
GENERALIZED ORDINAL SUMS AND TRANSLATIONS

NIKOLAOS GALATOS

Abstract. We extend the lattice embedding of the axiomatic extensions of

the positive fragment of intuitionistic logic into the axiomatic extensions of
intuitionistic logic to the setting of substructural logics. Our approach is alge-
braic and uses residuated lattices, the algebraic models for substructural logics.

We generalize the notion of the ordinal sum of two residuated lattices and use
it to obtain embeddings between subvariety lattices of certain residuated lat-
tice varieties. As a special case we obtain the above mentioned embedding of
the subvariety lattice of Brouwerian algebras into an interval of the subvariety

lattice of Heyting algebras. We describe the embeddings both in model theo-
retic terms, focusing on the subdirectly irreducible algebras, and in syntactic
terms, by showing how to translate the equational bases of the varieties.

1. Introduction

It is well known that the subvariety lattice of Brouwerian algebras is properly
contained in the subvariety lattice of Heyting algebras. The exact connection is
given by the following result, essentially due to Jankov. Let CL denote classical
propositional logic, Int intuitionistic propositional logic, Int+ the positive ({0,¬}-
free) fragment of Int, and KC the logic of weak excluded middle, axiomatized
relative to intuitionistic logic by ¬p ∨ ¬¬p.

Theorem 1.1. [12] The lattice of axiomatic extensions of Int+ is isomorphic to
the interval [KC,CL] in the lattice of superintuitionistic logics.

Using the algebraization correspondence between superintuitionistic logics and
subvarieties of Heyting algebras, as well as between axiomatic extensions of Int+

and subvarieties of Brouwerian algebras (the varieties form algebraic semantics for
the corresponding logics), the above theorem can be restated as follows. We denote
by BA, Br, HA, and KC the varieties of Boolean algebras, Brouwerian algebras,
Heyting algebras and the subvariety of HA axiomatized by ¬x ∨ ¬¬x = 1, respec-
tively.

Theorem 1.2. The subvariety lattice of Br is isomorphic to the interval [BA,KC]
in the subvariety lattice of HA.

By adding a bottom element to a Brouwerian algebra A we obtain a Heyting
algebra 2 ⊕ A—the ordinal sum (see below) of the two-element Boolean algebra
and A; note that not all Heyting algebras are obtained in this way.

Let Br2 denote the variety generated by all Heyting algebras of the form 2⊕A,
where A ∈ Br; we will show that it is actually enough to consider only subdirectly
irreducible A’s. The following theorem partially explains Jankov’s result.
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Theorem 1.3. Br2 = KC.

Superintuitionistic logics, and their positive fragments, are special cases of sub-
structural logics. Also, (pointed) residuated lattices, the algebraic semantics of the
latter, generalize Heyting and Brouwerian algebras. In particular, a Brouwerian
algebra can be defined as an integral (x ≤ 1) commutative (xy = yx) residuated
lattice B = (B,∧,∨, ·,→, 1) that satisfies xy = x∧ y. Also, a Heyting algebra is an
integral commutative FLo-algebra B = (B,∧,∨, ·,→, 1, 0) that satisfies xy = x∧ y.

We will show that the above lattice embedding (viewed in the setting of logics
or varieties) is a spacial case of similar embeddings in the more general context
of substructural logics and residuated lattices. Note that the above embedding
was given in a model-theoretic/algebraic way, as well as in an axiomatic one (at
least for KC/KC). We show that the same is possible for all axiomatic exten-
sions/subvarieties in our general setting. In particular, we will show that the lat-
tice of integral and commutative residuated lattice varieties is isomorphic to the
interval [BA, ICRL2] in the subvariety lattice of FLw, where ICRL2 is generated by
all algebras of the form 2 ⊕ A, where A is an integral, commutative residuated
lattice. Moreover, we will show that ICRL2 is axiomatized relative to FLew by
¬x ∨ ¬¬x = 1. Jankov’s result then follows as a corollary. Our results also extend
to the non-commutative case.

