quantaloids and morphisms of
quantaloids, respectively, and the categories of modules over quantaloids. The book [Ros96] is
a good compilation of many results about the Theory of Quantaloids, whereas the book [Kel05]
is a well-known reference for enriched categories over arbitrary monoidal categories. In general,
a category enriched over a monoidal category V, or V-category, is a category that has hom-
sets in V, and the composition operation (or composition law, as is called in [Kel05]) and
the identity element, which are arrows in V, render commutative certain diagrams called the
coherent axioms. In the case of quantaloids, the definition can be simplified, and it takes the
following form (see [Ros96]):

Definition 4.1. An enriched category over S`, or quantaloid, is a locally small category Q
such that,

(i) for every two objects A,B ∈ Q, the set Q(A,B) of morphisms from A to B in Q is an
object of S`, that is, it is a complete lattice;

(ii) for every A,B,C ∈ Q, the composition of morphisms in Q, restricted to these hom-sets,
is a biresiduated map Q(B,C)×Q(A,B)→ Q(A,C).

It is then obvious that quantales correspond to quantaloids with just one object in the
following sense: given a quantaloid Q with just one object ?, the set of endomorphisms Q(?, ?)
is a complete lattice, actually a quantale as the composition of endomorphisms is a biresiduated
operation. On the other direction, given a quantale, a quantaloid can be defined with just one
object and with set of morphisms the elements of the quantale. The composition of morphisms
is defined as the product in the quantale.

In what follows we will use the notation [A,B] for the hom-set Q(A,B), whenever the
quantaloid Q could be understood from the context.
Remark 4.2. Note that the category S` is a quantaloid itself, since for every R,S ∈ S`, the
set of residuated maps S`(R,S) is a complete lattice, and composition of residuated maps is a
biresiduated operation. This justifies the use of the notation [R,S] for S`(R,S), whenever it
is clear from the context.
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As we mentioned, morphisms of quantaloids are the enriched functors between them. An
analogous comment is suitable about the general definition of enriched functors between V-cat-
egories and the definition that we give here for the special case of quantaloids, i.e., S`-cate-
gories. The simpler form that the definition of the enriched functor between S`-categories is
the following.

Definition 4.3. If Q and Q′ are two quantaloids, then a functor T : Q → Q′ is enriched, or
a morphism of quantaloids, if for every two objects A,B ∈ Q, the restriction of T to [A,B] is
a residuated map T �[A,B] : [A,B]→ [TA, TB].

As usual, a natural map between two morphisms of quantaloids T, T ′ : Q → Q′ is a family
α = {αA ∈ [TA, T ′A] : A ∈ Q} of morphisms in Q′ such that for every f : A → B in Q, the
following diagram commutes:

TA
αA //

T (f)

��

T ′A

T ′(f)

��

TB
αB // T ′B

Note that this is a diagram in Q′ and, in particular, if Q′ = S`, then the objects are complete
lattices, and the arrows are residuated maps.

In order to introduce modules over a quantaloid, we first recall the definition of a module
over a quantale, as it is a particular case, when the quantaloid has exactly one object. This
process of generalizing from quantales to quantaloids (i.e., categories enriched over S`) and
from modules over quantales to modules over quantaloids parallels the abstraction that goes
from the notion of ring to the notion of preadditive category (i.e., a category enriched over the
category of abelian groups Ab), and from the notion of module over a ring to the notion of
module over a preadditive category C (i.e., an additive functor T : C → Ab).

Recall that a module over a quantale A is a pair 〈R, ∗〉, where R is a complete lattice
and ∗ : A ×R → R is a biresiduated map satisfying (M1) and (M2). Thus, modules over a
quantale A are somehow “actions” of A on a complete lattice. It is well known that actions of a
monoidM on a set X are in bijective correspondence with monoid homomorphisms of the form
M → Set(X,X), where Set(X,X) is the monoid of the endomaps of X; in that sense M -set s
can be defined as monoid homomorphisms of the form M → Set(X,X). Analogously, modules
over a quantaleA can be thought as morphisms of quantales of the formA → 〈S`(R,R), ◦, idR〉
in the following way: first, the biresiduated product ∗ : A×R→ R corresponds to a residuated
map A→ S`(R,R) via the bijections of Section 3:

∗ : A×R→ R ∼ A⊗R→ R ∼ A→ S`(R,R).

And, (M1) and (M2) correspond exactly to the property of 〈A, ·, 1〉 → 〈S`(R,R), ◦, idR〉 being
a monoid homomorphism. In the same way as categories are an abstraction of monoids, and
functors in turn an abstraction of homomorphisms of monoids, quantaloids are the categori-
cal abstraction of quantales, and morphisms of quantaloids the abstraction of morphisms of
quantales. This yields the following notion of module over a quantale.

Definition 4.4. Given a quantaloid Q, a Q-module is a morphism of quantaloids T : Q → S`.
The universe of a Q-module T is the map |T | : Obj(Q) → Obj(Set), where for every A ∈ Q,
|T |A = |TA| is the underling set of the complete lattice TA.

The display in Figure 1 of these notions helps us understand why the study of modules over
quantaloids and in particular closure operators over them is simultaneously a generalization
of the study of modules over quantales and their closure operators and the study of closure
operators over Set-valued functors, that is to say, π-institutions. In Section 2 we paid special
attention to modules coming fromM -set s, and in Section 12 we will describe in details modules
induced by π-institutions.

The category Q-Mod of Q-modules is a full subcategory of the functor category S`Q. Thus
Q-Mod has Q-modules as objects and natural maps as morphisms. The morphisms in the
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Figure 1: The arrows from left to right represent an enrichment of the objects with a lattice
structure and residuation properties, while the arrows from right to left represent the pass from
one signature to multiple signatures.

category Q-Mod are also called Q-morphisms. Given two Q-modules T and T ′, we denote the
set of Q-morphisms between them by HomQ(T, T ′) = Q-Mod(T, T ′). Let us fix the following
notation: for every Q-module T , every arrow a : A→ B in Q, and every element x ∈ TA,

a ∗T x = T (a)x.

With this notation, the naturality property for a Q-morphism α : T → T ′ can be expressed in
the following way: for every a : A→ B in Q and every x ∈ TA,

αB(a ∗T x) = a ∗T ′ αAx.

Thus, for every Q-module and every A,B ∈ Q, we can consider ∗T as a map

∗T : [A,B]× TA→ TB,

which is in particular biresiduated. In order to prove that, suppose that a : A → B is in Q,
x ∈ TA, and y ∈ TB. Let fx,y =

∨
{f ∈ [TA, TB] : fx 6 y}, where the supremum is taken in

[TA, TB]. Hence, fx,y ∈ [TA, TB], and we have:

a ∗T x 6 y ⇔ T (a)x 6 y ⇔ T (a) 6 fx,y ⇔ a 6 T+(fx,y),

where T+ : [TA, TB]→ [A,B] is the residuum of T : [A,B]→ [TA, TB]. Furthermore,

a ∗T x 6 y ⇔ T (a)x 6 y ⇔ x 6 T (a)+y.

Thus, ∗T has right and left residua, /T : TB× TA→ [A,B] and \T : [A,B]× TB → TA, such
that for every a : A→ B, x ∈ TA, and y ∈ TB,

a ∗T x 6 y ⇔ a 6 y/Tx ⇔ x 6 a\T y.

Note that the left residuum, a\T y = T (a)+(y), only depends on the fact that T is an S`-valued
functor, whereas the right residuum y/Tx depends moreover on the fact that T is enriched and,
furthermore, on the existence of fx,y, which is ensured because [TA, TB] is a complete lattice.

“Substructures” of Q-modules, that is Q-submodules, are defined in a standard way:

Definition 4.5. If S and T are Q-modules, then S is said to be a Q-submodule of T , in
symbols S 6 T , if and only if |S| 6 |T |, i.e., for every A ∈ Q, |SA| ⊆ |TA|, and moreover the
inclusions eA : |SA| ↪→ |TA| are the components of a Q-morphism e : S → T .

Remark 4.6. Note that, if S and T are Q-modules, then the conditions for S being a Q-sub-
module of T can be rewritten in the following way: for every A ∈ Q, we have SA 6 TA, that
is, SA is a sub-join-complete lattice of TA, and for every a : A → B in Q and every x ∈ SA,
a ∗S x = a ∗T x.

As we state in the following lemma that Q-submodules are determined by their universe.
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Lemma 4.7. Let Q be a quantaloid, T a Q-module, and s : Obj(Q)→ Obj(Set) a map. Then,
there exists a Q-submodule S of T such that |S| = s if and only if s satisfies:

(i) for every A ∈ Q, sA ⊆ |TA| is closed under arbitrary joins (taken in TA),
(ii) for every a : A→ B in Q, and every x ∈ sA, a ∗T x ∈ sB.

Moreover, if such an S exists then it is unique.

Remark 4.8. Note that, if S,R 6 T , then S 6 R if and only if |S| 6 |R|.
The preceding lemma can be used, for instance, in order to prove that the following defini-

tion of the image of a Q-morphism is correct, since it is easy to see that given a Q-morphism
α : T → T ′, the map s : Obj(Q) → Obj(Set) determined by sA = {αAx : x ∈ TA} satisfies
Conditions (i) and (ii) of the preceding lemma.

Definition 4.9. If α : T → T ′ is a Q-morphism, then we define the image of α as the
Q-submodule S of T ′ with universe determined by |SA| = {αAx : x ∈ TA}.

The following is an interesting result2 that can be interpreted as saying that the process
of constructing the category of modules over a quantaloid is somehow an internal operation in
the category of quantaloids.

Proposition 4.10. For every quantaloid Q, the category Q-Mod of Q-modules is a quantaloid.

Proof. If T, T ′ are two Q-modules, we define the following order in HomQ(T, T ′), the set of
Q-morphisms from T to T ′: for every α, β ∈ HomQ(T, T ′), we set α 6 β if for every A ∈ Q,
αA 6 βA in [TA, T ′A]. Let us show that, with this order, the set of Q-morphisms from T to
T ′ is a complete lattice.

For every family {αi : T → T ′}i∈I of Q-morphisms, let us define the transformation∨
αi : T → T ′ that has as components the following maps: for every A ∈ Q,

(∨
αi
)
A

=∨
αiA ∈ [TA, T ′A]. In order to prove the naturality of

∨
αi, suppose that x ∈ TA, and

a : A→ B is in Q. Therefore,(∨
αi
)
B

(a ∗T x) =
∨
αiB(a ∗T x) =

∨(
a ∗T ′ αiAx

)
= a ∗T ′

∨
αiAx = a ∗T ′

(∨
αi
)
A
x.

We only need to prove now that the composition of Q-morphisms

HomQ(T ′, T ′′)×HomQ(T, T ′)→ HomQ(T, T ′′)

is biresiduated. This is a consequence of the fact that the operation of composition of residuated
maps is biresiduated. Suppose that {αi : T ′ → T ′′}i∈I is a family of Q-morphisms and
α : T → T ′ is a Q-morphism. Hence, for every A ∈ Q,(

(
∨
αi) · α

)
A

= (
∨
αi)A ◦ αA = (

∨
αiA) ◦ αA =

∨
(αiA ◦ αA) =

∨
(αi · α)A =

(∨
(αi · α)

)
A

and hence (
∨
αi) · α =

∨
(αi · α). Analogously for the other side.

To end this section we define for every quantaloid Q, a functor Sub : Q-Mod → S` in the
following way. First, note that given a Q-module T , the relation of “being a Q-submodule”
defines an order 6 in the class Sub(T ) of all the Q-submodules of T , and that given a family
F = {Si : i ∈ I} of Q-submodules of T , there exists the meet of F in 〈Sub(T ),6〉, and
is determined by |

∧
Si|A =

⋂
|SiA|. Furthermore, given a Q-morphism τ : T → T ′ and a

Q-submodule S of T , the composition of the inclusion e : S ↪→ T with τ yields a Q-morphism
τ ·e : S → T ′. We define the Q-submodule −→τ [S] of T ′ as the image of τ ·e. It is straightforward
to prove that, given two morphisms τ : T → T ′ and ρ : T ′ → T ′′, and a submodule S
of T , then −→ρ

[−→τ [S]
]

= −→ρτ [S]. And it is immediate that, if idT is the identity on T , then

2This is Proposition 5.2.1 of [Ros96], that was stated without a proof.
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−→
idT [S] = S. Therefore, the correspondence expressed by the following diagram is a functor
Sub : Q-Mod→ S`

T

τ

��

� // Sub(T )

−→τ
��

T ′
� // Sub(T ′)

Nevertheless, this functor is not in general a (Q-Mod)-module, that is, Sub : Q-Mod → S` is
not an enriched functor, in general.

5 Duality in the categories of Q-modules

For every quantaloid Q, the opposite quantaloid of Q is Qop, the dual of Q as a category. That
is to say, the objects of Qop are the same as the objects of Q, and for every A,B ∈ Qop, the
set of morphisms from A to B in Qop is Qop(A,B) = Q(B,A) = [B,A]. Note that only the
direction of the arrows is reversed, but not the lattice order. As usual, the composition of
morphisms in Qop is defined reversing the order of the composition in Q: if a : A → B and
b : B → C are in Qop, then a : B → A and b : C → B are in Q, and hence a ◦ b : C → A is in
Q, and therefore a ◦ b : A → C is in Qop. Thus, the composition in Qop of a and b is defined
as b ◦′ a = a ◦ b.

The next proposition follows from a general result about enriched categories over symmetric
monoidal categories (see [Kel05]), as indeed S` is.

Proposition 5.1. For every quantaloid Q, the opposite quantaloid Qop is also a quantaloid.

Definition 5.2. Given a functor T : Q → S`, its dual3 is the functor T ∂ : Qop → S`
determined by the following:

A

a

��

� // T ∂(A) = (TA)∂

T∂(a)=T (a)+

��

B
� // T ∂(B) = (TB)∂

where T (a)+ is the residuum of T (a).

Note that, since a : A→ B is an arrow in Qop, then it is an arrow a : B → A in Q, whence
T (a) : TB → TA is a residuated map. Therefore, its residuum T (a)+ is a residuated map
between the duals: T (a)+ : (TA)∂ → (TB)∂ . Since the identity map is its own residuum, and
the residuum of a composition of residuated maps is the composition of the residuated maps
in the reversed order, it follows that T ∂ : Qop → S` is a functor.

