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ABSTRACT. We carry out a unified investigation of two prominent topics in
proof theory and algebra: cut-elimination and completion, in the setting of
substructural logics and residuated lattices.

We introduce the substructural hierarchy — a new classification of logical
axioms (algebraic equations) over full Lambek calculus FL, and show that cut-
elimination for extensions of FL and the MacNeille completion for subvarieties
of pointed residuated lattices coincide up to the level A2 in the hierarchy. Neg-
ative results, which indicate limitations of cut-elimination and the MacNeille
completion, as well as of the expressive power of structural sequent rules, are
also provided.

Our arguments interweave proof theory and algebra, leading to an inte-
grated discipline which we call algebraic proof theory.

1. INTRODUCTION

The algebraic and proof-theoretic approaches to logic have traditionally devel-
oped in parallel, non-intersecting ways. This paper is part of a project to identify
the connections between these two areas and apply methods and techniques from
each field to the other in the setting of substructural logics. The emerging disci-
pline may be named algebraic proof theory. Papers [26], [9], [8] and [11] also explore
aspects of this connection. The main contribution of the paper is to reveal the con-
nection between cut-elimination for sequent calculi and the MacNeille completion
for the corresponding algebraic models, established by interweaving proof theoretic
and algebraic arguments.

Sequent calculi have played a central role in proof theory (see, e.g., [27], [6], [22]).
They are useful for proving various properties such as consistency, conservativity
and interpolation. These results are all based on the fundamental theorem of cut-
elimination, which states the redundancy of the cut rule. Sequent calculi have
been proposed for various logics. Here we are interested in substructural logics
(see, e.g., [12, 24]), i.e., logics which may invalidate some of the structural rules.
They encompass among many others classical, intuitionistic, intermediate, fuzzy
and relevant logics. In general, a substructural logic is any axiomatic extension of
full Lambek calculus FL, a calculus equivalent to LJ without structural rules. In
this setting, additional properties are often imposed on FL by means of structural
rules. As cut-elimination is not preserved in general under the addition of axioms,
the following question is of vital importance:
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Given an axiom, is it possible to transform it into a “good” struc-
tural rule—one which preserves cut-elimination when added to FL ?

Substructural logics correspond to subvarieties of (pointed) residuated lattices
(see, e.g., [17]), via a Tarski-Lindenbaum construction. The strong correspondence
between them (known as algebraization), together with rich tools from universal
algebra, has allowed for a fruitful algebraic study of substructural logics (see [12]).
An important technique here is completion, that allows a given algebra to be embed-
ded into a complete one. Here we are interested in a particular completion method
known as the (Dedekind-)MacNeille completion, which generalizes Dedekind’s em-
bedding of the rational numbers into the reals. Since it preserves all existing joins
and meets, it is useful for proving completeness of predicate logics with respect
to complete algebras (see [21]). Although the MacNeille completion applies to all
individual residuated lattices, it may produce a residuated lattice that is not in a
given variety which contained the original one. Hence an important question here
is:

Given a subvariety of pointed residuated lattices, is it closed under
MacNeille completions? Or equivalently, given an equation over
residuated lattices, is it preserved under MacNeille completions?

These two questions, raised in different contexts, are in fact deeply related. The
connection can be naively understood by noticing that both are concerned with
some conservativity properties (cf. Proposition 5.9 and Lemma 5.14) and that the
algebraic proof of cut-elimination is based on a specific way of building a complete
algebra (see below). However, to establish the exact correspondence between cut-
elimination and the MacNeille completion and to demonstrate their limitations, it
seems that it is not enough to merely combine results of algebra and proof theory;
it is necessary to integrate techniques from each discipline in a more intimate and
systematic way.

The emerging theory, called algebraic proof theory, consists of two basic ideas:

(1) Proof theoretic treatment of algebraic equations.
(2) Algebraization of proof theoretic methods.

1. Proof theoretic treatment of algebraic equations. An important idea stemming
from proof theory is to classify logical formulas into a hierarchy according to their
syntactic complexity, i.e., how difficult they are to deal with. The most prominent
example is the arithmetical hierarchy in Peano arthmetic. Inspired by the latter and
the notion of polarity coming from proof theory of linear logic [1], we introduce a
hierarchy (N, P,) on equations, called substructural hierarchy (Section 3.1), which
extends to the noncommutative setting the hierarchy given in [8].

Another prominent feature of our proof-theoretic approach is a special emphasis
on quasiequations. Most of the algebraic contributions to our field have focused on
equational classes. However, even when the class of algebraic models is defined by
equations, a reformulation of the latter into equivalent quasiequations can be still
useful. This becomes apparent in view of the connection to proof theory, where a
transformation of axioms (equations) into suitable structural rules (quasiequations)
is essential for cut-elimination. Remarkably, such a transformation is also a key step
when proving preservation under MacNeille completions.

We describe a procedure, which applies to axioms/equations at a low level in the
substructural hierarchy (up to A3) and transforms them into equivalent structural
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rules/quasiequations (Section 3). We also present a procedure for completing (in the
sense of Knuth-Bendix) the generated rules/quasiequations, namely transforming
them into ‘analytic’ ones which behave well with respect to both cut-elimination and
the MacNeille completion (Section 4). The latter procedure applies to any ‘acyclic’
structural rule/quasiequation, or to any structural rule/quasiequation in presence
of the weakening rule. These two procedures together allow for the automated
generation of uniform cut-free sequent calculi for logics semantically characterized
by (acyclic) Nz-equations over residuated lattices.

2. Algebraization of proof theoretic methods. Syntactic proofs of cut-elimination
are often cumbersome and not modular in the sense that each time one adds a rule
to a sequent calculus one has to reprove cut-elimination from the outset. More
importantly, syntactic proofs are available only for predicative systems, and not
for second order logics with the full comprehension axiom. These situations have
motivated the investigation of semantic proofs for cut-elimination (e.g., [25], [18],
[19], [20]) even though one loses concrete algorithms to eliminate cuts from a given
proof, and so the claim should be more precisely called cut admissibility.

As observed in [4], the algebraic essence of cut-elimination lies in the construc-
tion of a quasthomomorphism from an intransitive structure W (called Gentzen
structure) to a complete (and transitive) algebra WT:

quaih)om. —

It is shown in [14] that W can be thought of as a generalized Gentzen matrix,
conforming to ideas of abstract algebraic logic. Here we start by an intransitive
structure, which corresponds to a cut-free system as the cut rule corresponds to
transitivity of the algebraic inequation <. If the original structure W is already
transitive, the construction above is nothing but the MacNeille completion. Thus
cut-elimination and completion are of the same nature, and the common essence is
well captured in terms of residuated frames, which abstract both residuated lattices
and sequent calculi for substructural logics [11].

We contribute to the algebraization of proof theory by showing that analytic
structural rules/quasiequations are preserved by the above construction. Similar
arguments have already appeared in [26], [9] and [8], but the use of residuated
frames allows us to give a wunified proof of the two facts that (i) analytic rules
preserve (a strong form of) cut-elimination and (ii) analytic quasiequations are
preserved under MacNeille completions (Section 5).

Both (a strong form of) cut-elimination and closure under completions imply
some conservativity properties with respect to extensions with infinitary formulas.
A proof theoretic argument shows that conservativity in turn implies that the in-
volved structural rules/quasiequations are equivalent to analytic ones (Section 6).
This leads to the equivalence of statements (1)-(3) below for any set R of Na-
equations/axioms or structural rules/quasiequations:

(1) Ris equivalent to a set of analytic structural rules which preserve (a strong
form of) cut-elimination when added to FL.

(2) The class of FL-algebras satisfying R is closed under MacNeille completions.

(3) The infinitary extension of FL + R is a conservative extension of FL + R.

Negative results, which indicate limitations of cut-elimination and the MacNeille
completion as well as of the expressive power of structural rules are also provided
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(Section7). In particular, an algebraic construction shows the existence of a struc-
tural rule/quasiequation which does not satisfy any of (1)-(3).

We end this introduction by stressing once again that these results are obtained
through a real interplay between proof theory and algebra, which witnesses the
importance of algebraic proof theory.

2. PRELIMINARIES

2.1. Full Lambek calculus and substructural logics. We start by recalling
our base calculus: the sequent system FL. The formulas of FL are built from
propositional variables p, ¢, r, ... and constants 1 (unit) and 0 by using binary logical
connectives - (fusion), \ (right implication), / (left implication), A (conjunction)
and V (disjunction). FL sequents are expressions of the form T' = II, where the
left-hand-side (LHS) T is a finite (possibly empty) sequence of formulas of FL and
the right-hand-side (RHS) II is single-conclusion, i.e., it is either a formula or the
empty sequence. The rules of FL are displayed in Figure 1. Letters a, 8 stand
for formulas, II stands for either a formula or the empty set, and ', A, ... stand
for finite (possibly empty) sequences of formulas. =« and a <> 8 will be used as
abbreviations for a\0 and (a'\3) A (B\a), while a” and a(™ for the formula a-.. .-«
and the sequence «,...,a (n times), respectively.

Roughly speaking, FL is obtained by dropping all the structural rules (exchange
(e), contraction (c), left weakening (i) and right weakening (0); see Figure 2),
from the sequent calculus LJ for intuitionistic logic. Also, FL (together with T
and L below) is the same as noncommutative intuitionistic linear logic without
exponentials.

Remark 2.1. Often, the constants T (true) and L (false) and the rules

Tr [

=T oL, >0+

are added to the language and rules of FL, respectively; the resulting sequent
calculus is denoted by FL, . The results in our paper hold for both FL and FL .