The ordinal sum A⊕B of two integral residuated chains A, B can also be viewed
as A[B], the algebra obtained by replacing the identity element of A by B. (In
that sense the construction A[B], where A and B are not integral, can be viewed
as a generalization of the ordinal sum construction.) For example, totally ordered
product algebras can be thought of as 2[A], where A is the negative cone of a
totally ordered abelian group.

The construction also extends to the non-interal case. For example, standard
representable uninorm algebras (RU-algebras) are of the form T1[G], where G

is an abelian group and T1 is the unique non-integral 3-element (commutative)
FLo-algebra. In Theorem 6.10 we provide an axiomatization for this variety.

We consider, in general, similar constructions K[L], where K is an appropriate
FLo-algebra and L a residuated lattice. The congruence lattice of K[L] is closely
related to those of K and L. Moreover, the ‘operator’ K is functorial and commutes
with homomorphic images, subalgebras and ultraproducts. The paper makes crucial
use of the results in [6] and [5]. A partial preview of the results was given in [7].

2. Preliminaries

A residuated lattice is an algebra of the form A = (A,∧,∨, ·, \, /, 1) where
(A,∧,∨) is a lattice, (A, ·, 1) is a monoid and the following residuation property
holds for all x, y, z ∈ A

(res) xy ≤ z iff x ≤ z/y iff y ≤ x\z.

A residuated lattice is called commutative, if its monoid reduct is commutative;
i.e., if it satisfies the identity xy = yx. It is called integral, if its lattice reduct
has a top element and the latter coincides with the multiplicative identity 1; i.e.,
if it satisfies x ≤ 1. It is called contractive, if it satisfies the identity x ≤ x2. We
denote the corresponding varieties by RL, CRL, IRL, KRL. A residuated lattice is
called cancellative, if the underlying monoid is cancellative. Cancellative residuated
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lattices form a variety that is denoted by CanRL. If a residuated lattice is a subdirect
product of chains (totally ordered algebras) it is called representable, or semilinear.
Representable residuated lattices form a variety that we denote by RRL.

An FL-algebra, or pointed residuated lattice, is an expansion of a residuated
lattice with a constant 0; FL denotes the variety of FL-algebras. Although RL and
FL have different signatures, we identify RL with the subvariety of FL axiomatized
by 0 = 1. All of the above properties for residuated lattices apply also to FL-
algebras, and we denote the corresponding varieties by FLe, FLi, FLc, CanFL and
RFL. In an FL-algebra, we define ∼x = x\0 and −x = 0/x. If the FL-algebra is
commutative then for all a\b = b/a, for all a, b, and ∼a = −a. We define FLo-
algebras as FL-algebras that satisfy 0 ≤ x. FLw-algebras are FLio-algebras. We
denote the corresponding varieties by FLo and FLw. In FLo algebras we often write
⊥ for the smallest element. Note that every FLo-algebra satisfies x ≤ ⊥/⊥, so it
has a top element, which we denote by ⊤.

We allow combinations of prefixes and subscripts, so for example, IKRL is the
variety of integral, contractive residuated lattices. It turns out that such residuated
lattices are also commutative and they are term equivalent to Brouwerian algebras.
We also denote this variety by Br. Likewise we set HA = FLci, the variety of Heyting
algebras.

A lattice ordered group, or ℓ-group, can be defined as a residuated lattice that
satisfies x(x\1) = 1. We denote the corresponding variety by LG. It is well known
that CLG is generated by the integers and, therefore, CLG ⊆ RRL.