Proposition 5.3. The dual of a Q-module is a Qop-module.

Proof. We have shown that for every functor T : Q → S`, its dual T ∂ : Qop → S` is a functor.
It only remains to prove that it is an enriched functor, whenever T is so. In order to prove
that, suppose that A,B ∈ Qop, and let us see that the restriction of T ∂ is a residuated map
Qop(A,B)→ [T ∂A, T ∂B].

By hypothesis, the restriction of T to [B,A]→ [TB, TA] is a residuated map and, as usual,
let T+ : [TB, TA] → [B,A] denote its residuum. We have that, for every a ∈ Qop(A,B) and
every f ∈ [T ∂A, T ∂B],

T ∂(a) 6 f ⇔ T (a)+ 6 f in [T ∂A, T ∂B]

⇔ T (a) 6 f+ in [TB, TA]

⇔ a 6 T+(f+) in [B,A] = Qop(A,B).

3Note that this is not the dual functor T op : Qop → S`op of [Kel05].
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Whence we obtain that the residuum of T ∂ : Qop(A,B)→ [T ∂A, T ∂B] is the map [T ∂A, T ∂B]→
Qop(A,B) determined by f 7→ T+(f+).

Remark 5.4. Note that, if T is a Q-module, then for every a : A→ B in Qop and x ∈ T ∂A,

a ∗T∂ x = T ∂(a)x = T (a)+x = a\Tx.

The following is the main result of this section. It states the duality property for the
categories of modules over quantaloids. Indeed, it says that the map T 7→ T ∂ extends to a dual
isomorphism of categories from Q-Mod to Qop-Mod. The duality for modules over quantaloids
is very useful, since if we prove that a categorical property is satisfied for all the categories of
modules over quantaloids, then we will obtain that its dual is also satisfied for all the categories
of modules over quantaloids.

Theorem 5.5. For every quantaloid Q, there exists an enriched dual isomorphism of categories

(_)∂ : Q-Mod→ Qop-Mod.

Proof. We have already defined the functor (_)∂ on objects. Let us define it on arrows. For
every Q-morphism α : T1 → T2, let α∂ be the transformation with components the residua of
the components of α. That is, for every A ∈ Qop, αA : T1A → T2A is a residuated map with
residuum α+

A : (T2A)∂ → (T1A)∂ . Thus, we take (α∂)A = α+
A : T ∂2 A → T ∂1 A. Let us see that

α∂ : T ∂2 → T ∂1 is a natural transformation. Suppose that a : A → B is in Qop. Therefore,
a : B → A is in Q, and by the naturality of α, the first of the following diagrams commutes,
and this implies the commutativity of the second one:

T2A T1A
αAoo

T2B

T2(a)

OO

T1B
αBoo

T1(a)

OO

⇒
(T2A)∂

α+
A //

T2(a)+

��

(T1A)∂

T1(a)+

��

(T2B)∂
α+
B // (T1B)∂

=

T ∂2 A
(α∂)A

//

T∂2 (a)

��

T ∂1 A

T∂1 (a)

��

T ∂2 B
(α∂)B

// T ∂1 B

It is easy to see that, if α : T → T ′ and β : T ′ → T ′′ are two Q-morphisms, then (αβ)∂ = β∂α∂ ,
since this equality is satisfied in every component. Therefore, (_)∂ is a contravariant functor.
It is straightforward to check that

(
(_)∂

)∂ = Id, which implies that (_)∂ is a dual isomorphism
of categories.

Finally, if {αi : T → T ′}i∈I is a family of Q-morphisms and A ∈ Q, we have the equalities:((∨
αi
)∂)

A
=
((∨

αi
)
A

)+

=
(∨

αiA
)+ =

∨
(αiA)+ =

∨(
(αi)∂

)
A

=
(∨

(αi)∂
)
A
.

For the middle equality, recall that for every pair of complete lattices, R and S, the map
(_)+ : [R,S] → [S∂ ,R∂ ] is an isomorphism of complete lattices. Thus,

(∨
αi
)∂ =

∨
(αi)∂ ,

which proves that the functor (_)∂ is enriched.

Remark 5.6. Note that, in virtue of Propositions 5.1 and 4.10, another way to express the same
is to say that, for every quantaloid Q, “passing to the dual” is an isomorphism of quantaloids:

Qop-Mod ∼= (Q-Mod)op.

Finally, to end this section, we obtain as a corollary of the duality property for the categories
of modules over quantaloids a characterization for Q-morphisms, which we will use later on.

Corollary 5.7. If Q is a quantaloid, T and T ′ are two Q-modules and τ = {τA : TA →
T ′A}A∈Q a family of residuated maps, then τ : T → T ′ is a Q-morphism if and only if for
every a : A→ B and every y ∈ T ′B,

τ+
A (a\T ′y) = a\T τ+

A y.

Proof. It is an immediate consequence of Theorem 5.5 and Remark 5.4.
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6 Epis and monos in the categories of Q-modules

The aim of the current section is to offer a characterization of epis and monos in the categories
of modules over quantaloids. In the simpler case of modules over quantales, this can be done
by studying first the A-morphisms of the form A→ R, and finding that they are in a bijective
correspondence with the elements of R. In fact, this bijective correspondence is a toy version
of the Yoneda Lemma, presented here in its version for modules over quantaloids.

Given a quantaloid Q, there exists for every A ∈ Q a (covariant) hom-functor hA : Q → S`
that is determined by

hA :

B

a

��

� // hAB = [A,B]

hA(a)=a◦_
��

C
� // hAC = [A,C]

where hA(a) is postcomposition with a, that is to say, for every x ∈ [A,B], we have that
x : A→ B, and hA(a)x = a◦x. This is trivially an enriched functor, since composition in S` is
biresiduated. Thus, it is a Q-module. We call hA the Q-module associated with A. Note that,
with our notation, for every a : B → C in Q and every x ∈ [A,B], we have a ∗hA x = a ◦ x.

The following result is a version of the Yoneda Lemma strong enough to obtain the desired
characterization of monos. For a more general version of the Yoneda Lemma we refer to [Kel05].

Theorem 6.1 (Yoneda Lemma). If Q is a quantaloid and T is a Q-module, for every A ∈ Q
there exists an isomorphism of complete lattices

TA ∼= HomQ(hA, T ),

which is natural in A and in T .

That is to say, every Q-morphism hA → T is determined by an element of TA, and every
element of TA determines a Q-morphism hA → T , and these correspondences are monotone
and bijective. We will not give a complete proof of the result, since it follows from a more
general version (see [Kel05]). Nevertheless, let us see how these correspondences can be found.

Suppose that α : hA → T is a Q-morphism. Hence, for every B ∈ Q and every x ∈ hAB,
we have that x : A→ B, and by the naturality of α:

αBx = αB(x ◦ 1A) = αB(x ∗hA 1A) = x ∗T αA(1A),

and hence, α only depends on T and on the value of αA(1A) ∈ TA.
Now, suppose that t ∈ TA is fixed and define for every B ∈ Q and every x ∈ hAB,

µtBx = x ∗T t.

Let us see that µt : hA → T is a natural transformation. First note that, since T is a Q-module,
µtB : hAB → TB is a residuated map. Suppose now that a : B → C is in Q and x ∈ hAB.
Then,

µtC(a ∗hA x) = (a ∗hA x) ∗T t = (a ◦ x) ∗T t = a ∗T (x ∗T t) = a ∗T µtBx,

whence we obtain the naturality of µt.
These two correspondences are bijective, since µtA(1A) = t. Moreover, if {ti : i ∈ I} is a

family of elements of TA, B ∈ Q and x ∈ hAB, then

µ
∨
ti

B x = x ∗T
∨
ti =

∨
(x ∗T ti) =

∨
µtiB(x) =

(∨
µti
)
B
x,

whence we obtain µ
∨
ti =

∨
µti .

We use the Yoneda Lemma in order to characterize the monos in any category ofQ-modules,
and as a corollary of this characterization and by the duality property of the categories of
modules over quantaloids, we will also obtain a characterization of the epis.
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Proposition 6.2. If Q is a quantaloid, then the monos in the category Q-Mod are those
Q-morphisms that are injective in every component.

Proof. If α : T → T ′ is a Q-morphism with every component injective, then it is trivially a
mono in the category of Q-modules.

Suppose that α : T → T ′ is a mono in Q-Mod, let A ∈ Q arbitrary and t1, t2 ∈ TA such
that αA(t1) = αA(t2) = t′. Let us see that t1 = t2.

Let µt1 , µt2 : hA → T be the Q-morphisms given by the Yoneda Lemma. Then, the two
compositions α · µti : hA → T ′, i = 1, 2, are Q-morphisms, and by the Yoneda Lemma they
are determined by their value at 1A. Evaluating at 1A we obtain

(α · µti)A(1A) = αA(µtiA(1A)) = αA(ti) = t′, i = 1, 2.

Therefore, α · µt1 = µt
′

= α · µt2 , and since α is supposed to be mono, µt1 = µt2 , whence we
obtain t1 = t2.

Corollary 6.3. If Q is a quantaloid, then the epis in the category of Q-Mod are exactly those
Q-morphisms that in every component are onto.

Proof. Epis in the category Q-Mod correspond by duality to monos in the category Qop-Mod.
Thus, β : T1�T2 is an epi in Q-Mod if and only if β∂ : T ∂2 → T ∂1 is a mono in Qop-Mod, if and
only if for every A ∈ Qop, β+

A : (T2A)∂ → (T1A)∂ is injective, if and only if for every A ∈ Q,
βA : T1A→ T2A is onto, in virtue of a general result about residuated maps.

7 Closure operators and closure systems in Q-Mod

In this section we define in a natural way the notions of a closure operator and of a closure
system on Q-modules (where Q is a quantaloid). They generalize the notions of a closure
operator and a closure system on modules over quantales in the sense that, if Q is a quantaloid
with just one object, and T is a Q-module, then a closure operator (closure system) on T as a
module over a quantaloid corresponds to a closure operator (closure system) on T as a module
over a quantale.

Definition 7.1. Let Q be a quantaloid and T a Q-module. A (structural) closure operator on
T is a family of closure operators γ = {γA : TA→ TA}A∈Q such that for every a : A→ B in
Q, and every x ∈ TA, the following property is satisfied:

a ∗T γA(x) 6 γB(a ∗T x). (Str)

This property is called structurality. The set Clop(T ) of closure operators on T is partially
ordered by γ 6 γ′ ⇔ ∀A ∈ Q, γA 6 γ′A.

Remark 7.2. Note that, in general, closure operators are not Q-morphisms; since the inequality
of (Str) is not an equality, in general they are not natural maps. Moreover, the components of
γ need not be residuated maps.

The following lemma exhibits some conditions that are equivalent to structurality. First
of all, observe that (Str) can be rewritten in the following form: for every a : A → B in Q,
T (a)γB 6 γAT (a). We will use the benefits of the functorial notation in the proof.

Lemma 7.3. Let Q be a quantaloid, T a Q-module and γ = {γA : TA → TA}A∈Q a family
of closure operators. Then the following statements are equivalent, where a : A → B in Q,
x ∈ TA, and y ∈ TB are arbitrary:

(i) a ∗T γAx 6 γB(a ∗T x),
(ii) γB(a ∗T γAx) = γB(a ∗T x),
(iii) a ∗T γA(a\T y) 6 γBy,
(iv) γA(a\T y) 6 a\T γBy,
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(v) γA(a\T γBy) = a\T γBy.

Proof.

(i)⇒ (ii) γBT (a)γA 6 γBγBT (a) = γBT (a) 6 γBT (a)γA.
(ii)⇒ (iii) T (a)γAT (a)+ 6 γBT (a)γAT (a)+ = γBT (a)T (a)+ 6 γB .
(iii)⇒ (iv) γAT (a)+ 6 T (a)+T (a)γAT (a)+ 6 T (a)+γB .
(iv)⇒ (v) γAT (a)+γB 6 T (a)+γBγB = T (a)+γB 6 γAT (a)+γB .
(v)⇒ (i) T (a)γA 6 T (a)γAT (a)+T (a) 6 T (a)γAT (a)+γBT (a) = T (a)T (a)+γBT (a)

6 γBT (a).

The following two lemmas are converse of each other. In the first we show that every
Q-morphism τ determines a closure operator τ̃ , and in the second that every closure operator
γ determines a Q-morphism γ̇. Furthermore, thanks to the characterization of Corollary 6.3,
every morphism of the form γ̇ is trivially an epi. This will be used later, in Proposition 7.7,
where we prove that every epi β is isomorphic to ˙̃

β. This will be very useful in the next section
to prove that every epi in Q-Mod is regular, and applying duality, that every mono is regular.

Lemma 7.4. Every Q-morphism τ : T → T ′ determines a closure operator τ̃ on T in the
following way: τ̃ = τ∂τ , that is, for every A ∈ Q, τ̃A = τ+

A τA.

Proof. Let τ : T → T ′ be a Q-morphism, and τ̃ defined as above. Since τA : TA → T ′A is
a residuated map, it is obvious that for every A ∈ Q, τ̃A is a closure operator on TA with
associated closure system {τ+

A y : y ∈ T ′A} (this follows from a general result about residuated
maps). In order to prove the structurality property for τ̃ , suppose that a : A→ B is in Q, and
x ∈ TA. Then, we have the following implications:

a ∗T ′ τAτ+
A τAx = a ∗T ′ τAx ⇔

⇔ τB
(
a ∗T τ+

A τA(x)
)

= τB(a ∗T x), by the naturality of τ,

⇒ a ∗T τ+
A τA(x) 6 τ+

B τB(a ∗T x), since τB is residuated,
⇔ a ∗T τ̃A(x) 6 τ̃B(a ∗T x), by the definition of τ̃ .

Since τA is a residuated map, the first equality is true, and so is the last, which is the struc-
turality property for τ , since a : A→ B and x ∈ TA are arbitrary.