We will consider an infinitary extension of FL. We enrich the set of formulas
so that whenever a; is a formula for every i € I, both A, ; ; and \/,c; a; are
formulas, where I is an arbitrary index set. We also add the following inference
rules:

I'y,a;,I's = II for some i € I
i, Njep @i Ta = 11

I'=>a; foralliel
Fz}/\ielai

(AD) (A7)

I',a; ;s =1 foralliel
[, Vigr @i Ta = 10

I'=> «; forsomeicl
F:}\/ielai

(V1) (Vr)
The resulting system is called FL*.

The notion of proof in FL (and the mentioned extensions) is defined as usual.
If there is a proof in FL of a sequent s from a set of sequents S, we write S F5y s.
If ® U {9} is a set of formulas, we write ® Fgr, ¢, if { = ¢ : ¢ € O} Fif = 9.
Clearly, both F5f’ and Fpy, are consequence relations on the sets of sequents and
formulas, respectively. When no confusion arises, we will omit the superscript and
write simply Fpr, for Ff.
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FIGURE 1. Inference Rules of FL

The system FL serves as the main system for defining substructural logics, the
latter being simply (the sentential part of) extensions of FL with axioms (or rules).
A substructural logic is simply a set of formulas closed under g, and substitution.

2.2. Polarities. Following [1], the logical connectives of FL, are classified into
two groups: connectives 1, L, -,V (resp. 0, T,\,/, A), for which the left (resp. right)
logical rule is invertible, are said to have positive (resp. negative) polarity. Here a
rule is invertible if the conclusion implies the premises. E.g., for (VI) (cf. Figure 1)
we have:
FaVvp,A=1 g, {T,a,A=T1I, T,5,A =11}

Connectives of the same polarity interact well with each other. Indeed, for

positive connectives,

a1+ a, aV Ll a, a L1 a-(BVy) e (a-B)V(a-7)
are provable in FL | ; while for negative connectives, we have:

aNT & a, (1= a)+ a, (a—=>T)e T, (L—=a)eT,

(@=(BAY) e @a=B)A(a=7), (@VB)=7) o (@=>7)AB—7),
where a — /3 stands for both a\# and 3/a.

We stipulate that polarity is reversed on the left hand side of implications. For
instance, the V on the left-hand side of — in the last equivalence is considered
negative.

Since connectives V, A, - have units L, T, 1 respectively, we will adopt a natural
convention: Sy V-V B, (resp. B1 A+ A Bm and B; -+ - B,,) stands for L (resp. T
and 1) if m = 0.
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2.3. Structural rules. Figure 2 presents some structural rules. They are described
by using three types of metavariables:

e metavariables which stand for formulas: a, 3,7, ...
e those for sequences of formulas: I'; A, 3, ...
e those for stoups (i.e., for either the empty set or a formula): II.

An instance of the contraction rule (c) is for example
pAg0,rv1rvl, p/qg=
PAg0, rV1, p/g=

which is obtained by instantiating I' by the sequence p A ¢, 0 of concrete formulas,
a by the concrete formula r V 1, A by p/q, and II by the empty set. Therefore,
(c) represents (or specializes to) many rules, so in essence it should be called a
metarule. In practice, the distinction between metarules and rules is understood
implicitly and both are refereed to as rules.

Note that the following is not an instance of (c)

pAq,0, rVvV1s,rVis, p/g=
pAg0, 7V 1s, p/g=

but is an instance of (seq-¢) with instantiation of ¥ by the concrete sequence rV1, s.
Hence (¢) and (seq-c) are different rules, even though they have the same strength
in presence of the exchange rule (e). Similar distinctions may be observed on the
right hand side of a sequent. It is instructive to think about the difference among
r=p L= L=1

— 7 (wl

a,Fﬁﬁ(w) a, ' = (w2) a,FﬁH(wg)
The rule (wl) may be applied only when there is a formula on the RHS, while (w2)
only when the RHS is empty; (w3) may be applied in both cases.

There are also structural rules like (min) which have more than one premise.

So, in general a structural rule is any rule of the form (n > 0)

Yi=v -+ YT,=VY, )
T():}‘I’o

where each Y; is a specific sequence of metavariables (allowed to be of both types:
metavariables for formulas or for sequences of formulas), and each ¥; is either
empty, a metavariable for formulas («), or a metavariable for stoups (II). T; = ¥,
with ¢ = 0,...,n are called metasequents.

Given a set R of structural rules, we denote by FLg the system obtained from FL

by adding the rules in R, and by Fgf  the associated consequence relation; often
R

we simply write gy, 5.

Two rules (ro) and (r1) are equivalent (in FL) if the relations Frr,, | and Fpr,,
coincide. In other words, (ry) and (r;) are equivalent when the conclusion of (r)
(and resp. of (ry)) is derivable from its premises in FL(, ) (resp. FL.). The
definition naturally extends to sets of rules.

2.4. Algebraic semantics. The system FL is algebraizable and its algebraic se-
mantics is the class of pointed residuated lattices, also known as FL-algebras.

A residuated lattice is an algebra A = (A,A,V,-,\,/,1), such that (4,A,V) is a
lattice, (A4,-,1) is a monoid and for all a,b,c € A,

a-b<ciff b<a\ciff a <c/b.
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Nonanalytic rules:

NLA=1 (i) r= (0) F,a,a,A:>H()
La,A=TI ! T=a "’ La,A=T1I ¢
Lo, 5,A =10 La,A=TI a,...,a=>pf

I,8,a,A=>TI () To,a A=l (exp) Y (knot™)
———

n

Analytic rules:

0,5, 5,A =10 Il = I,SL,A=T T,5,A=T1
ry AT (009 (we) T,%,%,A = 1 (min)
Y = F, A=T1I {Fa Eiu tey EimaA = H}il,...7im€{17...,n}

NS T NS (anl-knoty,)

F1cUrE 2. Examples of Structural Rules

We refer to the last property as residuation.

An FL-algebra is an expansion of a residuated lattice with an additional constant
element 0, namely an algebra A = (4,A,V,-,\,/,1,0), such that (4,A,V,-,\,/,1)
is a residuated lattice. In residuated lattices and FL-algebras, we will write a < b
instead of a = a A b (or equivalently, a V b = b). Note that a = b is equivalent to
1 <a\bAb\a.

The classes RL and FL of residuated lattices and FL-algebras, respectively, can be
defined by equations. Consequently, they are wvarieties, namely classes of algebras
closed under subalgebras, homomorphic images and direct products.

Given a class K of FL-algebras, we say that the equation s = t is a semantical
consequence of a set of equations F relative to K, in symbols

EkFks=t,

if for every algebra A € K and every valuation f into A, if f(u) = f(v), for all
(u=wv) € E, then f(s) = f(t). Clearly, = is a consequence relation on the set of
equations.

All three relations Fpy', Frr, and |=p_ are equivalent; see [13] and [12]. This is
also known as the algebraization of FL. Identifying terms of residuated lattices and
propositional formulas of FL, we can give translations between sequents, formulas

and equations as follows. Given a sequent ag,...,a, = «a, the corresponding
equation and formula are a; - ... a, < @ and (a1 -...-ap)\a; for aq,...,q, = we
have a1 - ... a, <0 and (a7 - ... - a,)\0. To a formula «, we associate = « and

1 < a. Finally, to an equation s = ¢ we correspond the formula s\t A t\s and the
sequent = s\t At\s. (To the equation s <t we can associate the formula s\t and
the sequent s = t.)

In view of the algebraization, we have that for a set of sequents S U {s},

S8 s iff [S] L e(s)

where £(s) is the equation corresponding to s. Also, for every set of equations
EuU{e}
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E ':FL e iff S[E] '—;eg S(e’:‘)
where s(e) is the sequent corresponding to .

FL-algebras with bounded lattice reduct are called bounded and the bounds
(L, T) are added to the language. The corresponding class FL, of algebras is the
equivalent algebraic semantics of FL . The existence of bounds excludes interesting
algebras, like lattice-ordered groups.

2.5. Interpretation of structural rules. To avoid confusion between the con-
nectives of our language and the connectives of classical logic, we denote the latter
by and and =. Recall that a quasiequation is a strict universal Horn first-order
formula of the form

(q) g1 and ... and g, = ¢y,

where €y, . .., &, are equations. ¢1,...,&, are the premises and &g is the conclusion.
An FL-algebra A satisfies (q) if {e1,...,en} F{a} €0- Two quasiequations (¢;) and
(g2) are equivalent if they are satisfied by the same class of FL-algebras.

We now introduce a class of quasiequations corresponding to the structural rules.

Definition 2.2. A quasiequation e; and ... and g, = ¢ is said to be structural
if each ¢; (0 <7 < n) is an inequation ¢ < u where ¢ is a (possibly empty) product
of variables and w is either a variable or 0.

Every structural rule can be interpreted by a structural quasiequation as follows.
Let T be a sequence of metavariables, and ¥ either empty, a metavariable « for
formulas, or II for stoups. Given a fixed bijection between the denumerable sets of
variables and metavariables, we define the interpretation Y*® of Y as the term in
the language of FL obtained by replacing the metavariables by their corresponding
variables and comma by the connective - (fusion). For example, if T = o, T, 3,T,
then Y* = zyzy. The interpretation (T = ¥)® of a metasequent T = ¥ is defined
to be T* <0 if ¥ is empty, Y* < a®,if U =a, and Y* <II°®, if ¥ =1I.

The interpretation of a structural rule (let s, s1,..., s, be metasequents)

S1 e Sn

5 (r)
is defined to be the structural quasiequation
(r®) st and ... and s, = s°.

For a set R of structural rules, we define R®* = {(r®) : (r) € R}.

Notice that the interpretation disregards the distinction between matavariables
for formulas and those for sequences of formulas. Hence there is some freedom when
reading back a structural rule from a given structural quasiequation.