Let L be a residuated lattice and Y a set of variables. For y ∈ Y and x ∈
L ∪ Y ∪ {1}, the polynomials

ρx(y) = xy/x ∧ 1 and λx(y) = x\yx ∧ 1,

are, respectively, the right and left conjugate of y with respect to x. An iterated
conjugate is a composition of a number of left and right conjugates. For any X,A
subsets of L ∪ Y ∪ {1}, and for m ∈ N, we define the sets

ΓX = {γx1
◦ γx2

◦ . . . γxm
: m ∈ N, γxi

∈ {λxi
, ρxi

}, xi ∈ X ∪ {1}, i ∈ N},

ΓX(A) = {γ(a) : γ ∈ ΓX , a ∈ A}.

Conjugates play an important role in the characterization of congruences in resid-
uated lattices; see for example [7]. A normal subset is defined as one that is closed
under conjugation. The convex, normal subalgebras of a residuated lattice are in
bijective correspondence with its congruences. The same holds for congruences of
an FL-algebra and convex, normal subalgebras of its 0-free reduct.

Recall that an algebra is called strictly simple, if it has no proper, non-trivial
subalgebras or homomorphic images. Note that for residuated lattices, the lack
of subalgebras forces the absence of homomorphic images. A strictly simple FLo-
algebra is, thus, generated by each of its non-identity elements.

A substructural logic is defined as an axiomatic extension of FL, the (set of
theorems of) full Lambek calculus. It is shown in [8] that FL is the equivalent
algebraic semantics for FL and that the same holds for substructural logics and
subvarieties of FL. Actually, there is a dual lattice isomorphism between the lattice
of substructural logics and the subvariety lattice Λ(FL) of FL. See [7] for more
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Figure 1. The algebra K[L].

details on residuated lattices, FL-algebras, full Lambek calculus and substructural
logics.

3. Ordinal sums

We call an element a in an algebra A irreducible with respect to an n-ary oper-
ation f of A, if, for all a1, a2, . . . , an ∈ A, f(a1, a2, . . . , an) = a implies ai = a, for
some i.

Let K and L be residuated lattices and assume that the identity element 1K

of K is {∧,∨, ·}-irreducible; also, assume that either L is integral, or 1 6= k1/k2

and 1 6= k2\k1 for k1, k2 ∈ K, unless k1 = k2 = 1. In this case we say that K is
admissible by L. This is a slight generalization of the definition in [6]. A class K is
admissible by a class L, if every algebra of K is admissible by every algebra of L.

Let K[L] = (K − {1K}) ∪ L, and extend the operations of K and L to K[L] by

• l ⋆ k = 1K ⋆K k and k ⋆ l = k ⋆K 1K, for k ∈ (K − {1K}), l ∈ L and
⋆ ∈ {∧,∨, ·, \, /}, in case 1K ⋆K k, k ⋆K 1K ∈ K[L], i.e., if they are not 1K.

• In case1 1K ⋆K k = 1K, then l ⋆ k = l, if ⋆ ∈ {∧,∨}, and l/k = 1L (in this
last case L is integral, by admissibility); likewise we define k ⋆ l.

We define the algebra K[L] = (K[L],∧,∨, ·, \, /, 1L). The following lemma is a
slight generalization of the corresponding lemma in [6].

Lemma 3.1. Assume that K, L are residuated lattices such that K is admissible
by L. Then, the algebra K[L] is a residuated lattice.

We extend the above construction to the case where K is an FL-algebra. In this
case we expand K[L] to an FL-algebra by a constant that evaluates to 0K (or to
1L, if 0K = 1K). Also, in case L is an FL-algebra, we consider its 0-free reduct,
before performing the construction.

1This case did not appear explicitly in [6] by mistake.
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Figure 2. Admissible FLo-algebras.

Note that if both K and L are integral and 1K is join-irreducible, then K is
admissible by L. In this case (usually considered in the context of totally ordered
algebras), the algebra K[L] is called the ordinal sum2 of L and K and is usually
denoted by K⊕ L. In this sense, in the absence of integrality (for K at least), the
algebra K[L] can be considered as a generalized ordinal sum of the two algebras.
The ordinal sum construction has been used among other structures for BL-algebras
[1] and hoops [2].