Definition 7.5. Let T be a Q-module and γ a closure operator on T . We define the functor
Tγ : Q → S` as follows:

(i) for every A ∈ Q, TγA = (TA)γA is the complete lattice Cl(γA) of γA-closed sets, that is,
TγA = {γAx : x ∈ A} = {x ∈ TA : x = γAx}, with the induced order;

(ii) for every a : A→ B in Q, and every x ∈ TA, Tγ(a)x = γB(a ∗T x).

This is a Q-module, as we prove in the next lemma, and we call it the Q-module associated
with the closure operator γ.

Lemma 7.6. Let Q be a quantaloid and T a Q-module. Then every closure operator γ on T
determines an epi Q-morphism γ̇ : T�Tγ .

Proof. Let us first prove that Tγ is a Q-module: note that, for every A ∈ Q, Tγ(1A) = idTγA,
since γA is idempotent. Suppose now that a : A → B and b : B → C are in Q. Then, using
Lemma 7.3, for every x ∈ TγA,

Tγ(ba)x = γC
(
(ba) ∗T x

)
= γC

(
b ∗T (a ∗T x)

)
= γC

(
b ∗T γB(a ∗T x)

)
= Tγ(b)

(
Tγ(a)x

)
=
(
Tγ(b)Tγ(a)

)
x.

Let us see that for every a : A→ B in Q, the map Tγ(a) : TγA→ TγB is residuated. If we
suppose that x ∈ TγA and y ∈ TγB, then

Tγ(a)x 6 y ⇔ γB(a ∗T x) 6 y ⇔ a ∗T x 6 y ⇔ x 6 a\T y.

16



And finally, let us prove that the restriction of Tγ to [A,B]→ [TγA, TγB] is residuated. We
know that the restriction of T to [A,B]→ [TA, TB] is residuated. Let T+ : [TA, TB]→ [A,B]
denote its residuum. Then, if a ∈ [A,B] and f ∈ [TγA, TγB],

Tγ(a) 6 f ⇔ ∀x ∈ TγA, γA(a ∗T x) 6 fx ⇔ ∀x ∈ TγA, a ∗T x 6 fx
⇔ T (a) 6 f ⇔ a 6 T+(f).

Therefore, Tγ is a Q-module. If for every A ∈ Q, γ̇A is the restriction of γA to its image,
γ̇A : TA → (TA)γA , then it is known that it is a residuated map. Let us see that, moreover,
γ̇ : T → Tγ is an epi Q-morphism. Since every γ̇A is onto, the only thing we have to check is
that, for every a : A→ B in Q and every x ∈ TA, a ∗Tγ γ̇A(x) = γ̇B(a ∗T x). Note that, since
γ̇A is the restriction of γA to its image and γ is a closure operator on T , by Lemma 7.3,

a ∗Tγ γ̇Ax = γB(a ∗T γAx) = γB(a ∗T x) = γ̇B(a ∗T x).

Thus, for every closure operator γ on a Q-module T , we have constructed a Q-module Tγ
and an epimorphism γ̇ : T�Tγ . The next proposition says that, indeed, every epimorphism in
Q-Mod is in essence the Q-morphism associated with a closure operator.

Proposition 7.7. Let Q be a quantaloid, T a Q-module and β : T�T ′ an epi in Q-Mod,
γ = β̃ the closure operator on T associated with β. Then β and γ̇ are isomorphic arrows
in Q-Mod, that is, there exists an isomorphism Tγ → T ′ such that the following diagram
commutes:

T

γ̇

����������
β

�� ��
6666666

Tγ
∼= //____ T ′

Proof. Let η : Tγ → T ′ be defined in every component ηA : TγA → T ′A as the restriction
of βA to (TA)γA . Recall that, for every A ∈ Q, the closure system associated with the
closure operator γA is the set (TA)γA = {β+

Ay : y ∈ T ′A}. Note that, for every x ∈ TA,
βAx = βAβ

+
AβAx = βAγAx = ηAγAx. Hence the following diagram commutes:

TA
γ̇A

�����������
βA

�� ��
<<<<<<<

TγA
ηA //_____ T ′A

The map ηA is injective, since if x, y ∈ TγA are such that ηAx = ηA(x′), then βAx = βA(x′),
and hence x = γAx = β+

AβAx = β+
AβA(x′) = γA(x′) = x′. The map ηA is onto because for

every y ∈ T ′A, ηA(β+
Ay) = βAβ

+
Ay = y, since βA is onto.

The map ηA : TγA → T ′A is residuated, since for every x ∈ TγA and every y ∈ T ′A,
ηAx 6 y ⇔ βAx 6 y ⇔ x 6 β+

Ay, and then the residuum η+
A : T ′A → TγA of ηA is the

restriction of β+
A to TγA in the codomain.

Finally, let us prove that η : Tγ → T ′ is natural. Suppose that a : A → B is in Q, and
x ∈ TγA. Taking into account for the middle equation that βB = βBβ

+
BβB = βBγB , we have:

a ∗T ′ ηAx = a ∗T ′ βAx = βB(a ∗T x) = βBγB(a ∗T x) = βB(a ∗Tγ x) = ηB(a ∗Tγ x).

Now we are looking for a definition of a closure system on a Q-module in such a way that
it gives us a bijective correspondence between closure systems and closure operators. We will
obtain a result relating the closure systems on a Q-module with the Qop-submodules of its
dual.

Definition 7.8. If T is a Q-module, a closure system on T is a map K : Obj(Q)→ Obj(Set)
such that for every A ∈ Q, KA ⊆ |TA| is closed under arbitrary meets, and moreover, for
every a : A→ B in Q and every y ∈ KB, a\T y ∈ KA.
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The set Clsy(T ) of closure systems on a Q-module T is evidently partially ordered by the
relation K 6 S ⇔ ∀A ∈ Q, KA ⊆ SA, and Clsy(T ) = 〈Clsy(T ),6〉 is a complete lattice,
since for every family {Ki : i ∈ I} of closure systems on T , the meet of this family is the map∧
Ki determined by (

∧
Ki)A =

⋂
KiA. It is very easy to see that this is a closure system.

It is easy to see using Lemma 7.3 that for every Q-module T and every closure operator γ
on T , the universe of Tγ is a closure system |Tγ | on T . On the other direction, if K is a closure
system on T , then for every A ∈ Q, the set KA is a closure system on TA. Taking γK as the
family of all the closure operators associated with these closure systems, γK = {γKA : A ∈ Q},
we obtain a closure operator on T . The structurality property for γK is evident again in virtue
of Lemma 7.3, since if a : A → B is in Q and y ∈ TB, then γKB(y) ∈ KB, and therefore
a\T γKB(y) ∈ KA, whence we obtain γKA

(
a\T γKB(y)

)
= a\T γKB(y).

These correspondences are inverse to each other, and furthermore for every γ, γ′ ∈ Clop(T ),
γ 6 γ′ ⇔ |Tγ′ | 6 |Tγ |. Therefore, as it was expected, there is an isomorphism of lattices
|T_| : Clop(T ) ∼= Clsy(T )∂ , whose inverse is γ_ : Clsy(T )∂ ∼= Clop(T ).

We can readily prove the following proposition. It relates closure systems on a Q-module
and Qop-submodules of its dual. We will use these correspondences between closure operators,
closure systems, and submodules, and the functor Sub of submodules, in order to define the
functor Clop of closure operators and the functor Clsy of closure systems and prove some
natural isomorphisms between them.

Proposition 7.9. Let T be a Q-module, and K : Obj(Q) → Obj(Set) a map. Then, K
is a closure system on T if and only if K is the universe of a Q∂-submodule 〈K〉 of T ∂ .
Moreover, the correspondences |_|T : Sub(T ∂) → Clsy(T ) and 〈_〉T : Clsy(T ) → Sub(T ∂)
are isomorphisms of complete lattices inverse to each other.

Proof. This is a consequence of Lemma 4.7 and Remark 5.4.

Remark 7.10. We wrote the subindexes of |_|T and 〈_〉T in the previous proposition just to
emphasize that these maps depend on the Q-module T .

Thus, we have the isomorphisms:

Clop(T ) ∼= Clsy(T )∂ and Clsy(T ) ∼= Sub(T ∂). (3)

Given a Q-morphism τ between two Q-modules, the direct image map −→τ is a residuated map
between their lattices of submodules with residuum the inverse image map←−τ . In what follows
we are going to use the ismomorphisms (3) in order to define residuated maps between the
lattices of closure operators and closure systems induced by a Q-morphism τ : T → T ′:

(_)τ : Clsy(T ′)→ Clsy(T ), with residuum τ (_) : Clsy(T )→ Clsy(T ′),
τ (_) : Clop(T )→ Clop(T ′), with residuum (_)τ : Clop(T ′)→ Clop(T ).

Later on, we will give a detailed description of these maps (see Propositions 7.14 and 7.15.)

In the case of the closure systems, it is as follows: Let Q be a quantaloid and τ : T1 → T2

a Q-morphism. The dual of τ is a Qop-morphism τ∂ : T ∂2 → T ∂1 , and then
−→
τ∂ : Sub(T ∂2 ) →

Sub(T ∂1 ) is a residuated map. Composing with the isomorphisms of the preceding proposition,
we obtain a residuated map

(_)τ : Clsy(T2)
〈_〉

T2 // Sub(T ∂2 )
−→
τ∂ // Sub(T ∂1 )

|_|T1 // Clsy(T1)

And, its residuum is given by:

τ (_) : Clsy(T1)
〈_〉

T1 // Sub(T ∂1 )
←−
τ∂ // Sub(T ∂2 )

|_|T2 // Clsy(T2)
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This map τ (_) is a residuated map when considered between the duals of Clsy(T1) and
Clsy(T2), and using the isomorphisms (3) we can define the residuated map between the
lattices of closure operators as follows:

Clop(T1)
KT1 // Clsy(T1)∂

τ (_)
// Clsy(T2)∂

K−1
T2 // Clop(T2)

where, for every closure operator γ on T , KT (γ) = |Tγ |, the closure system associted with γ.
The residuum of this map is:

Clop(T2)
KT2 // Clsy(T2)∂

(_)τ
// Clsy(T1)∂

K−1
T1 // Clop(T1)

Thus, it is evident form the definitions that for every Q-morphism τ : T1 → T2 the following
diagrams commute:

Clsy(T2)
〈_〉

T2 //

(_)τ

��

Sub(T ∂2 )

−→
τ∂

��

Clsy(T1)
〈_〉

T1 // Sub(T ∂1 )

Clop(T1)
KT1 //

τ (_)

��

Clsy(T1)∂

τ (_)

��

Clop(T2)
KT2 // Clsy(T2)∂

(4)

This suggests that the isomorphisms (3) are natural in some sense. To make this precise
we define the functors Clsy and Clop as follows: Clsy : (Q-Mod)op → S` maps every arrow
τ from T2 to T1 in (Q-Mod)op, that is, every Q-morphism τ : T1 → T2, into Clsy(τ) =
(_)τ : Clsy(T2) → Clsy(T1). And the functor Clop : Q-Mod → S` maps τ : T1 → T2 into
Clop(τ) = τ (_) : Clop(T1)→ Clop(T2)

T1

τ

��

� // Clsy(T1)

T2
� // Clsy(T2)

(_)τ

OO
T1

� //

τ

��

Clop(T1)

τ (_)

��

T2
� // Clop(T2)

In order to show that Clsy is a functor, suppose that τ : T1 → T2 and ρ : T2 → T3 are in
(Q-Mod)op, that is τ : T2 → T1 and ρ : T3 → T2 are Q-morphisms. Recall that the composition
of morphisms in (Q-Mod)op is the reversed of the composition in Q-Mod. Let us denote it
by ·′ for a better understanding of the final of the following equalities, which show that Clsy
respects composition.

Clsy(ρ)Clsy(τ) = (_)ρ(_)τ =
(
|_|T3

−→
ρ∂〈_〉T2

)(
|_|T2

−→
τ∂〈_〉T1

)
= |_|T3

−→
ρ∂
−→
τ∂〈_〉T1

= |_|T3

−−→
ρ∂τ∂〈_〉T1

= |_|T3

−−−→
(τρ)∂〈_〉T1

= Clsy(ρ ·′ τ).

It is immediate that Clsy also respects the identities, and thus is a functor. Observe that the
dual of the functor Clsy : (Q-Mod)op → S` is Clsy∂ : Q-Mod → S`, which applies every
Q-morphism τ : T1 → T2 into τ (_) : Clsy(T1)∂ → Clsy(T2)∂ .

Hence, the commutativity of the diagrams (4) ensures that 〈_〉 : Clsy →̇ Sub ◦ (_)∂ and
K_ : Clop →̇ Clsy∂ are natural isomorphism, where (_)∂ : (Q-Mod)op → Qop-Mod is the
duality functor.

(Q-Mod)op

Clsy

))
55

(_)∂
$$JJJJJJJJJ S`

Qop-Mod

Sub

::tttttttttt

〈_〉∼=
�� Q-Mod

Clop

))

Clsy∂

55 S`K_∼=
��

We summarize all this in the following proposition.
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Proposition 7.11. Let Q be a quantaloid, and Sub : Qop-Mod → S`, Clsy : (Q-Mod)op →
S`, and Clop : Q-Mod → S` the functors of submodules, closure systems, and closure opera-
tors, respectively. Then there exist natural isomorphisms:

(i) 〈_〉 : Clsy →̇ Sub ◦ (_)∂ , where (_)∂ : (Q-Mod)op → Qop-Mod is the duality isomor-
phism;

(ii) K_ : Clop →̇ Clsy∂ ;
(iii) Clop∂ →̇ Sub ◦ (_)∂ .

Proof. We have already proved the existence of the two first natural isomorphisms. For the
third, note that since K_ : Clop →̇ Clsy∂ is a natural isomorphism, its dual, which coincides
with its inverse, is a natural isomorphism (K_)−1 : Clsy →̇ Clop∂ . And therefore, K_ :
Clop∂ → Clsy is also a natural isomorphism. Composing with 〈_〉, we obtain the natural
isomorphism between Clop∂ and Sub ◦ (_)∂ .