Given a set () of quasiequations, FLgy will denote the class of all FL-algebras
that satisfy @); clearly FLg is a quasi-variety. It follows from the algebraization
and from general considerations on the equivalence of consequence relations (see
Proposition 7.4 of [23]) that the relations Fgf ~and |=p,, are equivalent. In
particular, for a set of sequents S U {s} and a set R of structural rules,

Skgr, s iff e[S] Fr,. e(s)
where £(s) is the equation corresponding to s.

We use similar concepts and notations for FL* and its extensions with structural
rules.
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Class Equation Name Structural rule
Ny zr <z expansion (exp)
N zy < yx exchange (e)
x<1 left weakening (1)
0<z right weakening (0)
x < zx contraction (c)
" <z™ knotted (n,m > 0) (knot?,)
xA-x <0 weak contraction (we)
P 1<zV-z excluded middle none (Prop. 7.3)
1< (z\y) V (y\z) prelinearity none (Prop. 7.3)
N3 z(z\y) =z Ny = (y/x)z divisibility none (Prop. 7.3)
rA@yVz)<(xAy)V(zAz) distributivity none (Cor. 7.4)
Ps 1<~z V-z weak excluded middle | none (Prop. 7.3)

F1GURE 3. Some Known Equations

3. EQUATIONS AND STRUCTURAL RULES

A substructural logic is by definition an extension of FL with axioms. However,
if one simply adds an axiom to FL, one easily loses cut-elimination, the raison
d’étre of proof theory. Hence to apply proof theoretic techniques to substructural
logics, one needs to structuralize axioms, namely transform axioms into structural
rules. In algebraic terms, this corresponds to the transformation of equations into
structural quasiequations. It is a crucial step when proving that some equations
are preserved under MacNeille completions.

In this section, we investigate which axioms can be structuralized, or equivalently,
which equations can be transformed into structural quasiequations.

3.1. Substructural hierarchy. To address this problem systematically, we intro-
duce below a hierarchy (P,,N,) on the set of terms of FL, which is analogous
to the arithmetical hierarchy (¥,,II,). Our hierarchy, introduced in [8] for the
commutative case, is based on polarities, see Section 2.2.

Definition 3.1. For each n > 0, the sets P,, \,, of terms are defined as follows:

(0) Py = Np = the set of variables.

(P1) 1,1 and all terms ¢ € N,, belong to Pp1.
(P2) If t,u € Ppy1, then t Vu,t-u € Ppyq-
(N1) 0, T and all terms t € P,, belong to N, 1.
(N2)

(N3) If t € Ppy1 and u € Nyi1, then t\u,u/t € Npy1.

Symbolically, we may then write

Pni1 = (Nn>V,H and NVpy1 = (P, U {0}>/\,7’n+ﬁ

namely P, is the set generated from N, by means of finite (possibly empty)
joins and products, and N,y is generated by P, U{0} by means of finite (possibly
empty) meets and divisions with denominators from P,,11.

By residuation, any equation ¢ can be written as 1 < ¢. We say that £ belongs
to Pn (N, resp.) if t does.
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4 4
P N
P1 M

Po Mo

F1GURE 4. The Substructural Hierarchy

Figure 3 classifies some known equations. In terms of logic, they correspond to
axioms; for instance, weak contraction and prelinearity correspond to the axioms
—(a A na) and (a\B) V (B\«a), respectively (see Section 2.4).

Proposition 3.2.
(1) Ewvery term belongs to some P, and N,,.
(2) P, C Pny1 and N,, C Nyt for every n.

Hence the classes P,, N, constitute a hierarchy as depicted in Figure 4, which
we call the substructural hierarchy.

Terms in each class admit the following normal forms.
Lemma 3.3.

(P) Ift € Ppy1, then t is equivalent to L or uy V -+ -V U, where each u; is a
product of terms in N,,.

(N) Ift € Ny, then t is equivalent to T or N\, .., li\ui/ri, where each u; is
either 0 or a term in P, and each l; and r; are products of terms in N,,.

Proof. We will prove the lemma by simultaneous induction of the two statements.

Statement (P) is clear for ¢ = 1. The case t = 1 is a special case for m = 1 and
uy the empty product. If (P) holds for ¢,u € P11, then it clearly holds for ¢V u.
For t - u, we use the fact that multiplication distributes over joins.

Statement (N) is cleat for t = T. For ¢ = 0 we take m = 1,1, = r; = 1 and
uy = 0. If (N) holds for ¢,u € N, 11, then it clearly holds for ¢t Au. If t € P,y and
u € N,p1, we know that ¢t = ¢; V -+ V t,,, for t; a product of terms in A,,, where
m = 0 yields the empty join ¢ = L. We have t\u = (t; V -+ V t,)\u = (t1\u) A
-+ A (tm\u). Moreover, by the induction hypothesis, for all j € {1,...,m}, t;\u =
ti\(Ai<ici li\ui/ri) = Ni<icp ti\(li\ui/m:) = Ny <;< (litj)\ui/ri; the empty meet
T is obtained for k = 0. d

As a consequence of the above lemma, every equation £ in N> is equivalent to
a finite set NF'(e) of equations of the form ¢y ---t,, < u where u = 0 or u; V
-+ V uyp with each u; a product of variables. Furthermore, each ¢; is of the form
Ai<j<nli\vj/rj, where v; = 0 or a variable, and I; and r; are products of variables.
We call NF(g) the normal form of .

In the sequel, we frequently use the following lemma.
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Lemma 3.4. A quasiequation €1 and ... and g, = t1 -+ - t,, < u is equivalent to
either one of

egrand ... ande, andu < xg =ty tm < 2o and
erand ... ande, and z; <ty and ... and z,,, <t,, = x1 - -, < u,
where xg, ..., T, are fresh variables.

Proof. We will prove the equivalence of the first two quasiequations. Assume the
premises of the second equation. Then the first entails ¢; - - - ¢,,, < u. Since u < g
by assumption, we have tq - - - t,,, < xp.

To show the converse, just observe that the second quasiequation with zg in-
stantiated by u entails the first. a

3.2. Nz-equations and structural rules. We show that the equations in N5
correspond to structural quasiequations, and hence to structural rules. Our proof
is constructive and provides a method to generate those quasiequations (see also the
corresponding result in [8] for Hilbert axioms over FL¢ ). The converse direction,
however, does not hold as not all structural quasiequations correspond to equations
(Proposition 3.7). We identify a large class of structural quasiequations (N2 -solvable
quasiequations) which correspond to As-equations. This class includes one-variable
quasiequations and pivotal ones.

Theorem 3.5. Every equation in N> is equivalent to a finite set of structural
quastequations.

Proof. Let & be an equation in N5 and let ty - --t,, < u € NF(g). By Lemma 3.4,
it is equivalent to quasiequation

r1 <tyand --- and z,,, <t,, = 1Ty < U,

where z1,..., 2, are fresh variables. Since each t; is of the form A, ;. l;\v;/r;,
x; < t; can be replaced with n premises l1z;71 < vy,...,lh,zirn < v,. We apply
this replacement to all z; < ¢;. If u is 0, then the resulting quasiequation is already
structural. Otherwise, u = u1V---Vug. We replace the conclusion by z1 - - -z, < xg
and add k premises u; < zg, ..., up < xo with zg a fresh variable. The resulting
quasiequation is structural, and is equivalent to the original one by Lemma 3.4. O

Example 3.6. Using the algorithm contained in the proof of the theorem above,
the weak contraction axiom —(a A —a) is turned into an equivalent structural rule.
Indeed, it corresponds to the equation z A =2 < 0 and is successively transformed
as follows:

— z<zxA—-x= 2z2<0,

— z<zxand z < —x = 2 <0,

— z<zandzz2< 0= 2z <0.

From the last quasiequation, one can read back a structural rule

f=>a o=

8= (wcl).

To obtain the final form (wc) which preserves cut admissibility (see Figure 2), we
will apply another procedure (analytic completion); see Example 4.7.
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Having established that N3-equations correspond to structural quasiequations,
we may ask the converse question. Namely, do all structural quasiequations cor-
respond to Ns-equations? If not, do they correspond to equations at all? The
following proposition provides a negative answer to both questions.

Proposition 3.7. Not every structural quasiequation is equivalent to an equation.

Proof. Consider the quasiequation 1 < 0 = 22 < 0. We construct an FL-algebra
A = (AN V,\,/,1,0) which satisfies the quasiequation and a homomorphic im-
age of A which does not. Hence the quasiequation cannot be equivalent to an
equation.

As A we take the set {L1,a,1, T}, where 0 = a and L < a <1 < T. Now,
A is completely specified by defining multiplication. We define 1 as an absorbing
element for A (Lo =21 = 1), T as an absorbing element for {a,1, T} and a as an
absorbing element for {a,1}. It is easy to see that A is a residuated lattice (which
is denoted by T3[2]). Note that A satisfies the quasiequation vacuously.

Let B be the subalgebra of A on the set {L,1, T}, with 0 = 1. It is easy to see
that the map that sends a to 1 and fixes the other elements is a homomorphism
from A to B. However, B does not satisfy the quasiequation. O

Actually, the argument above can be repeated for many structural quasiequations
with single premise 1 < 0 and conclusion a non-valid equation.

We now give a sufficient condition for a structural quasiequation to be equivalent
to an equation.

Definition 3.8. A structural quasiequation
ty <wuyand ... and t, <u, =t < u,
is said to be solvable if there is a substitution o, called a solution, such that
(solvl) o(t;) < o(u;) for all 1 <7 <n, and
(solv2) t; < u; for all 1 < ¢ < n implies # < o(z) for every z occurring in ¢, and
o(xz) <z for x occurring in u (and o(x) =  for z occurring in both).
It is called Na-solvable if o(t) < o(u) is an Na-equation.