Lemma 3.2. [6] Assume that K, L are residuated lattices such that K is admissible
by L. Then,

• the congruence lattice of K[L] is isomorphic to the coalesced ordinal sum
of the congruence lattice of L and the congruence lattice of K.

• Thus, K[L] is subdirectly irreducible iff L is subdirectly irreducible, or L ∼= 1

and K is subdirectly irreducible.

The 2-element FLo-algebra (Boolean algebra) 2 is admissible by all integral resid-
uated lattices. Examples of FLo-algebras that are admissible by all residuated lat-
tices are given in Figure 2 and they include Ton, for n a positive natural number,
and Nw, for w an infinite or bi-infinite word; see [6] for the definitions. We will be
interested in To1, which is the unique 3-element non-integral FLo-algebra.

2This notion is different from the usual ordinal sum of two posets P and Q, which is defined to
be the poset with underlying set P ∪Q and order relation containing the orders of P and Q, and

setting every element of P less than every element of Q; so the new order is ≤P ∪≤Q ∪ (P × Q).
Also, it is different than the coalesced ordinal sum of two posets P and Q (P is assumed to have
a top element and Q a bottom element), which is defined by identifying in the usual ordinal sum

of P and Q the top element of P with the bottom element of Q.
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Two special cases of the construction K[L] were considered in [9] for embedding
a residuated lattice into a bounded one; 2[L], if L is integral, and To1[L], for
arbitrary L.

4. Functoriality

The construction K[L] is functorial, namely it extends to homomorphisms. Let
L1 and L2 be residuated lattices, let K be admissible by both L1 and L2, and let
f : L1 → L2 be a homomorphism. We define K[f ] : K[L1] → K[L2] as constant on
K − {1K} and as f on L1.

Lemma 4.1. If L1 and L2 are residuated lattices, K is admissible by both L1

and L2, and f : L1 → L2 is a homomorphism, then K[f ] : K[L1] → K[L2] is a
homomorphism, as well.

Therefore, K defines a functor from every category L of residuated lattices to
K[L].

Proposition 4.2. Let L be a variety of residuated lattices, and let K be a strictly
simple FL0-algebra. Then the functor K is full and faithful.

Proof. To show that K is full we need to show that for every homomorphism g :
K[L1]→K[L2], where L1,L2 ∈ L, there is a homomorphism f : L1 →L2 such that
g = K[f ]. As 0 = ⊥ is a constant in the language and K is a strictly simple, all
its elements are definable (they are in the subalgebra generated by ⊥), hence g is
constant on K−{1K}. Moreover, as K is strictly simple, for every element k 6= 1K,
there is a 0-free term tk such that tk(k) = ⊥. If g(a) 6∈ L2, for some a ∈ L1, then
g(tg(a)(a)) = tg(a)(g(a)) = ⊥. Hence, in this case, there is a c = tg(a)(a) ∈ L1 such
that g(c) = ⊥. But then

⊥ = g(⊥) = g(c/⊥) = g(c)/g(⊥) = g(⊥)/g(⊥) = ⊥/⊥ = ⊤,

a contradiction. Therefore, g[L1] ⊆ L2, and the restriction f of g on L1 defines the
desired homomorphism.

Moreover, K is faithful, namely if f1, f2 : L1 → L2 are homomorphisms, and
K[f1] = K[f2], then f1 = f2, as f1 and f2 are determined by their restrictions on
L1. �

5. The embedding

We will first describe the embedding of subvariety lattices by giving a generating
set of the target variety. Recall that if K is a class of similar algebras, S(K), H(K),
P(K), I(K), Pu(K) denote, respectively, the classes of subalgebras, homomorphic im-
ages, products, ultraproducts, isomorphic images of elements of K; V(K) = HSP(K),
and KSI is the class of subditectly irreducible algebras in K.

