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Introduction

This paper investigates certain properties of residuated lattices, specific
algebraic structures with a rich signature that form a variety, denoted by
RL. These algebras were introduced in a more restrictive form by Ward and
Dilworth, in [19] and [7], in 1939. They arose as abstract structures that
capture the behavior of ideals of rings. In their generalized form, the one we
use, residuated lattices include well known and extensively studied algebras.
[-groups and Browerian algebras (hence, generalized Boolean algebras, also)
form varieties term equivalent to subvarieties of RL. It is surprising that
residuated lattices are so broad as to include those essentially different vari-
eties. What is even more interesting is that there are connections between
them and logic, more specifically, commutative bounded residuated lattices
are models of a fragment of intuitionistic linear logic, developed by Girard
in [9]. Non-commutative residuated lattices model Lambek calculus or bilin-
ear logic, which is a generalization of linear logic and arose from linguistics.
Lambek in [11] justifies the laws of residuated lattices by showing that their
meaning in linguistics is “natural” and in [12] he describes interesting exten-
sions of the language of residuated lattices. Finally, generalized MV-algebras,
which are models of Fuzzy logic, form a subvariety of residuated lattices.

Despite their generality, residuated lattices possess nice structural proper-
ties; congruences correspond to specific subalgebras, in the same way group
congruences correspond to normal subalgebras or ring congruences corre-
spond to ring ideals.

In section 1.1 we give a brief overview of the structure of residuated lat-
tices developed by Tsinakis and Blount in [4] together with a list of identities.
Sections 1.2 and 1.3 include results proven during a seminar on residuated
lattices, given by Constantine Tsinakis last year, and are contained in [2].
The remainder of chapter 1 includes answers to questions that stem from
the same seminar. In part of chapter 2 we discuss the unsolvability of the
word problem for modular lattices, due to Lipshitz, and the one for relation
algebras proven in [1], while in chapter 3 and the rest of chapter 2 we present
new results about residuated lattices for which the techniques and ideas come
from [17], where similar statements are proven for DL-semigroups. This puts
the new results into the category of “n+1” research.
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1 Varieties of residuated lattices

1.1 The structure of residuated lattices

Definition 1.1 A residuated lattice, or residuated lattice-ordered monoid,
is an algebra L = (L, A,V, -, e, \, /) such that (L, A, V) is a lattice, (L, -, e) is
a monoid and multiplication is both left and right residuated, with \ and /
as residuals, i.e. a-b<c¢ & a<¢/b & b<ad\c, Va,b,c€ L.

Remark 1.1 It is not hard to see that RL, the class of all residuated
lattices, is a variety and

rzA(zyVz)ly, zlyVz)mzyVaez, (z/y)yVerz
yryAz\(yzVz), (yVz)r=yxVze, yy\r)Vexz

together with the monoid and the lattice identities form an equational basis
for it. o

The following following lemma contains all the necessary identities for
algebraic manipulations in residuated lattices. The proofs of the lemma and
of the theorem to follow can be found in [3].

Lemma 1.1 Residuated latlices satisfy the following identities:
1x(yVz)=zyVaz and (yVz)r =y V zz

2) (g A=) = (2\p) A (2\2) and (y A=)z = (y/2) A (2/2)

3) o/(yV =) = (2fy) A (2/2) and (yV N = (\2) A (\2)

4) (z/y)y <z and y(y\e) <z

5) 2(y/z) < (ey)/= and (s\g)x < \(y2)

6) (2/9)]= = 2/(zy) and \(g\e) = (y2)\o

7) 2\(y/) = (2\y)/2

8)xle=x=¢€\x

9)e<z/x and e < z\z

10) z(z\z) =z = (z/x)z

11) (2\z)* = (z\z) and (z/z)* = (z/z).

Moreover, if a residuated lattice, L, has a bottom element 0, then it has a
top element T, as well and for all a € L:

i) a0 =0a=0

ii) a/0=0\a=T

i) T/a=a\T =T

Definition 1.2 i) For each element « in a residuated lattice L, we define
two unary polynomials p,(z) = ((az)/a) Ae and A,(z) = (a\(za)) A e, the
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right and the left conjugate of an element by a.
ii) A subset X of L is called normal, if it is closed under p, and A,, for all
a€ L.