The structural quasiequation constructed in the proof of Theorem 3.5 is N>-
solvable; indeed, the substitution o given by o(z;) = t; for 1 <7 < m and o(zp) = u
provides a solution.

Proposition 3.9. Every solvable (resp. Ny-solvable) quasiequation is equivalent to
an equation (resp. Ns-equation,).

Proof. We will show that a structural quasiequation

(q) ti <wpand ... andt, <u, —=t<u

with solution o is equivalent to the equation

(€) o(t) < o(u).
Assume that (e) holds. Given the premises of (¢), we obtain z < o(z) when =
occurs in t and o(z) < z when v = z by condition (solv2). Therefore, (e) yields
t <o(t) <o(u) <u, the conclusion of (q).

Conversely, if (¢) holds, then every substitution instance holds, as well. So we
have

(c(q)) o(t1) <o(ur) and ... and o(t,) < o(u,) = o(t) < o(u).
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By condition (solvl), all the premises of (¢(¢)) hold, so we get o(t) < o(u). O
We present below two classes of N3-solvable quasiequations. Let us call a struc-

tural quasiequation

(q) ti <wgand ... andt, <u, = t<u

pivotal if one can find a variable z; (a pivot) in each ¢; which does not belong to

{u, ..., un}.

Proposition 3.10. Every pivotal quasiequation is Na-solvable.

Proof. If (q) is pivotal, it can be written as
liziry <wuypand ... and lyxpr, <u, = t < u,

where z1,...,, are not necessarily distinct, and may occur in some [;, r;, but not
in any u;. Define a substitution o by

o(x;) =x; A /\lj\’u]'/’l‘j
for 1 <i < n, where the meet Al;\u;/r; is built from those premises l;z;r; < u;
such that z; = x;. Let o(z) = z for other variables z. We then have o(y) <y for

every variable y and o(uy) = uy for every 1 < k < n.
Now o satisfies condition (solv1), since

O'(lk)O'(.I‘k)O'(Tk) S lk(lk\uk/rk)rk S U = O'(Uk)
As to (solv2), the premises of (¢) imply z; < Alj\u;/r; for 1 < i < n. Hence
x; = o(x;).
Finally, o(t) < o(u) clearly belongs to A3 since it is obtained by substituting
Ni-terms into the Nj-equation ¢ < u. O

Example 3.11. The quasiequation zy < & and 2%y < & = yz < y is pivotal with
the choice of pivot y for both premises. It admits a solution o(y) = yA(z\z)A(z*\z)
and is equivalent to the Ns-equation o(y)z < o(y).

The notion of pivotality is motivated by need of excluding premises with in-
evitable vicious cycles (cf. Definition 4.1) like

2y ¥ and Py = y < z.
\_/’

However, under certain conditions, some structural quasiequations are solvable even
with such cycles. We call a structural quasiequation one-variable if its premises
involve only one variable x and do not contain any of 1 <z, z <0 and 1 <0.

Proposition 3.12. Every one-variable quasiequation is N3-solvable.

Proof. Suppose that the quasiequation is of the form
" <wpand ... and 2™ <wup =t <u
where each wu; is either z or 0. By definition and since premises of the form z < x
are redundant, we may assume nq,...,ng > 2. We claim that the substitution
o) =2 A (ur /2™ DA A (ug /™)
gives rise to a solution.
To check (solvl) we need to verify that o(z)™ < o(u;) for 1 <i < k. If u; =0,

we have
o(z)™ < (ui/z™ D™t < = o(u;).
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On the other hand, if u; = x, we need to show that
o(x)™ <z A(ur/z™ ) A A (ug /2™,

We will show that the left hand side is less than or equal to each of the terms on
the right hand side.

As before, we have o(x)™ < (u;/x™~1)z™~! < wu; = x. Furthermore, for every
1 <r <k we have

a(a:)""a:"”_l < (ur/x"”_l)(a:/a:""_l)a:""_Qa:"T_l < U,.

So o(x)" < up/x" L
Finally, it is easy to see that condition (solv2) holds. O

To sum up, we have obtained:

Corollary 3.13. Every Na-equation is equivalent to a set of Na-solvable quasiequa-
tions. Conversely, every Ns-solvable quasiequation, such as pivotal and one-variable
ones, is equivalent to an N5-equation.

In terms of logic, the first statement means that every Ns-axiom can be struc-
turalized in the single-conclusion sequent calculus. The second statement can also
be rephrased accordingly.

In Section 4.3, we will show that an important class of structural quasiequations
(acyclic quasiequations that lack 0 < 1 premises) correspond to N>-equations.

We end this section by stating two open problems.

(1) Is there a structural quasiequation which corresponds to an equation but
not to an Ns-one? A possible candidate would be

l1<yandz<yandz<0= zy <y.
It admits two natural solutions o7 and os:

oi(x) = A0 o1(y)=yV1IV(zAO0)
o2(y) = yV1 o) =xA0A(yV1)

However, they both lead to N3-equations, and it is not easy to find a solu-
tion leading to an N3-equation.

(2) Is solvability a necessary and sufficient condition for a structural quasiequa-
tion to be equivalent to an equation? If not, is there any such condition?
(Here, we rule out a trivial counterexample like 1 < 0 = z < z, which is
not solvable but vacuously equivalent to z < z.)

4. ANALYTIC COMPLETION

We have described a procedure for transforming A5-axioms/equations into struc-
tural rules/quasiequations. However, this is not the end of the story, since not all
structural rules preserve cut admissibility once added to FL. For instance, (cut)
is not redundant in FL extended with the contraction rule (¢) in Fig. 2, see e.g.
[26]. We will see below that, among structural rules, acyclic ones can always be
transformed into equivalent analytic structural rules, which preserve (a stronger
form of) cut admissibility once added to FL. The transformation is also important
for a purely algebraic purpose: to show preservation of quasiequations by MacNeille
completions.

In Section 4.1, we describe a procedure (we refer to it as analytic completion)
by means of which any acyclic quasiequation is transformed into an analytic one.
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The procedure also applies to any set of structural quasiequations (without the
assumption of acyclicity) in presence of integrality < 1 (left weakening). Our
current procedure formalizes and extends to the non-commutative case the proce-
dure sketched in [8] (see also Section 6 of [26] for its origin). In Section 4.2, we
illustrate what analytic completion amounts to in terms of structural rules. As an
application of the analytic completion we show in Section 4.3 how to transform any
acyclic quasiequation that lacks 0 < 1 premises into an equivalent N>-equation of
a particularly simple form.

4.1. Analytic completion of structural quasiequations. Let us begin with
defining two classes of structural quasiequations.

Definition 4.1. Given a structural quasiequation (¢) we build its dependency graph
D(q) in the following way:

e The vertices of D(q) are the variables occurring in the premises (we do not
distinguish occurrences).

e There is a directed edge x — y in D(q) if and only if there is a premise of
the form lzr <y.

(¢) is said to be acyclic if the graph D(q) is acyclic (i.e., has no directed cycles or
loops).

The terminology naturally extends to structural rules as well. Also, suppose
that an Ns3-equation ¢ is transformed into a set @ of structural quasiequations by
the procedure described in the proof of Theorem 3.5. We say that ¢ is acyclic if all
quasiequations in @ are.

Definition 4.2. An analytic quasiequation is a structural quasiequation
ty <wupand ... and t, <u, = tog < ug

which satisfies the following conditions:

Linearity: tg is a (possibly empty) product of distinct variables 1, .. ., z,.

Separation: ug is either 0 or a variable xg which is distinct from z1,...,Zm.

Inclusion: Eacht; (1 <i < n)isa (possibly empty) product of some variables
from {z1,...,zm} (here repetition is allowed). Each u; (1 < i < n) is either
0 or ug.-

Given an acyclic quasiequation
(q0) erand ... and &, = &9
we transform it into an analytic one in two steps.
1. Restructuring. Suppose that e¢ is y1 - ym < u. Let zg,21,...,2Z, be fresh

variables which are distinct from each other. Depending on whether u is 0 or a
variable, we transform (go) into either

(q1) €1, senand z1 <y1, .y T < Yy = T1 .. Ty <0,
or
(¢2) €1,-.yénand 1 <y1,...,Tm <ymand u < zg = 71 ...27, < Tp-
(1) (or (g2)) is equivalent to (go) by Lemma 3.4, is acyclic since xo, . . .,z are

fresh, satisfies linearity, separation and
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Exclusion: none of x4, ..., z,, appears on the RHS of a premise, and zy does
not appear on the LHS of a premise.

2. Cutting. To obtain a quasiequation satisfying the inclusion condition, we
have to eliminate redundant variables from the premises, i.e., variables other than
Zg,...,Tm. We describe below how to remove such variables while preserving
acyclicity and exclusion.

Let z be any redundant variable. If z appears only in the RHS of premises, we
simply remove all such premises t; < z,...,t; < z from the quasiequation. The
resulting quasiequation is not weaker than the original since it has less premises.
To show that it is not stronger either, observe that premises ¢; < z in the original
quasiequation hold with instantiation of z by \/¢;, and the instantiation does not
affect the other premises and conclusion. Hence the original implies the new one.

If z appears only in the LHS of premises, say l1zr1 < uy,...,lgzre < ug, we
argue similarly, this time instantiating z by A l;\u;/r;.