Let S be a class of residuated lattices and K a finite, strictly simple FLo-algebra
admissible by S. We define SK = V(K[S]).

Lemma 5.1. [6] Assume that L is a class of residuated lattices and that K is a
finite strictly simple residuated lattice admissible by L. Then,

(1) O(K[L]) = K[O(L)], where the operator O is any of the operators IPu, S or
H. (We use the same symbol O for the operators on subclasses of RL and
FLo).
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(2) (V(K[L]))SI = K[(V(L))SI] ∪ I(K).

It can be easily seen that K does not commute with the operator P.

Corollary 5.2. If K is a finite, strictly simple FLo-algebra admissible by a variety
V of residuated lattices, then VK = (VSI)K.

Theorem 5.3. Let K be a finite, strictly simple FLo-algebra admissible by RL. The
subvariety lattice Λ(RL) of RL is isomorphic to the interval [V(K),RLK] of Λ(FLo)
via the map V 7→ VK.

Proof. Let V be a subvariety of RL. Employing Lemma 5.1(2), we have

(VK)SI = (V(K[V]))SI = K[(V(V))SI] ∪ I(K) = K[VSI] ∪ I(K).

Thus, V(K) ⊆ RLK, and the map is order preserving. Moreover, if VK ⊆ UK, then
K[VSI]∪ I(K) ⊆ K[USI]∪ I(K) and VSI ⊆ USI; hence V ⊆ U and the map reflects the
order.

If W is a subvariety of RLK, then WSI ⊆ (RLK)SI = K[RLSI] ∪ I(K), so WSI =
K[S] ∪ I(K), for some S ⊆ RLSI. Clearly W = V(K[S] ∪ {K}) and

WSI = (V(K[S] ∪ {K}))SI

= (V(K[S]))SI ∪ {K}
= K[(V(S))SI] ∪ I(K)
= K[(V(V(S)))SI] ∪ I(K)
= (V(K[V(S)]))SI

= ((V(S))K)SI

Hence W = (V(S))K and the map is onto. �

Corollary 5.4. The subvariety lattice Λ(RL) of RL is isomorphic to the interval
[V(Ton),RLTon

] of Λ(FLo) via the map V 7→ VTon
, for every n.

The same argument works for the algebra 2, for integral residuated lattices, so
we have the following result.

Theorem 5.5. The subvariety lattice Λ(IRL) of IRL is isomorphic to the interval
[V(K), IRL2] of Λ(FLw) via the map V 7→ V2.

6. Axiomatization

We will now provide an axiomatization for certain varieties of the form VK in
terms of an axiomatization of V.

An open positive universal formula in a given language is an open first order
formula that can be written as a disjunction of conjunctions of equations in the
language. A (closed) positive universal formula is the universal closure of an open
one.

Lemma 6.1. [5] Every open (closed) positive universal formula, φ, in the language
of residuated lattices is equivalent to (the universal closure of) a disjunction φ′ of
equations of the form 1 = r, where the evaluation of the term r is negative in all
residuated lattices.
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Recall the definition of the set ΓY of iterated conjugates over a countable set of
variables Y . For a positive universal formula φ(x̄) and for Y disjoint from x̄, we
define the sets of residuated-lattice equations

BY (φ′(x̄)) = {1 = γ1(r1(x̄)) ∨ . . . ∨ γn(rn(x̄)) | γi ∈ ΓY },

where m ∈ N and

φ′(x̄) = (r1(x̄) = 1) or . . . or (rn(x̄) = 1)

is a formula equivalent to φ(x̄), as in Lemma 6.1. If we enumerate the set Y =
{yi : i ∈ I}, where I ⊆ N, and insist that the indices of the conjugating elements of
Y in γ1, γ2, . . . , γn appear in the natural order and they form an initial segment of
the natural numbers, then we obtain a subset of BY (φ′(x̄)), which is equivalent to
the latter. So without loss of generality we will make this assumption.