Corollary 7.12. Let Q be a quantaloid and T a Q-module. Then for every closure operator γ
on T , T ∂γ is a Qop-submodule of T ∂ . Moreover, the dual of the map γ̇ : T�Tγ is the inclusion
i : T ∂γ ↪→ T ∂ .

Proof. If γ is a closure operator on T , then 〈KT (γ)〉 is the unique submodule of T ∂ with
universe KT (γ) = |Tγ |. It is evident that this is T ∂γ .

Remark 7.13. Note that, in view of this corollary, Proposition 7.7 has a new interpretation: in
the category Q-Mod, the monos are essentially inclusions. That is, for every mono η : T → T ′,
there exists a Qop-submodule S 6 T ′ and an isomorphism ν : T → S such that iν = η. It can
be proved that S is exactly the image of η, and that ν is the restriction of η in the target.

In what follows we give an easier description of the action of the functor Clop on the
Q-morphisms by describing for every Q-morphism τ : T → T ′ and closure operators γ ∈
Clop(T ) and δ ∈ Clop(T ′), the closure systems associated with τγ and δτ .

Proposition 7.14. Let Q be a quantaloid, τ : T → T ′ a Q-morphism, γ ∈ Clop(T ) and δ ∈
Clop(T ′). Then τγ and δτ are the closure operators with associated closure systems determined
in every component by {y ∈ T ′A : τ+

A y ∈ TγA} and {τ
+
A y : y ∈ T ′δA}, respectively.

Proof. The closure operator τγ has as associated closure system

KT ′(τγ) = τ(
KT (γ)

)
=
∣∣∣←−τ∂〈KT (γ)〉

∣∣∣ =
∣∣∣←−τ∂[T ∂γ ]∣∣∣.

Then, for every A ∈ Q, the closure system associated with the closure operator τγA is∣∣∣←−τ∂[T ∂γ ]∣∣∣A =
←−
τ+
A

(
(TA)γA

)
= {y ∈ T ′A : τ+

A y ∈ TγA}.

Analogously, the closure operator δτ has as associated closure system

KT (δτ ) =
(
KT ′(δ)

)τ =
∣∣∣−→τ∂〈KT ′(δ)〉

∣∣∣ =
∣∣∣−→τ∂[(T ′δ)∂]∣∣∣.

Thus, for every A ∈ Q, the closure system associated with the closure operator δτ is∣∣∣−→τ∂[(T ′δ)∂]∣∣∣A =
−→
τ+
A

(
(T ′A)δA

)
= {τ+

A y : y ∈ T ′δA}.

If τ : T → T ′ is a Q-morphism and δ is a closure operator on T ′, we call the closure operator
δτ the τ -transform of δ. We end this section with a more familiar description of this operator.

Proposition 7.15. Let Q be a quantaloid, τ : T → T ′ a Q-morphism between two Q-modules,
and δ a closure operator on T ′. Then the τ -transform of δ is δτ = τ∂δτ .

Proof. Let A ∈ Q, and x ∈ TA. Hence,

δτAx =
∧{

t ∈
−→
τ+
A (T ′δA) : x 6 t

}
=
∧{

τ+
A y : y ∈ T ′δA, x 6 τ+

A y
}

=
∧{

τ+
A y : y ∈ T ′δA, τAx 6 y

}
= τ+

A

(∧{
y ∈ T ′δA : τAx 6 y

})
= τ+

A

(
δA(τAx)

)
.
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8 Strong completeness and cocompleteness and factorizations of Q-Mod

In this section we first prove that for every quantaloid Q, the category Q-Mod has biproducts
and equalizers. This ensures the completeness of Q-Mod, and its cocompleteness by duality.
Therefore, Q-Mod has pullbacks, and in particular congruences of Q-morphisms. After that,
we prove a fundamental result, Proposition 8.3, stating that for every Q-morphism α, the
Q-morphism γ̇ associated with γ = α̃, the closure operator associated with α, is the coequalizer
of the congruence of α. This is used then, together with Proposition 7.7, to prove that all epis
in Q-Mod are regular. As a corollary we obtain that Q-Mod has the strong amalgamation
property.

In case Q is small, we prove that Q-Mod has a separating set, and therefore it is wellpow-
ered, and cowellpowered by duality. The cardinality of the separating set is the cardinality of
Q, and therefore in the case that Q is a quantale, that is, Q only has one object, we obtain
that Q-Mod has a separator. As corollaries we obtain the strong completeness and strong
cocompleteness of Q-Mod, and that it is (Epi,Mono)-structured.

Proposition 8.1. If Q is a quantaloid, then the category Q-Mod has arbitrary products and
coproducts. Moreover, Q-Mod has biproducts and a zero object.

Proof. Let 1 be the unique (up to isomorphism) complete lattice with just one element. It is a
zero object in the category S`, since for every R ∈ S`, the unique residuated map ¡R : 1→ R
is the map that sends the element in 1 to ⊥R, with residuum the unique map from R to 1,
!R : R → 1. Moreover, this map is residuated with residuum !+R : 1 → R the map that sends
the element in 1 to >R.

Let Q be a quantaloid, and define 1 : Q → S` as the constant functor with value 1. First
note that 1 is an enriched functor, since for every A,B ∈ Q, the constant map [A,B]→ [1,1] ∼=
1 is residuated. Let us see that 1 is a zero object in Q-Mod.

If T ∈ Q-Mod, then for every A ∈ Q, !TA : TA→ 1 is the unique residuated map from TA
to 1, and then !T : T → 1 is a natural transformation, whose naturality follows from the fact
that 1 is terminal in S`. Analogously, there exists a unique natural transformation ¡T : 1→ T ,
whose components are ¡TA : 1→ TA.

Suppose now that {Ti : i ∈ I} is a nonempty family of Q-modules. Since for every i ∈ I,
and every A ∈ Q, TiA is a complete lattice, then

∏
I TiA is a complete lattice, where the joins

are computed componentwise. Let
∏
I Ti : Q → S` be the functor determined by

A

a

��

� //
∏
I TiA∏

I Ti(a)

��

B
� //

∏
I TiB

where, for every x ∈
∏
I TiA,

(∏
I Ti(a)

)
x =

(
Ti(a)xi

)
i∈I . It is straightforward to check that

it is an enriched functor. The projections πj :
∏
I Ti → Tj are the natural maps that in each

component have the corresponding projection: for every A ∈ Q, πjA :
∏
i TiA → TjA. They

are residuated maps with residuum (πjA)+ : TjA→
∏
I TiA determined by(

(πjA)+(y)
)
i

=
{
>TiA if i 6= j,
y if i = j.

In order to see that the family {Ti : i ∈ I} also has a coproduct, note that the family {T ∂i :
i ∈ I} has a product in Qop-Mod, and thence

(∏
I(T

∂
i )
)∂ is a coproduct of {Ti : i ∈ I}. It

is straightforward to see that, for every A ∈ Q,
(∏

I(T
∂
i )
)∂
A =

∏
I TiA, and analogously for

arrows, whence we obtain that
(∏

I(T
∂
i )
)∂ =

∏
I Ti. The inclusions ej : Tj →

∏
I Ti are the

duals of the projections, that is, for every A ∈ Q, and every x ∈ TjA,(
ejA(x)

)
i

=
{
>T∂i A = ⊥TiA if i 6= j,
x if i = j.
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Thus, we have proved that Q-Mod has arbitrary biproducts.

Proposition 8.2. If Q is a quantaloid, then the category Q-Mod has equalizers and coequal-
izers.

Proof. Suppose that α1, α2 : T → T ′ are two Q-morphisms, and let E be the Q-submodule of
T determined by: for every A ∈ Q, |EA| = {x ∈ TA : α1x = α2x}. In order to prove that E
is well defined, suppose that {xi : i ∈ I} ⊆ |EA|. Then, we have that α1(

∨
xi) =

∨
α1xi =∨

α2xi = α2(
∨
xi). Let suppose furthermore that x ∈ |EA| and a : A → B is in Q. Then,

α1
B(a ∗T x) = a ∗T ′ α1

Ax = a ∗T ′ α2
Ax = α2

B(a ∗T x). Thus, in virtue of Lemma 4.7, E is a
Q-submodule of T . Let e : E ↪→ T be the inclusion Q-morphism. It is evident that α1e = α2e,
and that for every η : H → T such that α1η = α2η, the image of η is a Q-submodule of E.
Hence, η factorizes through e uniquely. Thus, e : E → T is the equalizer of α1 and α2.

The following result is fundamental in order to understand the categories of modules over a
quantaloid. Some of its consequences are that every epi is regular in Q-Mod, the amalgamation
property for Q-Mod, and the (Epi,Mono)-structure of Q-Mod, in the case Q is small.

Proposition 8.3. Let α : T → T ′ be a Q-morphism, (η1, η2) the congruence of α, and γ = α̃
the closure operator associated with α. Then γ̇ : T → Tγ is the coequalizer of η1, η2 : H → T .

Proof. The congruence of α is the pair η1, η2 : H → T such that the following diagram is a
pullback:

H
η1
//

η2

��

T

α

��

T
α // T ′

Its existence is guaranteed, since we have proved that the category Q-Mod has arbitrary
products and equalizers, and hence it is complete. Moreover, the Q-module H is taken to
be the Q-submodule of T × T such that, for every A ∈ Q, HA = {〈x, y〉 : αx = αy}, and
ηi : H → T is the composition of the inclusion H ↪→ T × T with the projection πi : T × T�T .

If ε : T�Q is the coequalizer of η1, η2, then by duality, ε∂ : Q∂ → T ∂ is the equalizer of
(η1)∂ and (η2)∂ . We know that this is the inclusion ε∂ : E ↪→ T ∂ where for every A ∈ Q,
EA = {x ∈ TA : (η1)∂Ax = (η2)∂Ax} = {x ∈ TA : (η1

A)+x = (η2
A)+x} = {x ∈ TA : 〈x, γAx〉 =

〈γAx, x〉} = {x ∈ TA : x = γAx} = TγA. Thus, Q = E∂ = Tγ and γ̇ = ε∂ : T�Tγ is the
coequalizer of η1 and η2.

Corollary 8.4. Let Q be a quantaloid. Then the classes RegEpi, ExtrEpi and Epi coincide
in Q-Mod. Dually, the classes RegMono, ExtrMono and Mono also coincide in Q-Mod.

Proof. In virtue of Proposition 7.7, if β is an epi and γ = β̃ is its associated closure operator,
then β is isomorphic to γ̇, which is a regular epi, by Proposition 8.3. We have then that
Epi ⊆ RegEpi, which together with the general inclusions RegEpi ⊆ ExtrEpi ⊆ Epi proves the
result.

We will prove in what follows the strong amalgamation property for the categories of
modules over quantaloids. As a previous result, we study in more detail how are the pullbacks
of epis in general in Q-Mod, and prove in the following lemma that epis are preserved by
pullbacks.

Lemma 8.5. Let Q be a quantaloid, and the following

H //

ε

��

T1

ε

��

T2
θ // R

a pullback in the category Q-Mod. In this situation, if ε is epi then ε also is epi.
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Proof. We can suppose that H is the standard pullback of θ and ε, which is determined by
its universe in every component by |HA| = {〈x, y〉 ∈ T1A × T2A : εAx = θAy}, and ε is the
composition of the inclusion H ↪→ T1 × T2 with the projection π2 : T1 × T2 → T2. Suppose
that A ∈ Q and y ∈ T2A. Thus, if ε : T1�R is an epi, then there exists x ∈ T1A such that
εAx = θAy. That is, there exists z = 〈x, y〉 ∈ HA such that εAz = y, whence we obtain that
εA is onto for every A. Therefore, ε is epi.

Recall that a diagram in a category C

A
n //

m

��

C

u

��

B
v // D

(5)

is an amalgamation (of m and n) if it is a pushout and all the arrows are monos. An amal-
gamation is strong if moreover it is a pullback. A pair of monos m : A → B and n : A → C,
can be (strongly) amalgamated if a (strong) amalgamation (5) exists. A category C has the
(strong) amalgamation property if every pair of monos with the same domain can be (strongly)
amalgamated.

Corollary 8.6. Let Q be a quantaloid. Then the category Q-Mod has the strong amalgamation
property.

Proof. Suppose that η : R → T1 and ν : R → T2 is a pair of monos in Q-Mod. Then, their
duals η∂ : (T1)∂�R∂ and ν : (T2)∂�R∂ constitute a pair of epis in Qop-Mod. Since this
category is complete, their pullback exists and is represented by the first of the two diagrams:

H
θ // //

χ

����

(T1)∂

ν∂

����

(T2)∂
η∂
// // R∂

R
ν //

η

��

T1

θ∂

��

T2
χ∂
// H∂

In virtue of the preceding lemma, both χ and θ are epis, and then their duals are monos.
Therefore, the second diagram, which is the dual of the first one, is an amalgamation of ν
and η. Hence, we have proved that the category Q-Mod has the amalgamation property. In
order to end this proof, note that in virtue of Theorem 1 of [Tho82], the strong amalgamation
property in a cocomplete category is equivalent to the equation Mono = RegMono, which is
true for Q-Mod, by Corollary 8.4.

Proposition 8.7. Let Q be a small quantaloid. Then the set {hA : A ∈ Q} is a separating set
for the category Q-Mod.

Proof. Suppose that α, β : T → T ′ are two different Q-morphisms, and let A ∈ Q and x ∈ TA
such that αAx 6= βAx. Then, it is easy to see evaluating at 1A that α · µx 6= β · µx, where
µx : hA → T is the unique morphisms in [hA, T ] corresponding to x ∈ TA by the Yoneda
Lemma.

Remark 8.8. Note that, in the particular case when Q has just one object ?, that is, Q is a the
quantaloid associated with a quantale A = 〈A, ·, 1〉, we have that {h?} is a separating set for
Q-Mod ∼= A-Mod, that is, h? is a separator for Q-Mod. It is easy to see that this corresponds
exactly with the A-module A = 〈A, ·〉.

Corollary 8.9. Let Q be a small quantaloid. Then the category Q-Mod is wellpowered and
also cowellpowered.

Proof. This is a consequence of the precedent proposition, since every category with a sep-
arating set is concretizable over Set (see Exercise 7Q of [AHS06]), and every construct is
wellpowered and cowellpowered (see 7.88 of [AHS06]).
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Corollary 8.10. Let Q be a small quantaloid. Then the category Q-Mod is strongly complete
and strongly cocomplete.