Otherwise, z appears both in the RHS and LHS. Let S, = {s; <z:1<i <k}
and S; = {tj(z,...,2) < w; : 1 <j <1} be sets of premises which involve z on
the RHS and LHS, respectively (where all occurrences of z in ¢; are displayed). By
acyclicity, S, and S; are disjoint. We replace S, U .S; with

Se=A{tj(siy,-..y8i,) <uj:1<j<landiy,...,i, € {1,...,k}}

The resulting quasiequation implies the original one, in view of transitivity. To show
the converse, assume the premises of the new one. By instantiating z = \/ s;, all
premises in S, hold and all premises in .S; follow from S, since t;(\/ s;,...,V s;) =
Vti(siy,...,8:,) <uj. Hence the original quasiequation yields the conclusion.

Note that acyclicity and the exclusion condition are preserved and that the
number of redundant variables decreased by one. Repeating this process, we ob-
tain a quasiequation without any redundant variables satisfying exclusion. Such a
quasiequation satisfies the inclusion condition, so is analytic.

Note also that the assumption of acyclicity is redundant in presence of integrality
x < 1 (left weakening). Indeed, acyclicity was essentially used only in the last step
where we needed to ensure that S; and S, are disjoint. If an equation belongs to
both S; and S,., then it is of the form #(z, ..., z) < z, which can be safely removed
as it follows directly from integrality.

We have thus proved:

Theorem 4.3. Every acyclic quasiequation is equivalent to an analytic one. The
same holds for arbitrary structural quasiequations in presence of integrality r < 1.

4.2. Analytic completion of structural rules. We apply the procedure in the
previous section to acyclic structural rules (or any structural rule in presence of
left weakening) in order to transform them into analytic rules. The latter will be
shown in Section 5.5 to preserve (a stronger form of) cut admissibility once added to
FL. These results, together with the procedure contained in the proof of Theorem
3.5, allow for the automated definition of uniform cut-free sequent calculi for logics
semantically characterized by (acyclic) Na-equations over residuated lattices.

Any acyclic structural rule (r) can be interpreted as an acyclic quasiequation
(r®) (see Section 2.5). By applying to the latter the completion procedure in the
previous section we obtain an analytic quasiequation.
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In the sequel, we describe a precise way of reading back an analytic rule from
the analytic quasiequation.

Definition 4.4. A structural rule (r) is analytic if it has one of the forms

Yi= ... Yp=> I,)Ten,A=00 ... Y, A=10 (1)
T, %o, A = 10 "
Tl = AN Tn =
Yo = (r2)
and satisfies:
Linearity: Y, is a sequence of distinct metavariables Xq,...,%,, for se-
quences.
Separation: T and A are distinct metavariables for sequences different from
Y1,---,Xm, and IT is a metavariable for stoups.

Inclusion: Each T; (1 < i < n) is a sequence of some metavariables from
{%,..., %} (here repetition is allowed).

See Figure 2 for examples of analytic and nonanalytic rules.
We can associate to each analytic quasiequation

(9) erand ... and g, = &9

an analytic structural rule (¢°) as follows. Assume that g is of the form z; - - -z, <
To; the construction below subsumes the case of z1 ... z,, < 0. We associate to each
z; (1 <1i < m) ametavariable X; for sequences, and to xg three metavariables T'; A
and IT. If g; is of the form z;, -z, < 0 with 41,...,ix € {1,...,m}, let €7 be
the sequent X;,,...,%;, =, and if ¢; is of the form z;, ---w;, < mo, let €5 be
0,%,,...,%,,A = II. We thus obtain a structural rule

which is clearly analytic.

Conversely, it is clear that every analytic structural rule (r) arises from an ana-
lytic quasiequation (g) so that (r) = (¢°).

Notice that the above procedure associates a triple of metavariables ', A, I to
the RHS variable xg. This peculiarity, however, does not affect the meaning of the
quasiequation.

Lemma 4.5. If (q) is an analytic quasiequation, then (q°°) is equivalent to (q).
Proof. For simplicity, assume that (¢) is of the form

(q) t1 <0and ty < xg =ty < xp-

Then we obtain

(¢°®) t1 <0 and zitaz, < 2. = zitoz,r < 2z

We easily see that (¢°®) implies (¢) by instantiation z; = z, = 1, z. = g, and
conversely (¢) implies (¢°®) by zo = z/\ 2/ 2. O

Theorem 4.6. Every acyclic rule is equivalent to an analytic rule. The same holds
for arbitrary structural rules in presence of the left weakening rule (7).
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Example 4.7. The weak contraction axiom —(aA—a) is equivalent to the quasiequa-
tion z < x and zz < 0 = 2 < 0 (see Example 3.6), which is acyclic. The analytic
completion yields yy < 0 = y < 0, which corresponds to (wc) in Figure 2.

Example 4.8. Consider the expansion axiom (« - «)\«, which corresponds to the
equation zzx < z (that can also be seen as a structural quasiequation with no
premise). The restructuring step of the completion procedure yields

y<zandz<zandz <w=yz <w
and the cutting step gives
y<wand z <w=yz <w,
which corresponds to the mingle rule (min) in Figure 2.

For further examples, the knotted axioms a™\a™ (n,m > 0) in [16] are trans-
formed into analytic knotted rules (anl-knot?,) in Figure 2; the verification is left
to the reader.

4.3. From acyclic quasiequations to equations. As an application of the an-
alytic completion, we here show that acyclic (quasi)equations whose premises do
not imply 1 < 0 correspond to Ns-equations which are of rather simple form.

An equation is called analytic if it is of one of the following simple forms vy - - - v, <
t1V---Vip or vy - - vy < 0, where each v; is either a variable or of the form A 1;\0/r;
and each of [;, r;, t; is a product of variables.

Proposition 4.9. Any analytic quasiequation without premise 1 < 0 is N3-solvable,
and equivalent to an analytic equation.

Proof. Suppose that the conclusion is of the form z; - - - ,,, < xg (the case zy -+ x,, <
0 is similar). Let t; < g, ...,t, < xo be the premises having zo in the RHS, and
s1 <0,...,8; <0 others. By assumption each s; is not 1, hence one can pick up a
'pivot’ z; for some 1 < j < m (cf. Proposition 3.10) and write s; = l;x;7;. Define
a substitution o by

o(xg) = t1V--Vin,
o(xz;) = AL\O/r, for 1 <j<m,

where the meet A 7;\0/r; is built from those premises l;z;r; < 0 for which z; has
been chosen as pivot. It is easy to see that o is a solution, and o(z1)...0(zy) <

o(xp) is an analytic equation. O

Corollary 4.10. Let (q) be an acyclic quasiequation. If the premises of (q) do not
imply 1 <0, then (q) is equivalent to an analytic equation.

Proof. By Theorem 4.3, (q) is equivalent to an analytic quasiequation. If the com-
pletion procedure yields a premise 1 < 0, the original premises of (¢) already imply
it, because the procedure consists mainly of ‘cutting’ in the original premises. Oth-
erwise, (g) is equivalent to an N3-equation by Proposition 4.9. O

The same holds for acyclic equations (see Definition 4.1) as well. Hence our
analytic completion procedure is useful in a purely equational setting too, since it
transforms acyclic equations into simpler ones.
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5. CUuT-ELIMINATION AND MACNEILLE COMPLETION

Having described a way to obtain analytic structural rules/quasiequations, we
now turn to showing that they actually preserve admissibility of cut when added
to FL, and that they are preserved under MacNeille completions. These two facts
are to be proved along the same line of argument. The common part is captured in
the framework of residuated frames [11]. After giving an introduction to residuated
frames (Section 5.1), we prove that analytic rules are preserved by the construction
of the dual algebra from a given residuated frame (Section 5.2). This is one com-
mon part, in the argument for cut-elimination and preservation under MacNeille
completions. Another common part is the construction of a (quasi)homomorphism
into the dual algebra, which exists when the considered frame satisfies the logical
rules of FL (Section 5.3). Past this point, the argument branches. We first prove
preservation under MacNeille completions in Section 5.4, and then (a strong form
of) cut-elimination in Section 5.5.

5.1. Preliminaries on residuated frames. We introduce a slightly simplified
form of residuated frames; they correspond to ruz-frames of [11] up to some minor
differences.

Definition 5.1. A residuated frame is a structure of the form W = (W, W' N, o, ¢, ¢),
where

e W and W' are sets and N is a binary relation from W to W',
e (W,0,¢) is a monoid, e € W', and
e for all z,y € W and z € W’ there exist elements z\\z, z/y € W' such that

zoyNz < yNz\z < z N z/y.
We refer to the last property by saying that the relation N is nuclear.

Frames abstract both FL-algebras and the sequent calculus FL, as we will ob-
serve in the following examples.

Example 5.2. If A = (4,A,V,-,\,/,1,0) is an FL-algebra, then Wa = (4, 4, <,-,1,0)
is a residuated frame. Indeed, for z\\z = z\z and z/y = z/y we have that N is
nuclear by the residuation property.

Example 5.3. Let W be the free monoid over the set F'm of all formulas. The
elements of W are exactly the LHSs of FL sequents. We denote by o (also denoted
by comma) the operation of concatenation on W, by e the empty sequence (the
unit element of o), and by € the empty stoup.

Note that in the left logical rules of FL and in analytic structural rules some
sequents are of the form I', o, A = II, where I', A are sequences of formulas. We
want to think of u = I',_ A as a context applied to the formula « in order to
yield the sequence u(a) = ', A. The element u can be thought of as a unary
polynomial over W, such that the variable appears only once (linear polynomial).
Such unary, linear polynomials are also known as sections over W and we denote
the set they form by Sy .