Corollary 6.2. [5] Let {φi : i ∈ I} be a collection of positive universal formulas.
Then,

⋃
{B(φ′

i) : i ∈ I} is an equational basis for the variety generated by the
(subdirectly irreducible) residuated lattices that satisfy φi, for every i ∈ I.

Recall that the variety RRL of representable residuated lattices is generated by
the class of all totally ordered residuated lattices. An axiomatization for RRL

was given in [3] and [13]. Here we show how to derive this axiomatization, using
Corollary 6.2.

Corollary 6.3. [3] [13] The variety RRL (RFLo) is axiomatized by the 4-variable
identity λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1.

Proof. The variety RRL is clearly generated by the class of all subdirectly irreducible
totally ordered residuated lattices. A subdirectly irreducible residuated lattice is
totally ordered if it satisfies the universal first-order formula

(∀x, y)(x ≤ y or y ≤ x).

The first order formula can also be written as

(∀x, y)(1 = [(x ∨ y)\x] ∧ 1 or 1 = [(x ∨ y)\y)] ∧ 1).

By Corollary 6.2, RRL is axiomatized by the identities

1 = γ1([(x ∨ y)\x] ∧ 1) ∨ γ2([(x ∨ y)\y] ∧ 1),

where γ1 and γ2 range over arbitrary iterated conjugates. Actually, since γ(t∧1) ≤
γ(t), for every iterated conjugate γ, if

1 = γ1([(x ∨ y)\x] ∧ 1) ∨ γ2([(x ∨ y)\y] ∧ 1)

holds, then

1 = γ1((x ∨ y)\x) ∨ γ2((x ∨ y)\y)

holds, as well. The converse is also true if γ1 and γ2 range over arbitrary iterated
conjugates, since for example λ1(t) = t ∧ 1. Therefore, RRL is axiomatized by the
identities

1 = γ1((x ∨ y)\x) ∨ γ2((x ∨ y)\y),

where γ1 and γ2 range over arbitrary iterated conjugates.
Consequently, RRL satisfies the identity

λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1.
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Conversely, the variety axiomatized by this identity clearly satisfies the implications

x ∨ y = 1 ⇒ λz(x) ∨ y = 1 x ∨ y = 1 ⇒ x ∨ ρw(y) = 1.

By repeated applications of this implications on the identity

λz((x ∨ y)\x) ∨ ρw((x ∨ y)\y) = 1

we can obtain

1 = γ1((x ∨ y)\x) ∨ γ2((x ∨ y)\y),

for any pair of iterated conjugates γ1 and γ2. �

Corollary 6.4. c.f. [10] [3] [13] The variety RCRL (RFLo) is axiomatized by the
identity (y → x)∧1 ∨ (x → y)∧1 = 1.

6.1. The integral case. We first give axiomatizations for integral varieties. In
this case K = 2.

Theorem 6.5. The variety IRL2 is axiomatized relative to FLw by the set of iden-
tities γ1(∼x)∨γ2(∼∼x) = 1, where γ1 and γ2 range over iterated conjugates. Also,
ICRL2 is axiomatized relative to FLew by the identity ¬x ∨ ¬¬x.

Proof. First note that an FLw-algebra A is of the form 2[B], for B ∈ IRL, iff
A∗ = A−{0} is a 0-free subalgebra of A. Since the join and residual of two elements
of A∗ is always in A∗ and since closure under multiplication implies closure under
meet, this is equivalent to A∗ being closed under product.

We claim that this is in turn equivalent to the stipulation that A satisfies the
first order formula (∀x)(x = 0 or ∼x = 0). Indeed, let x, y ∈ A∗ be such that
xy = 0 and suppose that A satisfies the first order formula. Then y ≤ x\0 = ∼x
and ∼x = 0, so y = 0, a contradiction. Conversely, if A∗ is closed under product
then, since x(∼x) = 0, we have x = 0 or ∼x = 0.