Proof. We know that Q-Mod is complete, since it has products and equalizers. Moreover it is
strongly complete, since it is wellpowered. Finally, it is strongly cocomplete by duality.

Corollary 8.11. Let Q a small quantaloid. Then the category Q-Mod is (Epi,Mono)-struc-
tured.

Proof. Since the category Q-Mod is strongly complete in virtue of the precedent corollary, it is
(ExtrEpi,Mono)-structured. But the classes ExtrEpi and Epi coincide in Q-Mod, what proves
the result.

9 Interpretability and representability in Q-Mod

Definition 9.1. If Q is a quantaloid, T and T ′ are two Q-modules, and γ and δ are closure
operators on T and T ′, respectively, then a semi-interpretation of γ into δ is a Q-morphism
τ : T → T ′ such that for every A ∈ Q, and every x, x′ ∈ TA,

x 6 γA(x′) ⇒ τAx 6 δA
(
τA(x′)

)
.

τ is an interpretation of γ into δ if for every A ∈ Q, and every x, x′ ∈ TA,

x 6 γA(x′) ⇔ τAx 6 δA
(
τA(x′)

)
.

In case τ is a (semi-)interpretation of γ into δ, we say that γ is (semi-)interpretable into δ by
τ .

The following Lemma establishes characterizations for semi-interpretability and interpretabil-
ity in terms of the order of the lattice of closure operators. It follows immediately from the
definitions and Proposition 7.15.

Lemma 9.2. If τ : T → T ′ is a Q-morphism between two Q-modules, and γ and δ are closure
operators on T and T ′, respectively, then

(i) γ is semi-interpretable into δ by τ if and only if γ 6 δτ ;
(ii) γ is interpretable into δ by τ if and only if γ = δτ .

We have proved that for every Q-morphism τ : T → T ′, the map between the lattices
of closure operators on T and T ′, τ (_) : Clop(T ) → Clop(T ′) is a residuated map with
residuum (_)τ . Therefore, their composition τ̂ = (τ (_))τ : Clop(T ) → Clop(T ) is a closure
operator on Clop(T ). The following result is easily proved taking into account this fact and
the reformulation of the notions of semi-interpretability and interpretability of the previous
Lemma.

Corollary 9.3. If τ : T → T ′ is a Q-morphism between two Q-modules, then

(i) every closure operator γ on T is semi-interpretable in τγ;
(ii) the closure system associated with τ̂ is

{
δτ : δ ∈ Clop(T ′)

}
; therefore, a closure operator

on T is interpretable by τ if and only if it is τ̂ -closed;
(iii) a closure operator γ on T is interpretable by τ if and only if it is interpretable in τγ by

τ .

Proof.

(i) This is a consequence of the expansiveness of τ̂ , since γ 6 τ̂(γ) = (τγ)τ .
(ii) The first part is a general result for residuated maps, and the second part follows from

the first and the characterization of Lemma 9.2.
(iii) If γ is interpretable by τ , then by (ii), it is τ̂ -closed. Therefore, γ = τ̂(γ) = (τγ)τ . The

other implication is obvious.
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In view of the previous corollary, we can give another characterization of interpretable
closure operators by a fixed Q-morphism. Indeed, it is a description of the closure system
associated with τ̂ as a principal filter of Clop(T ).

Proposition 9.4. Let Q be a quantaloid, and τ : T → T ′ a Q-morphism between two Q-mod-
ules. Then the set of closure operators on T that are interpretable by τ is a principal filter of
Clop(T ) generated by τ̃ , the closure operator on T determined by τ .

Proof. Let γ be a closure operator on T . Then for every A ∈ Q, the closure system associated
with τ̂(γ)A is the set

Cl
(
(τγ)τA

)
= {τ+

A y : y ∈ T ′(τγ)A} = {τ+
A y : y ∈ T ′A, τ+

A y ∈ TγA}

= {τ+
A y : y ∈ T ′A} ∩ TγA = Cl(τ̃A) ∩ TγA.

Thus, we have that

γ is interpretable by τ ⇔ γ is τ̂ -closed ⇔ γ = τ̂(γ)

⇔ for every A ∈ Q, TγA = Cl
(
(τγ)τA

)
= Cl(τ̃A) ∩ TγA

⇔ for every A ∈ Q, TγA ⊆ Cl(τ̃A)
⇔ τ̃ 6 γ.

Corollary 9.5. Let Q be a quantaloid and τ : T → T ′ and Q-morphism. If a closure operator
γ on T is interpretable by τ , then every extension of γ is interpretable by τ .

Note that this is a generalization of Theorem 2.15 of [BR03], which says that if a sentential
logic has an algebraic semantics, so does every of its extensions extensions, and that we have
arrived to it using mainly the residuation property of τ (_).

Definition 9.6. If Q is a quantaloid, T and T ′ are two Q-modules, and γ and δ are closure
operators on T and T ′, respectively, then a semi-representation of γ into δ is a Q-morphism
α : Tγ → T ′δ. A semi-representation α of γ into δ is induced if there exists a morphism
τ : T → T ′ such that the following diagram commutes:

T
τ //

γ̇
����

T ′

δ̇
����

Tγ
α // T ′δ

In that case, we say that τ induces α. A representation of γ into δ is a semi-representation
which is a mono. Furthermore, we say that γ is (semi-)representable into δ if there exists
a (semi-)representation of γ into δ, and that it is (semi-)representable by τ if τ induces a
(semi-)representation of γ into δ.

Remark 9.7. If α is a semi-interpretation of γ into δ induced by τ , then α is completely
determined by δ, γ, and τ . Indeed, α = δ̇τ�Tγ .

The following proposition establishes that (semi-)interpretability implies induced (semi-)rep-
resentability.

Proposition 9.8. Let Q be a quantaloid, τ : T → T ′ a Q-morphism between to Q-modules, γ
and δ closure operators on T and T ′, respectively and α = δ̇τ�Tγ . Then,

(i) if γ is semi-interpretable into δ by τ , then α is the unique semi-representation of γ into
δ induced by τ ;

(ii) if γ is interpretable into δ by τ , then α is the unique representation of γ into δ induced
by τ .

Proof.
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(i) Let us prove that α : Tγ → T ′δ is a Q-morphism. First, note that for every A ∈ Q,
αA = δ̇AτA�Tγ : TγA → T ′δA is residuated. Its residuum can be easily calculated: for
every x ∈ TγA and every z ∈ T ′δA,

δAτAx 6 z in T ′δA
⇔ τAx 6 z in T ′A, because z ∈ T ′δA,
⇔ x 6 τ+

A z in TA, because of the residuation property of τA,

⇔ x 6 τ+
A z in TγA, because z ∈ T ′δA ⇒ τ+

A z ∈ TδτA ⊆ TγA, since γ 6 δ
τ .

Thus, the restriction of τ+
A to a map T ′δA → TγA is the residuum of αA. In order to

prove the structurality of α, first note that γ 6 δτ = τ∂δτ ⇒ τγ 6 δτ ⇒ δτγ 6 δτ 6
δτγ ⇒ δτ = δτγ. Suppose now that a : A→ B is in Q and x ∈ TγA. Then,

a ∗T ′δ αAx = δB(a ∗T ′ δAτAx) = δB(a ∗T ′ τAx) = δBτB(a ∗T x) = δBτBγB(a ∗T x)

= αB(a ∗Tγ x).

(ii) The only thing we have to prove, in virtue of (i), is that if τ is an interpretation of γ
into δ, then for every A ∈ Q, αA is injective. Since αA : TγA → T ′δA is a residuated
map, it is injective if and only if its residuum is its left inverse. Note that, by hypothesis,
γA = δτA = τ+

A δAτA. Hence, the correspondent restrictions are:

idTγA = γA�TγA = τ+
A �TδA(δAτA)�TγA = α+

AαA.

In both cases, the uniqueness of α is evident, by the previous remark.

Proposition 9.9. Let Q be a quantaloid, T and T ′ two Q-modules, τ : T → T ′ a Q-morphism,
and γ and δ two closure operators on T and T ′, respectively. Then,

(i) if τ induces a semi-representation of γ into δ, then τ is a semi-interpretation of γ into
δ;

(ii) if τ induces a representation of γ into δ, then τ is an interpretation of γ into δ.

Proof.

(i) Suppose that α is a semi-representation of γ into δ induced by τ . Then, δ̇τ = αγ̇, which
implies that for every A ∈ Q, δ̇AτAγA = αAγ̇AγA = αAγ̇A = δ̇AτA. Composing with the
inclusion jA : T ′δA → T ′A, we obtain δAτAγA = δAτA. Therefore, τAγA 6 δAτA, and by
the residuation property of τA, we obtain γA 6 τ+

A δAτA = δτA.
(ii) Suppose now that α is a representation of γ into δ induced by τ . Then, taking duals in

αγ̇ = δ̇τ , we obtain iα∂ = γ̇∂α∂ = (αγ̇)∂ = (δ̇τ)∂ = τ∂ δ̇∂ = τ∂j, where i : (Tγ)∂ → T ∂

and j : (T ′δ)
∂ → (T ′)∂ are the inclusions. Thus, for every A ∈ Q, γ̇Aτ+

A jA = γ̇AiAα
+
A =

α+
A. We know that, for every A ∈ Q, α+

A is a left inverse of αA, since αA is injective.
Hence, from the following equalities

γ̇Aδ
τ
A = γ̇Aτ

+
A δAτA = (γ̇Aτ+

A jA)(δ̇AτA) = α+
AαAγ̇A = γ̇A,

it follows that γAδτA = γA, and therefore δτA 6 γA. The other inequality follows from (i).

As it is expected, whereas interpretability implies representability, as we have shown in
Proposition 9.8, the reverse implication is not true, in general. That is equivalent, by Proposi-
tion 9.9, to saying that representations are not always induced. The following theorem charac-
terizes the modules such that all the representations of closure operators on them are induced.

Recall that if Q is a quantaloid, a Q-module P is projective if for every epi β : T�T ′ and
every Q-morphism α : P → T ′, there exists a Q-morphism α : P → T completing the diagram:

T

β
����

P α
//

∃α
>>~

~
~

~
T ′

(6)
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Theorem 9.10. If Q is a quantaloid, then a Q-module P is projective if and only if every
representation of a closure operator on P into another closure operator is induced.

Proof. If P is projective, γ is a closure operator on P , δ is a closure operator on T and
α : Pγ → Tδ is a representation, then by the projectivity of P , the following diagram can be
completed:

P

γ̇
����

//___

  
AAAAAAAA T

δ̇
����

Pγ
α // Tδ

which implies that α is induced.
Suppose now that β : T�T ′ is an epi, and α : P → T ′ is a Q-morphism. Let δ = β̃, the

closure operator on T determined by β. Hence, there exists an isomorphism η : T ′ ∼= Tδ. Let
γ be the closure operator on P such that η · α factorizes trough Pγ , that is γ = η̃ · α. Hence,
we have the commutativity of the solid part of the diagram