We take W' = Sy x (Fm U {e}) and define the relation N by

x N (u,a) iff Fpr, (u(z) = a).
We have
zoy N (u,a) iff Fpr, u(zoy) = aiff 2 N (u(_oy),a) iff y N (u(z o), a).
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Therefore, N is a nuclear relation where the appropriate elements of W' are given
by
(u,a)/z = (u(-ox),a) and z\(u,a) = (u(z © ), a).
We denote the resulting residuated frame by Wgr,. We will often identify (- ,a)
with the element a of Fm U {e}.
Alternatively, one can define the relation N by

z N (u,a) iff u(z) = ais derivable in FL without using (cut).
The resulting structure is again a residuated frame, which we denote by W;fL

Given a residuated frame W = (W, W' N,o,e,¢), X, Y C W and Z C W', we
write x N Z for x N z, for all z € Z, and X N z for z N z, for all z € X. Let

XoY = {zoy:zeX,yeY},
X> = {yeW':X Ny},
Z9 = {yeW:yNZ}.

For x € W and z € W', we also write 2™ for {z}> and z< for {z}<. The map
given by vy (X) = X>< is a closure operator on the powerset P (W) which satisfies
IN(X)oyn(Y) Cyn(X oY), ie., a nucleus on P(W) (see [11]). Let

Xop ¥V = w(XeY),
XU, Y = w(XuY),
X\Y = {z:Xo{z}CY},
Y/X = {z:{z}o X CY}

Finally, we define

W+ = (’YN[IP(W)]) O, Uyn s Oyns \7 /7 ’YN({g})a €<])‘
W+ is called the dual algebra of W.

Lemma 5.4. [11] If W is a residuated frame, then W™ is a complete FL-algebra.

5.2. Preservation of analytic quasiequations. Lemma 5.4 provides us with
a canonical way of constructing a complete FL-algebra. We now prove that any
analytic quasiequation is preserved by the construction of the dual algebra. This is
a key step for proving both cut-elimination with structural rules and preservation
of quasiequations under MacNeille completions.

Let W be a residuated frame and (¢) an analytic quasiequation

(q) ty <wuqpand ... and t, <wu, = ty < ug,

where to = 1 -+ - &, and wg is either zg or 0. An assignment g for (¢) in W maps
each z; (1 <i<m) to g(x;) € W and xg to g(xo) € W', when ug = xg. It is well
defined because of the separation condition in Definition 4.2. It can be naturally
extended by

g('ru'rlk) = g(xil)o"'og(xik) ew
g(l) = « ew
g(0) = € ew’
where iy,...,ix € {1,...,m}. We can interpret all terms occurring in (¢) in this

way, due to the inclusion condition. We say that W satisfies (q) if g(t1) N g(uy),
-y 9(tn) N g(un) imply g(to) N g(ug) for every assignment g for (¢) in W.



ALGEBRAIC PROOF THEORY FOR SUBSTRUCTURAL LOGICS 21

Theorem 5.5. For any analytic quasiequation (q), W satisfies (q) if and only if
W satisfies it.

Proof. As to the ‘only-if’ direction, we first assume that (¢) is as above and ug = 0
(this entails u; = --- = u, = 0). Suppose that W satisfies (¢) and let f be a
valuation in W*. Thus f(z) € yn[P(W)] for every variable z.

Suppose that the assumptions t; < u1, ..., t, < u, hold under f in W, namely
ft:) C f(u;) for every 1 < i < n. Our goal is to show that f(to) C f(uo), i-e.,
flxy) o o f(xm) C €. So let us take ¢; € f(x1), ..., ¢n € f(xm) and prove
cpo---o¢y, Ne.

We define an assignment g by g(z1) = ¢1, ..., g(xm) = Cm. It is well defined
because of the linearity condition. By the assumption f(¢;) C f(u;) = €< and since
g(zr) € f(xr) for 1 < k < m, we have g(t;) N ¢, i.e., g(t;) N g(u;). Since this holds
for every 1 <i < n, we conclude g(to) N g(ug), i.e., ¢; o-+-0¢, N € as required.

When ug = zg, the argument is similar; this time we take cg € f(up)> in
addition to ¢; € f(x1), ..., ¢m € f(xm) and prove ¢; o ---0 ¢, N ¢o to conclude
f(to) C f(uo)®< = f(uo).

As to the ‘if’ direction, let ¢ be an assignment for (¢q). We define a valuation
fon WF by f(z) = yn(g(zr)) = g(zr)”< and f(uo) = g(uo)<. Since yn is a
nucleus, we have

fle1)o---o f(xn) C fuo) U yn(g(x1)o---0g(zn)) C f(uo)
iff g(a1) (zn) € f(uo)
) (zn) N g(uo)-

[e]

o) g
iﬁ' g(wl o-:-0gq
Similarly, we have f(t;) C f(u;) iff g(t;) N g(u;) for all premises t; < u;. Hence if
W satisfies (¢q), W also satisfies it. O

5.3. Gentzen frames. The dual algebra construction produces a complete FL-
algebra W from a given residuated frame W so that analytic quasiequations are
transferred. It remains to show that there exists a suitable (quasi)homomorphism f
into W+, provided that W satisfies rules of the sequent calculus FL. For ‘cut-free’
W, this quasihomomorphism is indeed the algebraic essence of cut-elimination.
When W further satisfies ‘cut,” f gives rise to an embedding associated to the
MacNeille completion.

We begin by making clear what it means for a frame to satisfy the rules of the
sequent calculus. We denote by £ the language of FL. An L-algebra is simply an
algebra over the language £ (it does not need to be an FL-algebra).

Definition 5.6. A Gentzen frame is a pair (W, A) where

e W= (W,W' N,o,e,¢) is a residuated frame, A is an L-algebra,

e the monoid (W, 0,¢) is generated by A,

e there is an injection of A into W' (under which we will identify A with a
subset of W'), and

e N satisfies the rules of GN (Figure 5) for alla,b € A, z,y € W and z € W'.
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tNa alNz

z N z (CUT) aNa (Id)
e oy esih o)
% (/L) % (/R)
bz AT (R

GGTNJ\?Z (ALE) % (ALr) % (AR)
Ty e S T LU
i) = (R) o (0  ZNE(oR)

FiGUurE 5. The system GN.

(W, A) is called an w-Genzen frame if A is complete (infinite joins and meets
exist), and in addition to the rules in Figure 5, N satisfies:

a; N z for somei €[ e Na; foralliel
L R
Nierai N z (AL) z N Nier ai (AR)
a; Nz foralliel xz N a; forsomeiel
L R
Vi a Nz (VL) tNV,_,a (VR)

A cut-free Gentzen frame (cut-free w-Gentzen frame, resp.) is defined in the
same way, but it is not stipulated to satisfy the (CUT) rule.

For example, the pairs (Wt,, L), where L is an FL algebra, and (WL, Fm) are
Gentzen frames, while (W;.fL, Fm) is a cut-free Gentzen frame.

Given two L-algebras A and B, a quasihomomorphism from A to B is a function
F: A— P(B) such that

cB € F(ea) for ¢ € {0,1},
F(a)xg F(b) C F(a*xab) for*e{,\,/,AV}

where X xg Y = {zxg ylz € X,y € YV} for any X, Y C B. When complete
L-algebras are concerned, we also require

(@) AFla) CF(Na), \/ Fla) € F(\/ ai),
i€l i€l i€l i€l
where \;c; Xi = {\;c;7i : 2; € X; for every i € I'}.
It is equivalent to the standard notion of homomorphism when F'(a) is a singleton
for every a € A.

In the current context, the main theorem of [11] reads as follows:
Theorem 5.7.
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(1) If (W, A) is a Gentzen frame, then f(a) = a< is a homomorphism from A
to R(W). Moreover, [ is an embedding when N is antisymmetric.
(2) If (W, A) is a cut-free Gentzen frame, then

F(a) ={X e yw[P(W)]:a € X Ca"}

is a quasihomomorphism from A to R(W).
(3) The same results hold for w-Gentzen frames and cut-free w-Gentzen frames,
respectively.

Proof. We refer to [11] for (1) and (2). As to (3), we prove (w), assuming that
(W, A) is a cut-free w-Gentzen frame. If (W, A) is in fact an w-Gentzen frame, we
have a®< = a9 so that F boils down to a homomorphism f(a) = a”.

As for the infinite meet, suppose that X; € F(a;), namely a; € X; C a3 holds
for all i € I. Our goal is to show that A\;.;a; € ;e Xi C (A ai)®

For each X;, let z € X7, i.e., X; C 29, Then we have in particular a; N z, and
hence by the rule (AL), A,c;ai N z. Since this holds for all z € X, we obtain
Nicrai € XP< = X;, and thus Nicr @i € N;jer Xi- On the other hand, for any
x € (;er Xi, we have z € a, ie., N a; for any i € I. Hence by the rule (AR),
x N A\;c;ai, and so x € (A\;c;a;)<. This proves our goal.

As for the infinite join, we again suppose that a; € X; C a holds for all i € I.
Our goal is to show that \/,.; a; € (U;c; Xi)"< C (V;epai)9.

Let z € (U;e; X4)®. Then X; N zfor any i € I, and in particular, a; N z. Hence
by the rule (\/L), \/;c;a: € z9. So we have \/,.; a; € (U;c; Xi)®<. On the other
hand, any = € |J;o; X; belongs to X; for some i € I. Hence by the assumption
and the rule (\/R), we have z N \/,;.; a;. This shows that (;c; Xi) C (Vieyai)<,
from which our goal follows easily. O

el

5.4. Preservation under MacNeille completions. We already have enough
facts to conclude that analytic quasiequations are preserved under MacNeille com-
pletions. But before that, let us observe a general fact that closure under comple-
tions is equivalent to conservativity with respect to an infinitary extension.

Definition 5.8. Let R be a set of structural rules. We say that FL% is a conser-
vative extension (atomic conservative extension, resp.) of FLg if S FrLy s implies
S FrL, 8, whenever S U {s} is a set of sequents in the language of FL (resp. a set
sequents that consist of atomic formulas).