By Lemma 5.1(2), the set of subdirectly irreducible algebras in IRL2 is exactly
2[(IRL)SI]∪ I(2). In view of Lemma 3.2, these are exactly the subdirectly irreducible
algebras in FLw that satisfy the first order formula (∀x)(x = 0 or ∼x = 0).

By Corollary 6.2, the subvariety of FLw whose subdirectly irreducible algebras
satisfy the positive universal formula (∀x)(x = 0 or ∼x = 0), or equivalently the
formula (∀x)(1 ≤ x\0 or 1 ≤ (x\0)\0), is axiomatized by the set of identities
γ1(∼x) ∨ γ2(∼∼x) = 1, where γ1 and γ2 range over iterated conjugates. In the
commutative case, the conjugates are not needed. �

We will now axiomatize all the varieties in the interval [V(K), IRL2]. Every
equation s = t over residuated lattices is equivalent to the equation 1 ≤ s\t∧ t ≤ s.
If E is a set of equations, we denote by E′ the set of the equations obtained from
E by the above process.

Theorem 6.6. If V is a subvariety of IRL axiomatized by a set of equations E,
then V2 is axiomatized, relative to IRL2 by

1 = γ1(¬x1) ∨ · · · ∨ γn(¬xn) ∨ γ(t(x1, . . . , xn))

where 1 ≤ t ∈ E′ and γ’s range over all iterated conjugates.

Proof. In view of Theorem 6.5, the class 2[V] is axiomatized relative to 2[IRL] by
the set first-order forlumas of the form

x1 = 0 or · · · or xn = 0 or 1 ≤ t(x1, . . . , xn)
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where 1 ≤ t ∈ E′. By Corollary 6.1, we obtain the desired axiomatization for
V2. �

Corollary 6.7. If V is a subvariety of ICRL axiomatized by a set of equations E,
then V2 is axiomatized, relative to ICRL2 by

¬x1 ∨ · · · ∨ ¬xn ∨ t(x1, . . . , xn)

where 1 ≤ t ∈ E′.

Recall that the logic KC of weak excluded middle is the extension of intuitionistic
logic axiomatized by the formula ¬p∨¬¬p. We denote the corresponding subvariety
of HA by KC. Jankov’s result, Theorem 1.2/1.1, then follows from the following
corollary.

Corollary 6.8. The subvariety lattice Λ(Br) of the variety Br of Brouwerian alge-
bras is isomorphic to the interval [BA,KC] of Λ(HA) via the map V 7→ V2.

Another special case was considered in [11]. The varieties RICRL2 and CanRICRL2

were axiomatized as what are known as SMTL and PMTL, respectively.

6.2. The non-integral case. We now give an application to the non-integral case,
for K = To1.

Theorem 6.9. The variety LGTo1
is axiomatized, relative to FLo, by ⊤\1 = ⊥ and

γ1(∼x) ∨ γ2((⊤\x)) ∨ γ3(x(x\1) ∧ (x ∨ 1)((x ∨ 1)\1)) = 1, where γi’s range over
iterated conjugates.

Proof. It suffices to show that the class To1[LG] is axiomatized by

x = ⊥ or x = ⊤ or (x(x\1) = 1 & (x ∨ 1)((x ∨ 1)\1) = 1)

It is easy to see that every algebra of the form To1[B], where B ∈ LG, satisfies the
above first order formula.

Conversely, assume that the non-trivial (has more than 1 element) FLo-algebra
A satisfies the above formula, and let A∗ = A − {⊥,⊤}. We will show that A∗ is
a subalgebra of A; then it will follow that A = To1[A

∗]. In the following we will
write a′ for a\1. Let x, y ∈ A∗.