Theorem 1.2 Let L be a residuated lattice. Then the lattice of convexr and
normal subalgebras, CN'S(L), of L is isomorphic to the congruence lattice
ConL, of L, via H — 0y and 0 — [e]g, where [e]q is the O-class of e and
0 = {(a,b) € L*| (3h € H)(ha <b and hb< a)} =

{(a,b) € L*| (a/b)Ne € H and (bja)Ne€ H} =

{(a,b) € L*| (a\b) Ne € H and (b\a)Ne € H}.

The following variety has a special place in the subvariety lattice.

Definition 1.3 Denote by RLC the variety generated by C, the class of all
residuated chains, i.e. all totally ordered residuated lattices.

Theorem 1.3 i) The following two equations form an equational basis for
RLC.

1)(zVy)hex(zANe)V(yAe)

2) A(z/(xVy))Vpuly/(zVy)) ~ e

i) SI(RLY) = C.

1.2 Negative cones of /-groups

Remark 1.2 The variety of lattice-ordered groups, [-groups, is term equiva-
lent to the subvariety £LG =Mod(z - (e/z) ~ e¢) of RL. (Divisions and inverse
are mutually definable: 27! = e¢/z = z\e and z/y = 2y™", y\e =y~ 'z). o

Definition 1.4 Let L = (L,A,V,-,\,/,€e) be a residuated lattice. Define
L= = (L7 ,A,V,,\",/,e),by L= ={l € LIl < e}, z/7y=(z/y) Ne and
y\ "z = (y\z) Ae. L™ is called the negative cone of L and it’s easy to check
that it is a residuated lattice.

For a class K of residuated lattices, define K~ = {L7| L € K}, the class
of negative cones of K. Obviously, if K |z A e~ z, then K~ = K.

In the case of [-groups the negative cones contain all the information
about the whole [-group.



Theorem 1.4 IfV is a subvariety of LG, then V™ s a variely. Moreover,
there is a latltice isomorphism between the lattice of subvarieties of LG and

the one of LG™.

The proof of the theorem can be found in [2].

Thus, for every subvariety, V, of LG, there is a unique subvariety V* of
LG, such that (V*)~ = V.

Remark 1.3 The following identities constitute an equational basis for LG :
(x/y)y = z ANy ~ y(y\z) and y\(yz) ~ = = (zy)/y. Actually there is a
procedure for constructing an equational basis for V7, given one for V < LG
and an equational basis for V*, given one for V < £G™. o

1.3 Finitely generated atoms

Definition 1.5 An algebra A is strictly simple if it lacks non-trivial proper
subalgebras and congruences.

Note that since, according to Theorem 1.2, congruences on residuated
lattices correspond to convex normal subalgebras, the absence of non-trivial
proper subalgebras is enough to establish strict simplicity.

The following lemma describes the finitely generated atoms of L(RL), the
lattice of subvarieties of RL.

Lemma 1.5 Let V be a finitely generated variely. Then V is an atom in
L(RL) iff V = V(L), for some finite strictly simple L.

Proof: “=7 Let ¥V = V(K), K finite. If K is not strictly simple then
there is a minimal subalgebra, L, of K such that {e} # L < K. Then
V(L) C V(K)= V(L)= V(K).

“<=7. Let S € SI(V). Then, by Jénsson’s Lemma for congruence distribu-
tive varieties, [5], S € HSPy(L). It is well known that the Py operator
preserves all first order formulas; so it preserves

@erzn o) (N 2 # 2) A (V) @ = 2),

1,9=1 1€N,,
1#]
which is the defining formula for the cardinality n of L. It also preserves the
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defining formulas for all operation tables, (3zy, o, ..., 2,)(A f(2i, 2;) = z3),
where f € {A,V,-,/,\} and f(z;,z;) = z} ranges over all entries of the mul-
tiplication table of f.

So any ultrapower of L is isomorphic to it; hence, HSPy (L) = HS(L), which
contains algebras isomorphic to L or {e}, because L is strictly simple. .

The simplest non-trivial residuated lattice is 2, having as underlying set
2 ={0,¢e}, (0 < €), while multiplication is defined so that e and 0 are the
multiplicative identity and zero, respectively. By Lemma 1.5 it generates an
atom, because it is obviously strictly simple.