Recall that a completion of an algebra A is a complete algebra into which A is
embeddable. We say that a class IC of algebras is closed under completions if every
A € K has a completion in it. The following is a general fact, although we only
state it for FL with structural rules.

Proposition 5.9. FL} is a conservative extension of FLg if and only if FLge is
closed under completions.

Proof. The ‘if” direction is obvious in view of the correspondence between gy,
and =fL ., and between Frry and |:FL“é., where FL}. consists of the complete
algebras in FLg..

To show the converse, let A be an algebra in FLg.. Consider the absolutely
free algebras Fm(A) and Fm®(A) that consist of finitary and infinitary terms over
A, respectively. Let f be the canonical homomorphism f : Fm(A4) — A, and



24 AGATA CIABATTONI, NIKOLAOS GALATOS, AND KAZUSHIGE TERUI

T={te Fm(A):1<a f(t)}. The relation = over Fm®(A) given by
t=u iﬁ'Tl—FLuét(—)u

is a congruence on Fm®“(A), and the quotient Fm®(A)/= is a complete algebra in
FL%.. Moreover, the map g : A — Fm®(A)/= sending a € A to the equivalence
class [a] containing a is an embedding. In particular, we have for any a,b € A,

[a] = [b] iff T "FL‘}*’% a+b
iff T l_FLR a+b
iff a=0,

by the conservativity of FL% over FLp. O

Completions of a given algebra are not unique in general. Among those, our
frame-based construction yields a particular one.

Definition 5.10. Given an FL-algebra A, its MacNeille completion is the algebra
W7 (see Example 5.2).

This terminology extends the situation on the underlying lattices. As we have
seen in Theorem 5.7, there is an embedding from A to Wj. A characteristic of
MacNeille completions is that they preserve all existing joins and meets. Hence it
is useful when proving the completeness theorem for predicate substructural logics
with the associated classes of complete FL-algebras (see [21]).

A direct consequence of Theorem 5.5 is the following:

Theorem 5.11. Analytic quasiequations are preserved under MacNeille comple-
tions. Namely, if A satisfies an analytic quasiequation (q), then WX also satisfies

(q)

Corollary 5.12. If E is a set of acyclic Ns-equations, the variety FLg of FL-
algebras satisfying E is closed under MacNeille completions, and FLY, is a conser-
vative extension of FLg.

5.5. Cut-elimination with atomic axioms. Turning to the proof-theoretic side,
we will give an algebraic proof of cut-elimination for FL extended with a set R of
analytic structural rules. Actually, we prove a stronger form of cut-elimination for
FL%,, which is often called cut-elimination with atomic axioms [6] and also called
modular cut-elimination in [10].

Definition 5.13. A set S of sequents is said to be elementary if S consists of
atomic formulas and is closed under cuts: if S contains ¥ = p and ', p, A = 1I, it
also contains I', ¥, A = II.

A sequent calculus admits modular cut-elimination if for any elementary set S
and a sequent s, if s is derivable from S, then it is also derivable from S without
using (cut).

An important consequence of modular cut-elimination is atomic conservativity
with respect to the infinitary extension.

Lemma 5.14. Let R be a set of structural rules. If FL% enjoys modular cut-
elimination, then FL% is an atomic conservative extension of FLpg.
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Proof. Let S be a set of atomic sequents and suppose that S Fpre s. Then we
have Sy I—FL;:2 s, where Sy is the closure of S under cuts; note that Sy is elementary.
By modular cut-elimination s has a cut-free derivation from Sp. Such a derivation
does not involve a logical inference rule. Hence Sy Frr, s. Since all sequents in Sy
are derivable from S, we conclude S L, s. O

We now prove modular cut-elimination for FL%, where R is a set of analytic
rules. The first thing to do is to build a suitable frame.

Denote by Fm® the absolutely free (infinitary) algebra of FL*-formulas. Given a
set S of atomic sequents closed under cuts, we define a frame Wg g = (W, W', N, 0,¢,€)
as follows:

e (W, o0,¢) is the free monoid generated by F'm,
e W'=Sw x (Fm” U{e}),
e XN (C)NI)iff C = (T',,A) and T, ¥, A = II is cut-free derivable from S
in FL.
For the next lemma, our specific way of reading back a structural rule (¢°) from
an analytic quasiequation (q) is crucial.

Lemma 5.15. (Wg s,Fm") is a cut-free w-Gentzen frame satisfying the quasiequa-
tions in R°®.

Proof. It is routine to verify that Wg s is a cut-free w-Gentzen frame (see Ex-
ample 5.3). Let (r) € R. As observed in Section 4.2, it arises from an analytic
quasiequation (q) so that (r) = (¢°).
Let g be an assignment for (¢) in Wg g such that g(z1) = Z1,...,9(zm) = T,
and g(z¢) = ((T', ., A),II) when ug = xo. Then g(to) N g(uo) holds iff
e [''Yy,...,%,,,A = Il is cut-free derivable from S in FL% (when ug = zy);
e ¥y,..., %, = is cut-free derivable from S in FL%, (when ug = 0).

Notice that the latter two exactly match the conclusion of (r). We have a similar
correspondence between premises of (¢) and (r). Since the rule (r) is available in
FL%, we see that Wg g satisfies (g).

Now (gq) is equivalent to (¢°®) by Lemma 4.5, which is in turn equivalent to (r®)
by definition. Therefore Wg g satisfies (r®). O

Hence WE’S is a complete FL-algebra satisfying R® by Theorem 5.5.
Let

Sp) ={T:T'=pe Stu{p}
and define a valuation f on W}S by f(p) = S(p)>< for every atomic formula

p and homomorphically extending it to all formulas. Given a sequent s of the
form ay,...,a, = B (resp. ai,...,q, = ), we say that s is true under f if

flar) oqy =m0y flam) C f(B) (resp. f(a1) oyy -+ 0yy flam) C €9).

Lemma 5.16. For any formula o, a € f(a) C a<. Moreover, all sequents in S
are true under f.

Proof. For every propositional variable p, we have p € f(p) C p< by definition of f,
i.e., f(p) € F(p). Since the function F(a) = {X € yw[P(W)]:a € X Ca}isa
quasi-homomorphism from Fm® to R(Wg,s) by Theorem 5.7, we can inductively
show that f(a) € F(a), ie., a € f(a) C a< for every formula a.
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To verify the second claim for a sequent of the form py,...,p, = ¢in S, let 'y €
S(p1),...,Tn € S(pn). Since S is closed under cuts, we have I'y,..., T, = ¢ in S.
This shows that S(p1)o---0S(ps) C S(g), and hence f(p1) oy, -0y f(Pn) C f(q)-

For a sequent of the form py,...,p, = in S, let Iy € S(p1),...,Tn € S(pn).
Since I'y,...,T', = is cut-free provable, we have S(p;)o---0S5(p,) C €9, and hence

f(p1) Ovn """ Oy f(pn) C £(0). g
We are now ready to prove:

Theorem 5.17. If R is a set of analytic structural rules, FLE admits modular
cut-elimination.

Proof. Suppose that a sequent s of the form ay,...,a,, = f is derivable from an
elementary set S in FL} (the case of ay,...,a,, = is similar). Since all sequents
in S are true under f by Lemma 5.16 and WRS validates all inference rules of FL%
including (cut) by Lemma 5.15 and Theorem 5.5, we have f(ay)o---of(am) C f(B).
Hence

ala"'aamEf(al)o"'of(am)gf(ﬂ)gﬂqa

which means that s is cut-free derivable from S. O

The above theorem subsumes (modular) cut-elimination for FLg.

6. CLOSING THE CYCLE

Our achievements so far may be illustrated as follows:

Acyclicity

Theorem 4.3
Analyticity
Theorem 5.17 Theorem 5.11
Modular Cut—Eliminati0n| ‘ MacNeille completion
Lemma 5.14 Proposition 5.9

‘ Atomic Conservativity ‘

Here we close the cycle by showing that atomic conservativity implies analyticity,
that is if FL is an atomic conservative extension of FLg then R is equivalent to
a set of analytic structural rules. Since the argument below is of proof-theoretic
nature, we first explain the idea in terms of structural rules.

Example 6.1. Consider the rule
o,f=p (we)
B,a=p wel,
Let Ry be a set of structural rules and R = Ry U {(we)}. Assume that FL%, is an

atomic conservative extension of FLg. Although (we) is not acyclic, we claim that
it is equivalent to an analytic rule in presence of the other rules in Ry.
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First of all, note that (we) is equivalent to

a,B=>pF y=>p B=6
v, =6

(we')

by the restructuring step in Section 4.1 (see also Lemma 3.4). Let a,c,d be
propositional variables, and b the infinitary formula \/,.,a"c. Let S be the set

{a™, ¢ = d:0 < k}. Now, observe that we have
FrLe G,,B = B, FrLe ¢ = B, and S FrLe l_) = d,

corresponding to the three premises of (we'). Hence we have S Frry c,a = d
by (we'). By the assumption of atomic conservativity, S Fpr, ¢,a = d. Since a
derivation in FLp is always finite, there must be an n such that ¢,a = d is derivable
from S, = {a®), c=d:0 <k <n}.

Now we claim that R is equivalent to Ry with the following rule:

(we")

It is clear that (we') implies (we') because the premises of the latter imply all the
premises of the former. On the other hand, we have a derivation of the conclusion
of (we") from the premises in FLg; it can be easily obtained from the derivation
of ¢,a = d from S,,. This means that R implies (we').