• ⊤ 6= 1. Indeed, otherwise ⊥ = ⊤\1 = 1\1 = 1. As A is not trivial, 1 6= ⊥,
since 1 is a neutral and ⊥ is an absorbing element.

• x′ 6= ⊥, as otherwise 1 = xx′ = x⊥ = ⊥. Likewise, y′ 6= ⊥.
• x′′ = xx′x′′ = x. Likewise, y′′ = y.
• 1/x = x′. Indeed, x′x = x′x′′ = 1 implies x′ ≤ 1/x, and x(1/x)x ≤ x1 = x

implies x(1/x) = x(1/x)xx′ ≤ xx′ = 1, namely 1/x ≤ x\1 = x′. Likewise,
1/y = y′.

• ⊤x 6= x, since otherwise 1 = xx′ = ⊤xx′ = ⊤, a contradiction.
• xy 6= ⊤, since otherwise x = ⊤y′, hence x = ⊤y′ = ⊤⊤y′ = ⊤x, a contra-

diction.
• x′ 6= ⊤, since otherwise 1 = xx′ = x⊤, hence ⊤ = x⊤⊤ = x⊤ = 1, a

contradiction.
• xy 6= ⊥, as otherwise 1 = x′xyy′ = x′⊥y′ = ⊥.
• x ∨ 1 6= ⊤, since otherwise ⊤⊤′ = 1, and 1 = ⊤⊤′ = ⊤⊤⊤′ = ⊤.
• x ∨ y 6= ⊤, since otherwise ⊤ = (x ∨ 1) ∨ (y ∨ 1) ≤ (x ∨ 1)(y ∨ 1). This

is a contradiction, as x ∨ 1, y ∨ 1 ∈ A∗ and ⊤ is not the product any two
elements of A∗.
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• x ∧ y 6= ⊥, since otherwise (x ∨ 1)(y ∨ 1) ≤ (x ∨ 1) ∧ (y ∨ 1) ≤ ⊥. This
is a contradiction, as x ∨ 1, y ∨ 1 ∈ A∗ and ⊥ is not the product any two
elements of A∗.

• x/y = xy′ and y\x = y′x. Indeed, for all z ∈ A, z ≤ x/y iff zy ≤ x iff
z ≤ xy′.

• x/y, y\x ∈ A∗, since y′ ∈ A∗.

Thus, A∗ is closed under all the operations. �

Note that the simpler axiomatization

x = ⊥ or x = ⊤ or x(x\1) = 1

does not exclude algebras A, where A = {⊥,⊤}∪G, where G is any group and the
elements of G form an antichain in A.

Corollary 6.10. The variety CLGTo1
is axiomatized, relative to FLeo, by ⊤→1 = ⊥

and (¬x)∧1 ∨ (⊤ → x)∧1 ∨ [x(x\1) ∧ (x ∨ 1)((x ∨ 1)\1)] = 1. Alternatively, it is
axiomatized relative to RFLo by ⊤→ 1 = ⊥ and (¬x)∧1 ∨ (⊤→ x)∧1 ∨ x(x\1) = 1.

Proof. The first axiomatization follows from Theorem 6.9. We now consider the
second axiomatization. By Corrolary 5.2, it is enough to consider the subdirectly
irreducible abelian ℓ-groups, which are all totally ordered. Therefore, in view of
Lemma 5.1, the subdirectly irreducible algebras in CLGTo1

are totally ordered,
hence CLGTo1

is a subvariety of RFLo. The extra term (x ∨ 1)((x ∨ 1)\1) in the
first axiomatization was used in the part of the proof that showed closure under
the lattice operations. However, this is clear in the totally ordered case, hence the
simplified axiomatization suffices. �

The variety CLGTo1
is known as the variety of RU-algebras (representable uni-

norm algebras), see for example [4] and [14]. It is known that the variety is actually
generated by any of its infinite members and a different axiomatization is known.
The variety LGTo1

can be thought of as a non-commutative generalization of RU-
algebras.
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