Proposition 1.6 The following equalions constilute an equational basis of
V(2), the subvariety generated by 2;

l)z-y~zAy

2)zf/(zVy)V(zVy) e

3)x/(xVy)A(zVy) =z,

Proof: Obviously every member of V satisfies the equations, since 2 does.
Consider, now, a residuated lattice L, that satisfies the equations. We will
show that it is a subdirect product of copies of 2. Since the equations imply
distributivity (multiplication distributes over joins in any residuated lattice)
and z Ae = x, (2) and (3) guarantee that 1z is a complemented sublattice of
L. (In fact, L has a topped generalized Boolean Algebra as its lattice reduct,
that is a topped lattice, such that every bounded interval is a reduct of a
Boolean Algebra.)

Let P be a prime filter of L and f = fp : L — 2 be defined by f(z) =
1 & x € P. We will show that f is a residuated lattice homomorphism.
It is order-preserving: Let + < y. If f(y) < f(z), then x € P and y & P,
which is a contradiction, since x < y and P is a filter.
It preserves joins: Let f(x V y) = 1; then f(y) =1 or f(z) = 1, because
otherwise f(y) = f(x) =0 = z,y ¢ P = xVy ¢ P, since P is prime. So,
f(z Vy)=0,a contradiction. Thus f(z Vy) < f(z)V f(y).
It preserves meets: Let f(z Ay) = 0; then f(y) =0 or f(x) = 0,because
otherwise f(y) = f(z) =1 = z,ye P = 2ANy e P = flxAy)=1,a
contradiction. Thus f(z Ay) > f(x) A f(y).
It preserves residuals: If z € P, then z/y € P, because P 3 x = z/e < z/y.
If 2,y & P, then (x Ay)/y € P, because if that is not the case, we would get




e ¢ P,since (x Ay)/yVy=e, by (2),and (x Ay)/yVy¢ P, (P is prime).
Thus, x/y € P,since P> (x Ay)/y < z/y.

If ¢ P,y € P, then z/y ¢ P, since, if that is not true, P 5 (z/y) Ay <z ¢
P, a contradiction.

The above observations guarantee that f(z/y) = f(x)/f(y).

Since fp is a homomorphism, Ker(fp) is a congruence on L. In order to
prove that L is a subdirect product of copies of 2, we need only show that
the intersection of the congruences above is the diagonal. Recall that in a
distributive lattice, like L, any pair of elements (a,b) can be separated by a
prime filter, i.e. there exists a prime filter P such that a € P and b & P, or
such that b € P and a ¢ P, a fact that is enough to establish the desired
property. Thus L is in V. °

Remark 1.4 An alternative equational basis for V(2) is:

zy~zAy

2) y/(y/x) = Vy

because 1z is a boolean algebra for every z, as well. Indeed: if y €1 then
tAy<z=z<z/yand z <y;sox <yA(z/y), whileyA(z/y) < z. Thus,
yA(2/y) = 2. Moreover, yV (2/y) = (2/)/(2/)/9) = (x/9) (2 (g \9)) =
(z/y)/(z/y) = e. .

Remark 1.5 The only atom below the variety Br = Mod(zy &~ x A y), of
Brouwerian Algebras is V(2). o

Any other strictly simple, finite, residuated lattice, L, has a top element dif-
ferent than e, because otherwise {0, e} would be a subalgebra of it, where 0
is the least element of L.

Some interesting examples of finite, commutative residuated chains that
are strictly simple, and consequently generate atoms in L(RL), are the fol-
lowing:

Definition 1.6 Define a residuated lattice, T,, with underlying set T, =
{T,e} U {u* |k € N,}. The order is given by u* < u' & k > [, and
uf < e< T, Vk € N,, while multiplication satisfies 2T = Tz = z, Vz # e.

Multiplication is clearly order preserving and, since T}, is dually well or-
dered, T, is residuated.



€ uF<ul o k>
u=e/T
u2

n : u3 ukul — umin{k+l,n}
u4

xT =Tex=zVr#e.

Lemma 1.7 V(T,) = HSP(T,) is an atom in the subvariety lattice of RL.