P

γ̇

����

α

!!BBBBBBB
τ //______ T

β

~~~~||||||

δ̇

����

T ′

∼=
η

  
@@@@@@@

Pγ //
ζ

// Tδ

Then, the square can be completed with a Q-morphism τ , since ζ is a representation of γ into
δ. Thus, βτ = η−1ηβτ = η−1δ̇τ = η−1ζγ̇ = η−1ηα = α, as we wanted to prove.

Remark 9.11. Note that the injectivity of α is not used in the first part of the proof of the
preceding theorem, and also that every representation is a semi-representation. Therefore, we
also have that a Q-module P is projective if and only if every semi-representation of a closure
operator on P into another closure operator is induced.

10 Cyclic Q-modules and cyclic projective Q-modules

Definition 10.1. If Q is a quantaloid and T is a Q-module, then T is said to be cyclic if there
exist an object A ∈ Q, and an element v ∈ TA, such that for every B ∈ Q, and every x ∈ TB,
there exists an arrow vB,x : A → B in Q such that vB,x ∗T v = x. The pair 〈A, v〉 is called a
generator of T .

In what follows, if the object B is clear from the context, we suppress the subindex B of
vB,x : A→ B, and denote it just by vx : A→ B. The following lemma is a characterization of
the property of being a generator.

Lemma 10.2. Let Q be a quantaloid, T a Q-module, A ∈ Q, and v ∈ TA. Then 〈A, v〉 is a
generator of T if and only if the Q-morphism µv : hA → T , given by the Yoneda Lemma, is an
epi.

Proof. Recall that epis in Q-Mod are those Q-morphisms whose components are onto. There-
fore, this is just a reformulation of the definition of a generator, since for every A,B ∈ Q,
hAB = [A,B], and for every v ∈ TA, µv = _ ∗T v.

The following proposition characterizes the cyclics ofQ-Mod as the quotients of the modules
of the form hA. In the case Q is a quantale, that is, Q has just one element, this proposition
coincides with Lemma 5.4 of [GT09].

Proposition 10.3. Let Q be a quantaloid, T a Q-module, and A ∈ Q. Then T is cyclic with
generator 〈A, v〉 if and only if T is isomorphic to a quotient of hA.
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Proof. Suppose that T is cyclic and 〈A, v〉 is a generator of T . Consider the Q-morphism
µv : hA → T given by the Yoneda Lemma. By Lemma 10.2, µv : hA�T is an epi in Q-Mod.
In virtue of Proposition 7.7, µv is isomorphic to γ̇, where γ = µ̃v is the closure operator on
hA associated with µv. That is, there exists an iso η : (hA)γ ∼= T rendering commutative the
diagram

hA
γ̇

�����������
µv

�� ��
????????

(hA)γ
η

∼=
// T

In the other direction, suppose that T is isomorphic to a quotient of hA, that is, there exists
an epi ε : hA�T ′ and an iso η : T ′ ∼= T . By Yoneda Lemma, there exists v ∈ TA (indeed,
v = (η · ε)(1A)) such that µv = η · ε : hA�T , which is an epi, since η is so. Hence, in virtue of
Lemma 10.2, 〈A, v〉 is a generator of T .

The following is a technical lemma, establishing that if 〈A, v〉 is a generator of a Q-module
T , then for every B ∈ Q and every x ∈ TB, we can choose vx as (x/T v). This will be used
later on.

Lemma 10.4. If Q is a quantaloid and T is a Q-module, then 〈A, v〉 is a generator of T if
and only if for every B ∈ Q, and for every x ∈ TB, (x/T v) ∗T v = x.

Proof. Let 〈A, v〉 be a generator of T , and for everyB ∈ Q, let vx ∈ [A,B], such that vx∗T v = x.
Then, vx 6 x/T v, and therefore

x = vx ∗T v 6 (x/T v) ∗T v 6 x,

whence (x/T v) ∗T v = x. The other direction is evident, taking vx = x/T v.

Definition 10.5. If Q is a quantaloid and T is a cyclic Q-module, then a g-variable for T is
a generator 〈A, v〉 such that there exists an arrow u : A→ A in Q satisfying the following two
properties:

1. u ∗T v = v,
2. for every a : A→ B,

(
(a ∗T v)/T v

)
◦ u = a ◦ u.

Remark 10.6. Observe that when the notion of g-variable forQ-modules specializes to anM -set
〈X, ·〉, what we obtain is a set v ⊆ X such that there exists u ⊆ M satisfying the properties
1., 2., and 3. of Proposition 2.3. It was proved in Theorem 2.10 that, in that case, any element
of v is indeed g-variable for the M -set 〈X, ·〉. On the other direction, if p is a g-variable for
〈X, ·〉, then {p} is a g-variable for the module associated with 〈X, ·〉.

Given a morphism u : A → A in Q, we can define the Q-module hAu as the image of
µu : hA → hA. Thus, for every B ∈ Q, (hAu)B = {b ◦ u : b ∈ hAB}. The next proposition is a
characterization of the modules having a g-variable as those of the form hAu, where u : A→ A
is an idempotent, up to isomorphism.

Proposition 10.7. A Q-module T has a g-variable if and only if there exists an idempotent
u : A→ A for some A ∈ Q such that T ∼= hAu.

Proof. Suppose that 〈A, v〉 is a g-variable for a Q-module T . Then, in virtue of 1. and 2. of
Definition 10.5:

u ◦ u =
(
(u ∗T v)/T v

)
◦ u = (v/T v) ◦ u =

(
(1A ∗T v)/T v

)
◦ u = 1A ◦ u = u,

that is, u is an idempotent. Since 〈A, v〉 is a generator of T , then in virtue of Proposition 10.3,
T ∼= (hA)γv , where γv is the closure operator associated with µv, that is, for every b ∈ hAB,
γv(a) = (a ∗T v)/T v. Furthermore, it is evident that µu : hA�hAu is an epi, and hence
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hAu ∼= (hA)γu , where γu is the closure operator associated with µu, that is, γu(a) = (a◦u)/◦u.
Then, it is enough to prove that γv = γu.

Note that γv(γu(a)) = (((a ◦ u)/u) ∗ v)/v = (((a ◦ u)/u) ∗ (u ◦ v))/v = ((((a ◦ u)/u) ◦ u) ∗
v)/v = ((a ◦ u) ∗ v)/v = (a ∗ (u ∗ v))/v = (a ∗ v)/v = γv(a), and then γu 6 γv. Moreover,
((a ∗ v)/v) ◦ u 6 a ◦ u, whence γv(a) = (a ∗ v)/v 6 (a ◦ u)/u = γu(a), that is γv 6 γu.

In order to prove the other implication, observe that 〈A, u〉 is a generator of hAu, since the
morphism µu : hA�hAu is an epi. And 2. of Definition 10.5 is satisfied, when replacing v by u.
If moreover u is idempotent, then 1. is also satisfied, and hence 〈A, u〉 is a g-variable of hAu.
Finally, observe that having a g-variable is a property transferable by isomorphisms.

We will prove later that if aQ-module has a g-variable, then all its generators are g-variables.
Indeed, this will be part of the characterization of cyclic and projective Q-modules as those
having a g-variable (see Theorem 10.11). We split this result into the next two propositions
for an easier exposition. But first, we prove the following lemma, which is the equivalent to
Theorem 6.13 of [GT09].

Lemma 10.8. If P has a g-variable 〈A, v〉 and u is the correspondent idempotent, then there
exists a bijection between the Q-morphisms P → T and the u-invariant elements of T , given
by τ 7→ τAv and y 7→ τyBx = (x/P v) ∗T y, for all B ∈ Q, and all x ∈ PB.

Proof. In one direction, if τ : P → T is a Q-morphism, then u ∗ τAv = τA(u ∗ v) = τAv, that
is, τAv is u-invariant.

On the other direction, if y ∈ TA is an u-invariant, and we define τyBx = (x/P v) ∗T y, for
all B ∈ Q, and all x ∈ PB, then we will prove that τy : P → T is a Q-morphism. First, note
that τyB : PB → TB is residuated, since for all x ∈ PB, and all z ∈ TB,

(x/v) ∗ y 6 z ⇔ x/v 6 z/y

⇒ x = (x/v) ∗ v 6 (z/y) ∗ v
⇒ x/v 6

(
(z/y) ∗ v

)
/v

⇒ (x/v) ◦ u 6
((

(z/y) ∗ v
)
/v
)
◦ u = (z/y) ◦ u

⇒ (x/v) ∗ y = (x/v) ∗ (u ∗ y) =
(
(x/v) ◦ u

)
∗ y 6

(
(z/y) ◦ u

)
∗ y

= (z/y) ∗ (u ∗ y) = (z/y) ∗ y 6 y

and moreover, its residuum is (τyB)+ : TB → PB given by (τyB)+z = (z/T y) ∗P v. Now, in
order to prove that τy : P → T is a Q-morphism, suppose that a : B → C is in Q, and x ∈ PB.
Then,

τyC(a ∗ x) =
(
(a ∗ x)/v

)
∗ y =

((
(a ◦ x/v) ∗ v

)
/v
)
∗ (u ∗ y)

=
(((

(a ◦ x/v) ∗ v
)
/v
)
◦ u
)
∗y =

(
(a ◦ x/v) ◦ u

)
∗y

= (a ◦ x/v) ∗ y = a ∗ (x/v ∗ y) = a ∗ τyBx

Finally, we see that this two correspondences are inverse to each other, since given τ : P → T ,
τ τAvB x = (x/v)∗τAv = τB(x/v∗v) = τBx, and given an u-invariant y, we have τyAv = (v/v)∗y =((

(1 ∗ v)/v
)
◦ u
)
∗ y = (1 ◦ u) ∗ y = y.

Proposition 10.9. Let Q be a quantaloid and P a Q-module. If P has a g-variable, then P
is projective.

Proof. Suppose that 〈A, v〉 is a g-variable of P , and u : A→ A is the corresponding idempotent.
Suppose that β : T�T ′ is an epi and that α : P → T ′ is a Q-morphism. Let us see that we
can define a Q-morphism α : P → T completing the diagram (6).

Since P has a g-variable, the Q-morphism α : P → T that we are looking for should be
determined by an u-invariant of T , y = αAv. And by the commutativity of diagram (6), it
should be satisfied that βA(αAv) = αAv. Then, we need to find an u-invariant y ∈ TA such
that βAy = αAv. Since β is epi, in particular βA is onto, and then there exists t ∈ TA such
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that βAt = αAv. Let y = u ∗ t, which is evidently an u-invariant. Thus, βAy = βA(u ∗ t) =
u ∗ βAt = u ∗ αAv = αA(u ∗ v) = αAv. Therefore, y is the u-invariant we needed. Let α = τy,
with the notation of the previous lemma. We only have to prove that α renders diagram (6)
commutative. But, this is an easy calculation: for all B ∈ Q, and x ∈ PB,

βBαBx = βBτ
y
Bx = βB

(
(x/v) ∗ y

)
= (x/v) ∗ βAy = (x/v) ∗ αAv = αB

(
(x/v) ∗ v

)
= αBx.

Proposition 10.10. Let Q be a quantaloid and P a cyclic and projective Q-module. Then
every generator of P is a g-variable.

Proof. Let 〈A, v〉 be a generator of P , µv : hA�P the Q-morphism given by the Yoneda
Lemma, γ = µ̃v the closure operator on hA associated with µv, and η : (hA)γ → P the
isomorphism of Proposition 10.3. By the projectivity of P , the first diagram can be completed
by an arrow α : P → hA, and evaluating at A we obtain the second diagram,

hA

γ̇
����

[A,A]

γ̇A
����

u = αA(v)
_

��

P
η−1
//

α

=={
{

{
{

{
(hA)γ PA

η−1
A

//

αA

;;vvvvvvvvv
[A,A]γA v � //

6

;;vvvvvvvvvv
γA(1A)

In order to prove that 〈A, v〉 is indeed a g-variable, we see now that u = αA(v) and v satisfy
Conditions 1. and 2. of Definition 10.5. First, note that since v = 1A ∗P v = µvA(1A) =
ηAγA(1A), we obtain that γA(1A) = η−1

A (v) = γAαA(v) = γA(u). Therefore, u ∗P v = µvA(u) =
ηAγA(u) = ηAγA(1A) = µvA(1A) = v. Furthermore, for every a : A → B in Q, we have(
(a ∗P v)/P v

)
◦ u = γB(a) ∗hA αA(v) = αB(γB(a) ∗P v) = αBµ

v
BγB(a) = αBµ

v
B(µvB)+µvB(a) =

αBµ
v
B(a) = αB(a ∗P v) = a ∗hA αA(v) = a ◦ u.

Theorem 10.11. Let Q be a quantaloid and T a Q-module. The following conditions are
equivalent:

(i) T is cyclic and projective.
(ii) T is cyclic and every generator is a g-variable.
(iii) T has a g-variable.
(iv) There exists an idempotent u : A→ A in Q such that T ∼= hAu.

Proof. By Proposition 10.10, we have (i)⇒ (ii). The implication (ii)⇒ (iii) is evident. (iii)⇔
(iv) was proved in Proposition 10.7. And finally, (iii)⇒ (i) in virtue of Proposition 10.9.

Corollary 10.12. Let Q be a quantaloid. Then for every A ∈ Q the Q-module hA is cyclic
and projective.

Proof. It is immediate to see that, if A ∈ Q, then 〈A, 1A〉 is a generator of hA, since µ1A :
hA → hA is the identity Q-morphism in hA, and therefore epi. Furthermore, taking u = 1A, the
equalities 1. and 2. of Definition 10.5 are trivially satisfied, showing that 〈A, 1A〉 is a g-variable
of hA.

Theorem 10.13. Let Q be a small quantaloid. Then the category Q-Mod has enough projec-
tives, and dually enough injectives.

Proof. We know that the category Q-Mod has biproducts, and then the product of projectives
is also the coproduct of projectives, and hence a projective. We will construct for every
Q-module T a projective H, which will be a product of projectives, and an epi ε : H�T .
Suppose that T is a Q-module, and for every A ∈ Q, let HA = h

|TA|
A be the power of hA by the

set |TA| of the elements of TA, that is, the product HA =
∏
x∈TA(hA)x, where (hA)x = hA.

For every x ∈ TA, let πx : HA → hA the corresponding projection. Take now the product
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H =
∏
A∈QHA and let πA : H → HA be the corresponding projection, for every A ∈ Q.

Therefore, for every A ∈ Q, and every x ∈ TA we have the Q-morphism:

εA,x : H
πA // HA

πx // hA
µx
// T.

Let ε : H → T be the join ε =
∨
{εA,x : A ∈ Q, x ∈ TA} in HomQ(H,T ). It is easy to

see that ε is an epi in Q-Mod, since for every B ∈ Q and every x0 ∈ TB, we can define the
element a ∈ HB determined in the following way: a = (aA : A ∈ Q), where for every A ∈ Q,
aA ∈ HAB, and aA = (aA,x : x ∈ TA), where for every x ∈ TA, aA,x ∈ hAB, and

aA,x =

 ⊥[A,B] if A 6= B,
⊥[B,B] if A = B and x 6= x0,
1B if A = B and x = x0.

Therefore, it is straightforward to see that for every A ∈ Q and every x ∈ TA, εA,xB (a) =