Notice that (we') is acyclic, hence it can be transformed into an equivalent
analytic rule by the procedure described in Section 4.

v=20 ay=86 aPy=45 ... oM y=46
Y, =4

The above argument can be generalized. Hence we have:

Theorem 6.2. Let R be a set of structural rules. If FL% is an atomic conservative
extension of FLg, then R is equivalent to a set of analytic structural rules.

Proof. We argue in terms of algebra. Let ) be a set of structural quasiequations.
We prove that @ is equivalent to a set of analytic quasiequations under the assump-
tion of atomic conservativity: E [y € implies £ |=p, ¢ whenever EU {e} is a
set of equations of the form y; ... ym <yo or y1...ym < 0.

Given a non-analytic quasiequation in ), we apply the analytic completion pro-
cedure in Section 4.1 with slight modifications. First, we can apply the restructuring
step without any problem to obtain a quasiequation (q). As to the cutting step, let
z be a redundant variable in (¢) and suppose that z occurs both in the RHS and
LHS of premises (otherwise the procedure is just as before).

We classify the premises of (¢) into four groups:

Sy ={s; <z:1<1i <k}, which have z only in the RHS.
St ={tj(z,...,2) <u;:1<j <}, which have z only in the LHS.
S =A{vj(z,...,2) <z:1<j <m}, which have z in both.
S5, the others.
Let T be the least set of terms such that
e s, €T for1<i<Ek,
o if wy,...,w, €T, then v;j(wy,...,w,) €T for 1 <j <m.
Let also

S ={tj(w,...,wy) <u;:1<j <, wy,...,w, € T}
We claim that SjU S, [=rLy €, where € is the conclusion of (g). To show this, we
consider the instantiation z = \/ T, which makes sense in the theory of complete
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FL-algebras. All equations in S, hold under this instantiation and those in S,, hold

too, because
vj(\/T,...,\/T) = \/Uj(wl,...,wm) < \/T,

with wy,...,w,, € T. Moreover, the equations in S; under the instantiation follow
from S]. Since z is a redundant variable which does not appear in the conclusion,
this shows that S; U S, ':FLE e. By atomic conservativity S; U S, Fri, €, and by
compactness, there is a finite subset S;' C S; such that S;'US, |=fL, €. Let (¢') be
the quasiequation corresponding to the latter consequence relation. So, @ implies
(q')-

Conversely (¢') implies (q) by transitivity. Hence one can replace (¢) in @ by
(¢'). The number of redundant variables is decreased by one. Hence by repeating
this process, we obtain an analytic quasiequation equivalent to (g). a

Let us summarize what we have achieved:

Theorem 6.3.

(1) Every Ns-aziom/equation is equivalent to a set of structural rules/quasiequations.
(2) For any set R of structural rules, the following are equivalent:
e R is equivalent to a set of acyclic structural rules.
e R is equivalent to a set of analytic structural rules.
e R is equivalent to R' such that FL%, admits modular cut-elimination.
e R® is preserved under MacNeille completions.
e FL}, is a conservative extension of FLp.
If R implies left weakening (i), all the above hold.
(3) For any set E of Ns-equations, the following are equivalent:
e E is equivalent to a set of acyclic quasiequations.
o E is equivalent to a set of analytic quasiequations.
e The variety FLg is closed under MacNeille completions.
e FLg is closed under completions.
If E implies integrality x < 1, all the above hold.

It follows that modular cut-elimination is equivalent to closure under completions
as far as N> axioms/equations and structural rules/quasiequations are concerned.
Also notably, the MacNeille completion is a versatile construction for the subvari-
eties of FL defined by Ns-equations: if such a subvariety is closed under completions,
it is necessarily closed under MacNeille completions.

7. LIMITATIONS OF STRUCTURAL RULES

As shown by Theorem 3.5, each AMs-equation can be transformed into equivalent
structural quasiequations and hence into single-conclusion structural rules. This
shows what structural rules can express. In this section we address the converse
problem, namely to identify which properties (equations over residuated lattices,
or equivalently, Hilbert axioms over the language of FL ) cannot be expressed by
structural rules. We also show some limitations of (modular) cut-elimination and
the MacNeille completion.

We begin by proving the existence of a structural rule/Ns-equation which does
not satisfy any of the conditions in (2) and (3) of Theorem 6.3. Our proof below
exhibits a real interplay between proof-theoretic and algebraic arguments.

Proposition 7.1. Not all Na-equations are equivalent to acyclic quasiequations.
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Proof. Consider equation y/y < y\y and denote it by . It is easily seen to be
equivalent to

(we®) ry <y = yx <y,

which is an interpretation of the rule (we) in Example 6.1. If (we) is equivalent to
an acyclic rule, then FL‘("W) is conservative over FL,.) by Theorem 6.3. Hence by

the argument in Example 6.1, (we) is equivalent to a rule of the form

y=6 ay=6 a? y=46 ... a™ y=4
v,a =6

(we”)

So, we have
{Pra<vinew}t R, gp <.

We will show that this is not the case, by exhibiting an algebra A in FL. and
elements a,b,c € A such that a™b < ¢ for all n € w, but ba £ c.

The equation ¢ is satisfied by all lattice-ordered groups, since y/y = yy=! =
1 =y 'y = y\y. We can take as A the totally ordered (-group based on the
free group on two generators, constructed in [5]; it is shown that A satisfies the
property: if 1 < 2™ < y, for all m € w, then 2™ < y lzy, for all m € w.
Since the f-group is based on the free group on two generators, it is not Abelian.
Moreover, since it is totally ordered there exist elements g,h € A with 1 < g,h
and g™ < h, for all m € w; otherwise the £-group would be archimedian, and every
totally ordered archimedean /-group is abelian. By the property of the constructed
(-group, we get g™ < h~lgh, namely ¢g™h ! < h7lg, for all m € w. Now, let
a=¢g>,b=h"' and c=h'g. We have a"b = ¢g*"h ' <h lg =¢, for all n € w;
but ¢ = h~'g < h~1g? = ba, because 1 < g, so ba £ c. O

Remark 7.2. The same holds for the system FL, . Since ¢-groups are not in FL,
we have to slightly modify the above argument. We consider the above ¢-group
and we add two new elements |, below every element, and T above every element.
Multiplication is extended so that T is an absorbing element for AU{T} and L is
an absorbing element for AU{T, L}. It is shown in [15] that this construction yields
an FL-algebra into which A embeds. Moreover, it is easy to see that it satisfies
y/y<y\y,as T/T=T\T=T=1/L=_1\L

The proposition below, which easily follows from our analytic completion, sheds
light on the expressive power of structural sequent rules over FL.

Proposition 7.3. Any structural rule (r) is either derivable in Gentzen’s LI or
derives in LI every formula (i.e., LI,y is contradictory).

Proof. We apply our analytic completion procedure to obtain, by Theorem 4.6,
an analytic rule (r') equivalent to (r) in LJ (that is always possible in presence
of the left weakening rule (i)). Two cases can arise. If (r') has no premises, any
formula is derivable in LJ extended with (') (and hence with (r)), as the LHS and
the RHS of the conclusion of (r') are disjoint. Otherwise, the conclusion of (') is
derivable from any of its premises by weakening, exchange and contraction due to
the separation and inclusion conditions of Definition 4.4. O

As a consequence, the preliniarity axiom (see Figure 3) cannot be expressed as a
single-conclusion structural rule, since it is neither derivable in LJ nor contradicts
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LJ. This formally justifies the use of hypersequent calculus in [3] for obtaining an
analytic calculus for Gédel logic (= intuitionistic logic + prelinearity).
Since prelinearity belongs to P», we have:

Corollary 7.4. Ny € Py. More precisely, there is an equation in Po which is not
equivalent to any equation in Ns.

This implies that the inclusions N5 C P3 and N3 C N3 are proper. It is left
open whether all inclusions in the substructural hierarchy (see Figure 4) are proper
or not.

Proposition 7.3 states that the expressive power of structural rules cannot go
beyond intuitionistic logic. The limitations of such rules are however stronger.
Indeed, as shown below, even among the properties which do hold in intuitionistic
logic (Heyting algebras), only some can be captured by structural sequent rules.

Proposition 7.5. No structural rule is equivalent to the distributivity aziom.

Proof. Let (q) be a structural quasiequation. Theorem 4.6 ensures that, in presence
of integrality z < 1, (q) is equivalent to a set @) of analytic quasiequations. By
Theorem 5.11, @ is preserved under MacNeille completions. Hence @) cannot be
equivalent to distributivity which is not preserved under MacNeille completions,
even in presence of integrality. To see this, consider a bounded distributive lattice
L whose MacNeille completion L is not distributive; such a lattice was constructed
in [7]. It easy to see that the ordinal sum L & {1} (obtained by adding a new top
element 1 to L) supports a residuated lattice structure, by defining multiplication as
zy = L, for z,y € L and setting 1 as the unit element. The MacNeille completion
of the integral distributive residuated lattice L @& {1} is clearly the ordinal sum
L @ {1}, which also fails to be distributive. O

Notice that distributivity belongs to A3. In contrast, most of “natural” struc-
tural rules which appear in the literature are As-solvable and thus can be expressed
by Ms-axioms. Hence we can reasonably claim that the expressive power of struc-
tural rules in standard single-conclusion sequent calculi is essentially limited to
No.

Having explored the level N3 rather in depth, our next target is P3. The com-
mutative case has already been studied in [8] from a proof-theoretic point of view.
It has been revealed that Psz-axioms (modulo a technical issue about weaken-
ing/integrality) correspond to structural rules in hypersequent calculus, a gener-
alization of sequent calculus whose additional machinery is basically adding one
more disjunction on top of sequents [2]. In our subsequent work, we will consider
the general noncommutative case and investigate also the algebraic aspects of Ps.
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