µxBπ

x
Bπ

A
B(a) = aA,x ∗T x, which has the value ⊥TB , unless A = B and x = x0, that takes

the value x0. Therefore, εB(a) =
∨
εA,x(a) = x0. Since every hA is projective in virtue of

Corollary 10.12, H is projective, and ε : H�T is the epi we were looking for. Thus, the category
Q-Mod has enough projectives, and by the duality property it also has enough injectives.

11 Equivalence of closure operators on Q-Mod

Definition 11.1. Let Q be a quantaloid, T and T ′ two Q-modules, and γ and δ closure
operators on T and T ′, respectively. We say that γ and δ are equivalent if and only if there
exists an isomorphism α : Tγ → T ′δ. Such an isomorphism is called an equivalence between γ
and δ.

Two Q-morphism τ : T → T ′ and ρ : T ′ → T are mutually inverse (with respect to γ and
δ) if they satisfy δ̇ = δ̇τρ and γ̇ = γ̇ρτ . An equivalence α : Tγ → T ′δ is induced by τ and ρ if
these are mutually inverse Q-morphisms rendering commutative the following diagrams:

T
τ //

γ̇
����

T ′

δ̇
����

T

γ̇
����

T ′
ρ

oo

δ̇
����

Tγ
α // T ′δ Tγ T ′δ

α−1
oo

Theorem 11.2. Let Q be a quantaloid, T and T ′ two Q-modules, γ and ρ closure operators on
T and T ′, respectively, and τ : T → T ′ and ρ : T ′ → T two Q-morphisms. Then the following
statements are equivalent:

(i) τ and ρ induce an equivalence between γ and δ;
(ii) γ = δτ and δ̇ = δ̇τρ;
(iii) δ = γρ and γ̇ = γ̇ρτ .

Proof. Let us prove first (ii) ⇔ (iii), and then we will prove (i) ⇔ (ii). Suppose that γ = δτ

and δ̇ = δ̇τρ. Then, taking duals, we have ρ∂τ∂j = ρ∂τ∂ δ̇∂ = (δ̇τρ)∂ = δ̇∂ = j : (T ′δ)
∂ ↪→ T ′∂ ,

the inclusion Qop-morphism. In particular, for every A ∈ Q, ρ+
Aτ

+
A jA = jA : T ′δA ↪→ T ′A, and

therefore, δA = jAδ̇A = (ρ+
Aτ

+
A jA)δ̇A = ρ+

Aτ
+
A δA. Thus,

γρA = ρ+
AγAρA = ρ+

Aδ
τ
AρA = ρ+

Aτ
+
A δAτAρA = δAτAρA = δA.

Moreover, γρτ = δτρτ = τ∂δτρτ = τ∂δτ = δτ = γ, which proves (ii)⇒ (iii). The implication
in the other direction is also true by symmetry.

Now, assume (i), that is, τ and ρ induce an equivalence between γ and δ. In particular, α
is a representation of γ into δ induced by τ . Thus, τ is an interpretation of γ into δ, that is
γ = δτ . Moreover, δ̇τρ = αγ̇ρ = αα−1δ̇ = δ̇.
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It only remains to prove (ii) ⇒ (i). Suppose that γ = δτ and δ̇ = δ̇τρ. Since we have
proved that (ii) ⇒ (iii), we also have that δ = γρ and γ̇ = γ̇ρτ . Then, we have that τ and ρ
are interpretations, and the induced representations are α = δ̇τ i and α′ = γ̇ρj. We have then
the equalities:

iα′α = i(γ̇ρj)(δ̇τ i) = γρδτi = τ+δτρδτi = τ+δδτi = τ+δτi = γi = i,

and since i is injective, then α′α = idTγ . The other composition αα′ = idT ′δ follows by
symmetry. Therefore, α is an equivalence that is induced by τ and its inverse is induced by
ρ.

Theorem 11.3. Let Q be a quantaloid, T and T ′ two projective Q-modules, γ and ρ closure
operators on T and T ′, respectively. Then every equivalence between γ and ρ is induced by
mutually inverse interpretations.

Proof. This is an immediate consequence of Theorem 9.10 and Proposition 9.9.

12 Modules induced by π-institutions

In this final section we explain how the theory of modules over quantaloids includes the theory of
π-institutions. First we begin with actions in the sense of [GF06], that is, pairs I = 〈Sign,Sen〉,
where Sen : Sign → Set is a functor. A translation from 〈Sign1,Sen〉 to 〈Sign2,Sen2〉 is a
pair 〈F, α〉 such that F : Sign1 → Sign2 is a functor and α : P Sen1 → P Sen2 F is an
additive natural map, that is, a natural map satisfying that for every A ∈ Sign1 and every set
X ⊆ Sen1A, αAX =

⋃
ϕ∈X αA{ϕ}. The category of actions is the category Act with actions as

objects and translations as morphisms. The composition of two translations 〈F, α〉 and 〈G, β〉
is the translation 〈GF, βF · α〉, where as usual βF denotes the natural transformation obtained
from β by precomposition with F , that is, βF : P Sen2 F → P Sen3GF .

Given an action I, we will see that there exist a free quantaloid P̂Sign generated over Sign,
and an enriched functor SenP : P̂Sign→ S`, that is, a P̂Sign-module, SenP .

Note that for every quantaloid Q, we can forget its enrichment and consider it just as
a category, and in the same way we can forget the enrichment of morphisms of quantaloids
and consider them just as functors. Hence, there exists a forgetful functor U : S`-Cat → Cat
forgetting the enrichment. It is well known that this forgetful functor has a left adjoint, that
is, there exists a free functor.

Let us see how given a category C, the free quantaloid P̂C on C is obtained. The objects
of P̂C are the same as the objects of C, and if A,B are objects of P̂C, then P̂C(A,B) =
〈P(C(A,B)),⊆〉, that is, an arrow from A to B in P̂C is a set of arrows4 from A to B in C.
Composition is defined as follows: if a : A → B and b : B → C, then b ◦ a : A → C is the set
b ◦ a = {g ◦ f : f ∈ a, g ∈ b}. Is is easy to check that P̂C is enriched over S`. This quantaloid
P̂C is called the free quantaloid on C because it satisfies the following property:

Proposition 12.1. For every locally-small category C, there exists a functor {}C : C → U(P̂C)
such that, for every quantaloid Q and every functor F : C → U(Q), there exists a unique
morphism of quantaloids F : P̂C → Q completing the diagram:

C
{}C
//

F
!!CCCCCCCCC U(P̂C)

U(F )

��
�
�
� P̂C

∃!F
��
�
�
�

U(Q) Q

4Note that, if this definition was taken literally, then the empty set would be an arrow shared by all the
hom-sets. In order to avoid this and make hom-sets disjoint, we suppose as usual that the arrows are labeled
with source and target.
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Proof. The functor {}C : C → P̂C is defined as the identity on objects, and for every f : A→ B

in C, {}C(f) = {f} : A→ B in P̂C.
If F : C → U(Q) is a functor, we define F : P̂C → Q as F on objects, and for every

a : A→ B in P̂C, F (a) =
∨
{F (f) : f ∈ a}, where the supremum is taken in [FA,FB]. Since

composition in Q is biresiduated, it is easy to see that F is a functor. Let us see that for every
A,B ∈ P̂C, the restriction of F is a residuated map P̂C(A,B) → [FA,FB]. Suppose that
a : A→ B is in P̂C, and g : FA→ FB is in Q. Then,

F (a) 6 g ⇔
∨
{F (f) : f ∈ a} 6 g ⇔ ∀f ∈ a, F (f) 6 g

⇔ a ⊆ {f ∈ C(A,B) : F (f) 6 g}.

Thus, we have that the map F
+

: [FA,FB]→ P̂C(A,B) determined by the equality F
+

(g) =
{f ∈ C(A,B) : F (f) 6 g} is the residuum of F : P̂C(A,B) → [A,B]. Finally, note that F is
the unique morphism of quantaloids P̂C → Q rendering the triangle commutative.

As usual, the existence of free objects ensures the existence of a left adjoint of the forgetful
functor, that is, a free functor. It is defined in the following way: if F : C → D is a functor
between two categories, then the following diagram can be completed, in virtue of the freeness
of P̂C:

C

F

��

{}D◦F
CCCC

!!CCCC

{}C
// U(P̂C)

U(P̂F )

��
�
�
� P̂C

P̂F

��
�
�
�
�

D
{}D

// U(P̂D) P̂D

(7)

Thus, if a : A→ B is P̂C, then the image of a by P̂F can be easily calculated:

P̂F (a) = {}D ◦ F (a) =
∨{(

{}D ◦ F
)
(f) : f ∈ a

}
=
⋃{
{F (f)} : f ∈ a

}
= {F (f) : f ∈ a}.

We have that, P̂ : Cat → S`-Cat is a left adjoint of U : S`-Cat → Cat, and {} : IdCat → U P̂
is the unit of the adjunction P̂ a U . The counit ζ : P̂U → IdS`-Cat can be readily obtained,
taking into account that every component ζQ : P̂(UQ) → Q is a morphism of quantaloids
which is the identity on objects and respects arbitrary joins in hom-sets. Therefore, for every
a : A→ B in P̂(UQ), we have that a ⊆ Q(A,B), and ζQ(a) =

∨
a ∈ Q(A,B).

The following construction is of special interest for us, since it allows encompassing π-in-
stitutions in the frame of modules over quantaloids, as we will see. It is well known that
the functor P : Set → S` is the free functor5 of S`, left adjoint of the forgetful functor
V : S` → Set, and the singleton maps σA : A → PA are the insertions of generators, that is,
the components of the unit of the adjunction. Using this functor we can construct, for every
functor F : C → Set a new functor FP : P̂C → S` as the unique morphism of quantaloids
P̂C → S` given by the freeness of P̂C and rendering commutative the following diagram:

C

F

��

P◦F
FFF

""FFF

{}C
// U(P̂C)

U(FP)

��
�
�
� P̂C

FP

��
�
�
�

Set P // U(S`) S`

This functor acts in the following way: for every object A in C, the image of A is the complete
lattice FP(A) = P(FA), and for every arrow a : A → B in P̂C, FP(a) : P(FA) → P(FB)
is determined by x 7→ {F (f)ϕ : f ∈ a, ϕ ∈ x}. Note that if for one-object categories, this

5Here we do not consider S` as an enriched category, that is, S` denotes in fact U(S`).
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construction amounts to the free quantale P(M) over a monoidM , and to the the usual lifting
of M -set s to P(M)-modules.

We also want to define for every translation a morphism relating the induced modules.
Given two actions I1 = 〈Sign1,Sen1〉 and I2 = 〈Sign2,Sen2〉 with Sign1 = Sign2, it is easy to
see that the additive natural transformations P Sen1 → P Sen2 are exactly the P̂Sign1-mor-
phisms SenP1 → SenP2 . They are the families τ = {τA : A ∈ Sign} such that τA : P Sen1A →
P Sen2A is a map respecting arbitrary unions, and rendering commutative the diagram

P Sen1A
τA //

P Sen1(f)

��

P Sen2A

P Sen2(f)

��

P Sen1B
τB // P Sen2B

for every f : A→ B in Sign1.
Nevertheless, if Sign1 6= Sign2, then SenP1 and SenP2 are modules over different quantaloids,

in general. Therefore, it is not possible to define a morphism of modules SenP1 → SenP2 . We
can surpass this obstacle, but we need to analyze a bit more the category of actions.

Observe that the category Act is in fact the Grothendieck construction of a contravariant
functor Fnct : Cat → Cat that we are going to define in the next paragraph. Therefore, it
is a fibred category, and the first-projection functor p : Act → Cat is a split fibration. See
Chapter 12 of [BW95] for the details about Grothendieck construtions and split fibrations and
cofibrations.

The contravariant functor Fnct : Cat → Cat is defined in the following way: for every
category Sign, Fnct(Sign) is the category that has as objects the Set-valued functors Sen :
Sign→ Set, and an arrow α : Sen1 → Sen2 is an additive natural transformation α : P Sen1 →
P Sen2. Given a functor F : Sign1 → Sign2, a functor Fnct(Sign2)→ Fnct(Sign1) is defined
by sending Sen to SenF , and α : Sen1 → Sen2 to αF : Sen1 F → Sen2 F . It follows immediately
from the definitions that Act = Fnct]. We will see that from the perspective of modules over
quantaloids, this functor has a more natural appearance.

It is easy to see that modules over quantaloids can also be gathered in a fibration, in the
same way as modules over rings. This will allow communication between modules over different
quantaloids.

Definition 12.2. Given two quantaloids Q and Q′, and a morphism F : Q → Q′, there is
a standard procedure called restriction of scalars of transforming Q′-modules into Q-modules
by composing with F :

Q F //

T◦F
��

666666 Q′

T
��������

S`
In other words, for a : A→ B and x ∈ TFA, a ∗TF x = F (a) ∗T x.

In fact, this is a functorial procedure, in the sense that there exists a contravariant functor
_-Mod : S`-Cat→ S`-Cat determined by

Q

F

��

� // Q-Mod

Q′ � // Q′-Mod

_◦F

OO

This gives rise to a fibration q : Mod] → S`-Cat, the first projection of Mod], the
Grothendieck construction of _-Mod as a contravariant functor, that is, the objects of Mod]

are pairs 〈Q, T 〉, where Q is a quantaloid and T is a Q-module, and the arrows are pairs
〈F, α〉 : 〈Q, T 〉 → 〈Q′, T ′〉, where F : Q → Q′ is a morphism of quantaloids and α : T → T ′ ◦F
is a Q-morphism. Composition of arrows is defined by 〈G, β〉〈F, α〉 = 〈GF, βF · α〉.
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Of course, if Q is a quantaloid, then the fiber over Q, which is the subcategory Mod]Q
of Mod] with objects pairs 〈Q, T 〉 and arrows of the form 〈IdQ, τ〉 : 〈Q, T 〉 → 〈Q, T ′〉, is
isomorphic to Q-Mod.

Then, every action I = 〈Sign,Sen〉 induces an object IP = 〈P̂Sign,SenP〉 ∈ Mod]. Let
us see that every translation 〈F, τ〉 : I1 → I2 induces an arrow 〈P̂F, τ〉 : IP1 → IP2 in Mod].
Recall that, given a functor F : C → C′, there exists a functor P̂F : P̂C → P̂C′ that is defined
as the morphism of quantaloids making commutative Diagram (7).

Proposition 12.3. Let I1 = 〈Sign1,Sen1〉 and I2 = 〈Sign2,Sen2〉 be two actions and 〈F, τ〉 :
I1 → I2 a translation. Then 〈P̂F, τ〉 : IP1 → IP2 is a morphism in the category Mod].

Proof. First note that P̂F : P̂Sign1 → P̂Sign2 is a morphism of quantaloids, SenP1 is a
P̂Sign1-module, SenP2 is a P̂Sign2-module, and by restriction of scalars, SenP2 ◦P̂F is a
P̂Sign1-module. According with the definition of SenP2 and P̂F , and since U : S`-Cat → Cat
is a functor, the following diagram commutes for C = Sign1 and D = Sign2:

C

F
��

;;;;;;;;
{}C

//

Sen2 F

��

U(P̂C)

U(P̂F ){{wwwwwwww

U
(

SenP2 ◦P̂F
)

		

P̂C

P̂F
��

SenP2 ◦P̂F

��

D
{}D
//

Sen2

����������
U(P̂D)

U
(

SenP2

)
##GGGGGGGGG P̂D

SenP2

��

Set P // U(S`) S`

Therefore, (Sen2)P ◦ P̂F = (Sen2 F )P .
Since 〈F, τ〉 : I1 → I2 is a translation, τ : P Sen1 → P Sen2 F is an additive natural

transformation. That is to say, a P̂Sign1-morphism τ : SenP1 → (Sen2 F )P , and this ends the
proof.

Then, we can define a functor ζ : Act → Mod] by ζ〈Sign,Sen〉 = 〈P̂Sign,SenP〉, and
ζ
(
〈F, α〉

)
= 〈P̂F, α〉. Note that ζ trivially respects identities, and moreover ζ

(
〈G, β〉

)
ζ
(
〈F, α〉

)
=

〈P̂G, β〉〈P̂F, α〉 = 〈P̂GP̂F, βP̂F · α〉 = 〈P̂(GF ), βF · α〉 = ζ
(
〈GF, βF · α〉

)
= ζ

(
〈G, β〉〈F, α〉

)
.

Thus, we can see Act as a subcategory ofMod]. Furthermore, the functor ζ respects the fibred
structure of Act:

Theorem 12.4. The pair 〈ζ, P̂〉 : p→ q is a morphism of split cofibrations.

Proof. It is obvious that the follwoing diagram commutes:

Act
p

��

ζ
// Mod]

q

��

Cat P̂ // S`-Cat

We only have to prove that 〈ζ, P̂〉 respects the splittings of p and q. Since these are Grothendieck
constructions, their splittings are

κ(F, 〈Sign,Sen〉) = 〈F, idP SenF 〉, for every F with codomain Sign, and
κ′(F, 〈Q, T 〉) = 〈F, idT 〉, for every F with codomain Q.

Then, we have ζ
(
κ(F, 〈Sign,Sen〉)

)
= ζ

(
〈F, idP SenF 〉

)
= 〈P̂F, idP SenF 〉 = 〈P̂F, id(SenF )P 〉 =

〈P̂F, idSenP ◦P̂F 〉 = κ′
(
P̂F, 〈P̂Sign,SenP〉

)
= κ′

(
P̂F, ζ(〈Sign,Sen〉)

)
.
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Let us see what happens to π-institutions. Recall that a π-institution is a pair 〈I, C〉, where
I is an action and C is a closure operator on I. That is, C is a family C = {CA : A ∈ Sign}
such that for every A ∈ Sign, CA is a closure operator on SenA, and furthermore C satisfies
the structurality property

Sen(f)CΣ 6 CΣ′ Sen(f), for every f : Σ→ Σ′ in Sign. (Str’)

Closure operators on the set SenA coincide with closure operators on the complete lattice
P SenA = SenP A. Moreover, it is easy to see that the structurality property (Str) for C to be
a closure operator on SenP agrees with the structurality property (Str’) for C to be a closure
operator on I. Thus, we obtain the following result.6

Lemma 12.5. Let I = 〈Sign,Sen〉 be an action. Then closure operators on I coincide with
closure operators on the P̂Sign-module SenP .

Thus, π-institutions can be viewed as closure operators on a special kind of modules over
free quantaloids. Suppose that I = 〈Sign,Sen, γ〉 is a π-institution and let Th : Sign → S`
be its theory functor, i.e., the functor determined by

Th :

A
� //

f

��

Cl(γA)

Th(f)

��

Γ_

��

B
� // Cl(γB) γB(P Sen(f)Γ)

As we have said, if γ is a closure operator on the P̂Sign-module SenP , then (SenP)γ is also a
P̂Sign-module. Note that we have the following:

Th(f)Γ = γB(P Sen(f)Γ) = {f} ∗(SenP)γ Γ.

Then, we can formulate the question: what is the relation between (SenP)γ and Th ? In order
to give an answer to this question, note that Th : Sign → S` is a functor, and then there
exists an enriched functor Th : P̂Sign→ S` by the freeness of P̂Sign, which is the canonical
extension of Th from Sign to P̂Sign. Thus, this is a P̂Sign-module. Indeed, we have

(SenP)γ = Th.

Recall that the category of theories of a π-institution is the Grothendieck construction of its
theory functor, Th I = Th]. We can also build the Grothendieck construction of the functor
Th. Then, which is the relation between Th I and Th

]
? We will answer this question, but

first we prove the following proposition, which states that the Grothendieck constructions of
modules over quantaloids are quantaloids.

Proposition 12.6. If Q is a quantaloid and T is a Q-module, then T ] is a quantaloid.

Proof. The category T ] has as objects the pairs 〈A, x〉, where A ∈ Q and x ∈ TA, and the
arrows are pairs 〈a, i〉 : 〈A, x〉 → 〈B, y〉, where a : A → B is in Q, and T (a)x 6 y, that is
a ∗T x 6 y, and i is the pair 〈a ∗T x, y〉. The composition of two arrows

〈A, x〉
〈a,i〉
// 〈B, y〉

〈b,j〉
// 〈C, z〉

is the pair 〈ba, k〉, where k = 〈(ba) ∗T x, z〉.
First, we prove that given two objects 〈A, x〉, 〈B, y〉 the order in [A,B] induces an order

in the hom-set T ]
(
〈A, x〉, 〈B, y〉

)
rendering this set a complete lattice. We define 〈a, i〉 6 〈b, j〉

if and only if a 6 b in [A,B]. It is a partial order, evidently. Suppose now that we are given
6In virtue of this result, we are allowed to denote closure operators on actions with Greek letters γ, δ, . . . ,

as we do for closure operators on modules.
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a family of arrows {〈ak, ik〉 : 〈A, x〉 → 〈B, y〉}k∈K . Then, for every k ∈ K, ak ∗T x 6 y, and
therefore (

∨
ak) ∗T x =

∨
(ak ∗T x) 6 y. Thus, there exists an arrow 〈

∨
ak, j〉 : 〈A, x〉 → 〈B, y〉

and it is immediate to check that this is the supremum of the given family in the lattice
T ]
(
〈A, x〉, 〈B, y〉

)
.

The biresiduation property of the composition in T ] easily follows from the facts that
composition in Q is biresiduated and for two arbitrary fixed objects 〈A, x〉 and 〈B, y〉, the
arrows 〈A, x〉 → 〈B, y〉 are determined by their first components.

Now we can answer the question we left open, and more generally, we answer the question:
what is the relation between L

]
and L], where L : C → S` is a functor.

Proposition 12.7. Let L : C → S` a functor, L : P̂C → S` its extension to P̂C, and L] and
L
]
their corresponding Grothendieck constructions. Then

L
]

= P̂(L]).

Proof. First note that the objects of L] and L
]
are the same: the pairs 〈A, x〉, where A ∈ C

(i.e., A ∈ P̂C) and x ∈ LA = LA. The arrows 〈A, x〉 → 〈B, y〉 in L] are those f : A→ B such
that L(f)x 6 y. The arrows 〈A, x〉 → 〈B, y〉 in L] are those a : A → B such that L(a)x 6 y.
That is to say, those a ⊆ C(A,B) such that for all f ∈ a, L(f)x 6 y. And this is the same as
arbitrary subsets of arrows in L]

(
〈A, x〉, 〈B, y〉

)
, what proves the result.

Corollary 12.8. If I = 〈Sign,Sen, γ〉 is a π-institution and Th is its theory functor, then

P̂(Th I) = P̂(Th]) = Th
]

= (SenP)]γ .

We are going to study now the different notions of a (semi-)interpretation and a (semi-)rep-
resentation. We assume familiarity with these concepts in the settin of π-institutions. The
reader can recall the definitions from [GF06]. First note the following: If δ is a closure oper-
ator on an action I = 〈Sign′,Sen〉, then δ is a closure operator on the P̂Sign′-module SenP ,
as mentioned above. And, if F : Sign → Sign′ is a functor, then δF is a closure operator on
the P̂Sign-module (SenF )P .

Proposition 12.9. Given two π-institutions, I2 = 〈I1, γ〉 and I2 = 〈I2, δ〉, a translation
〈F, τ〉 : I1 → I2 is a (semi-)interpretation of I1 into I2 if and only if τ is a (semi-)interpretation
of γ into δF as closure operators on the P̂Sign1-modules SenP1 and (Sen2 F )P , respectively.

Proof. Since 〈F, τ〉 is a translation of I1 into I2, then τ : SenP1 → (Sen2 F )P is a P̂Sign1-mor-
phism. Recall that 〈F, τ〉 is a semi-interpretation of I1 into I2 if and only if for every A ∈ Sign,
τAγA 6 δFAτA, or what is the same, γA 6 δτFA. And analogously for interpretations.

Therefore, if 〈F, τ〉 is a semi-interpretation of I1 into I2, τ is a semi-interpretation of γ
into δF , and hence it induces a morphism of modules α : (SenP1 )γ → ((Sen2 F )P)δF making
commutative the following diagram:

SenP1
τ //

γ̇

��

(Sen2 F )P

˙δF
��

(SenP1 )γ
α //

(
(Sen2 F )P

)
δF

That is, if Th1 and Th2 are the theory functors of I1 and I2, respectively, then α is a morphism
of modules: α : Th1 → Th2 F . And hence, 〈P̂F, α〉 : 〈P̂Sign1,Th1 〉 → 〈P̂Sign2,Th2 〉 is an
arrow in Mod]. Furthermore, this induces a semi-representation of P̂(Th I1) into P̂(Th I2).
In the case that 〈F, τ〉 is a interpretation, 〈P̂F, α〉 induces a representation. In order to prove
that, we first establish the following correspondences.
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Proposition 12.10. Let Q1 and Q2 be two quantaloids, and Ti a Qi-module, for i = 1, 2. Then
every arrow 〈F, α〉 : 〈Q1, T1〉 → 〈Q2, T2〉 in Mod] induces a signature-respecting morphism of
quantaloids F̃ : T ]1 → T ]2 such that 〈F̃ , F 〉 is a semi-representation of T ]1 into T ]2 . Reciprocally,
every semi-representation 〈F, F ◦〉 of T ]1 into T ]2 such that F is a morphism of quantaloids
induces an arrow 〈F ◦, α〉 : 〈Q1, T1〉 → 〈Q2, T2〉 in Mod]. And these correspondences are
inverse to each other. These correspondences remain inverse to each other when we restrict
them to arrows 〈F, α〉 such that α is mono and representations, respectively.

Proof. Suppose that 〈F, α〉 : 〈Q1, T1〉 → 〈Q2, T2〉 is in Mod]. Then, by definition F : Q1 → Q2

is a morphism of quantaloids and α : T1 → T2F is a Q1-morphism. We define F̃ : T ]1 → T ]2 by

〈A, x〉

〈a,i〉
��

� // 〈FA,αAx〉

〈F (a),j〉
��

〈B, y〉 � // 〈FB,αBy〉

This is well defined given that 〈a, i〉 : 〈A, x〉 → 〈B, y〉 is in T ]1 , and hence a ∗T1 x 6 y,
and applying the naturality of α, we have F (a) ∗T2 αAx = T2

(
F (a)αAx

)
= T2F (a)(αAx) =

a ∗T2F αAx = αB(a ∗T1 x) 6 αBy. It is easy to check that this defines a functor that is
signature-respecting.

In order to see that F̃ is a morphism of quantaloids, suppose that 〈A, x〉, 〈B, y〉 ∈ T ]1 , and
{〈aj , sj〉 : j ∈ J} is a family in [〈A, x〉, 〈B, y〉]. If we denote by tj , t, and k the witnesses of
F (aj) ∗T2 αAx 6 αBy, F (

∨
aj) ∗T2 αAx 6 αBy, and (

∨
aj) ∗T1 x 6 y, respectively, then it is

straightforward to see that

F̃
(∨
〈aj , sj〉

)
= F̃ 〈

∨
aj , k〉 = 〈F (

∨
aj), t〉 = 〈

∨
F (aj), t〉 =

∨
〈F (aj), tj〉 =

∨
F̃ 〈aj , sj〉,

which shows that the restriction of F̃ to every hom-set is residuated, and therefore F̃ is a
morphism of quantaloids.

The property that 〈F̃ , F 〉 is a join morphism of split cofibrations agrees with the fact that
α is a morphism of modules. Indeed, recall from Theorem 5.6 and Definition 5.8 of [GF06]
that this is equivalent to the following two facts:

(i) the equation F̃BT1(a)x = T2F (a)F̃Ax holds for all a : A→ B in Q1 and x ∈ T1A,
(ii) the equation F̃A(

∨
xλ) =

∨
F̃Axλ holds for every A ∈ Q1 and for every family {aλ : λ ∈

Λ} ⊆ T1A,

where F̃Ax is the second component of F̃ 〈A, x〉. That is F̃Ax = αAx. Thus, (i) is αB
(
T1(a)x

)
=

T2F (a)αAx, i.e., αB(a ∗T1 x) = a ∗T2F αAx, whereas (ii) is αA(
∨
xλ) =

∨
αAxλ.

For the reverse situation, suppose that 〈F, F ◦〉 is a semi-representation of T ]1 into T ]2 ,
and for every A ∈ Q1 let αA denote FA. Note that, for every A,B ∈ Q1 and every family
{aλ : λ ∈ Λ} ⊆ [A,B], there are arrows 〈aλ,⊥B〉 : 〈A,⊥A〉 → 〈B,⊥B〉 in T ]1 , and hence〈

F ◦(
∨
aλ), 1⊥FB

〉
=
〈
F ◦(

∨
aλ), FA(1⊥A)

〉
= F

〈∨
aλ, 1⊥B

〉
= F

∨
〈aλ, 1⊥B 〉

=
∨
F
(
〈aλ, 1⊥B 〉

)
=
∨
〈F ◦aλ, FA(1⊥A)〉 =

〈∨
F ◦aλ, 1⊥FB

〉
,

where we obtain that F ◦(
∨
aλ) =

∨
F ◦aλ, and hence F ◦ : Q1 → Q2 is a morphism of quan-

taloids. Finally, by an analogous argument, since 〈F, F ◦〉 is join morphism of split cofibrations,
we obtain that α : T1 → T2F

◦ is a Q1-morphism.
One can readily prove the final assertion.

Corollary 12.11. Let I1 and I2 two π-institutions, and Th1 and Th2 their corresponding the-
ory functors. Then every arrow 〈P̂F, α〉 : 〈P̂Sign1,Th1 〉 → 〈P̂Sign2,Th2 〉 in Mod] induces
a semi-representation of P̂(Th I1) into P̂(Th I2). If moreover α is mono, then the induced
semi-representation is a representation.
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Thus, every (semi-)representation of a π-institution I1 into another I2 induces a (semi-)rep-
resentation of P̂(Th I1) into P̂(Th I2). All these results show how the study of representations
and interpretations (and hence equivalence) between π-institutions can be done inside the the-
ory of modules over quantaloids.
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