Proof: It is easy to check that T, is strictly simple.

Claim : T, = (z),Vz € T,, — {e}

If z = T then it is obvious, since a = ¢/T. If # # T, then ¢/z = T. So
() D (T)="T,. Thus, T, is strictly simple, hence V(T,) is an atom. o

Remark 1.6 Let a € T, — {e}, then a V (e/a) = T. Set T(z) =z V (e/x).
Since T,, = (T) , for all b € T,,, there is a term ¢, = t;(x), such that ,(T) = b.
Let b(z) = t,(T(x)); then b(x) = b iff z # e and b(e) = e. .
Proposition 1.8 For every n, the following list of equations, B,,
I)en(zVy)=(eANz)V(eNy)
2) A(xf(xVy))Vpuly/(xVy))
3) xy & yx

4) "t =~ n

5) (zVe)la(zVe)

) (e/T(@)" - = (e/T(x))"

7) 2" Ny" ANe=za"y" Ne

8) f(a(z),b(x)) =¢(z), Vf € {-,A,V,/,\}, Ya,b,c € T, such that f(a,b) = c
is an entry of the operation table of f
9)xNe=(e/T(xAe))((zAe)/(e/T(xAe))

is a finite equational basis for V(T,,).
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Proof: Obviously, V(T,) satisfies B,.

Let V be a variety that satisfies B,. Then V € RLY | by Theorem 1.3, since
it satisfies the first two equations, that is it is generated by residuated chains.
Let A be a subdirectly irreducible algebra of V, (so actually A is a chain,
by Theorem 1.3); we will show that A = T,, a fact that guarantees that
YV =V(T,).

First, observe that there is an element a € A, a > e, because otherwise
A EzANerz, hence e/z = ¢, Vz € A, that is T(z) = ¢; so (6) would entail
e-r=e, Vr € A, a contradiction.

By (5), we get a* = a, and by the equations (8) the subalgebra, (a), gener-
ated by a is isomorphic to T,,, because T(a) = a.

Assume, by way of contradiction, that there is an element b € A — (a) and
set v = e/a.

Case 1 1f b > a, then b(e/a) > e, because otherwise we would get b(e/a)” < e,
that is b < e/(e/a)” © .

But, then b A (e/a)” Ne = (e/a)” < e =1Db"(e/a)"” N e © b(e/a)™ A e, which
violates (7).

Case 2 If e < b < a, then (e/b)* > e/a, Vk > 0, because if (¢/b)* < e/a,

then a(e/b)* < e=a < ¢/(e/b)F ® . Thus, (e/b)* > e/a, Vk > 0 and
(b) N (a) = 0. This case reduces to the previous one by interchanging the
roles of a and b, since, by (8), (b) = T,,.

Case 3Ifv<b<e, thenb<e=e<e/b and v<b=e/b=¢e/v=a.

If e < e/b < a, then rename e/b into b and repeat the argument for Case 2.
If e/b=e, then T(b) =bV (e/b) =bVe=eand, by (6), (¢/e)"b = (e/e)",
i.e. b = e, a contradiction.

Ife/b=a,thene/(e/b) = e/a =vand by (9) weget b = (e/(e/b))(b/(e/(e/b))) =
v(b/v). Moreover, av = v < b=a < b/v. If a = b/v, then b = v(b/v) =
va = v, a contradiction. Thus, a < b/v. If we rename b/v to b the situation
reduced to Case 1.

Case 4 If b < v™, then ¢/b > e¢/v™ = a. Actually, ¢/b > a, since otherwise
e/b=a=T(b)=bV (e/b) = a, thus (e/T(b))" = (e/a)" = v"™. Now, by (6),
v™b = v”™ which is a contradiction, since bv"™ < be = b < v".

Case 5 If v™ < b < v, then v* < b < v*7!, for some k. Hence, v*~! = v*/v <
b/v < vF71/v = v*72. Actually, b/v cannot be any power of v (not even e),
since vf <b< v l=a=¢/v" ' <e/b<evf =a=e/b=a=¢e/(e/b) =
e/a = v and by (9) b would be a power of v also. If we set by = b/v, we get
v*~1 < by < v*¥7% Proceeding in the same fashion, we get v < by_;, which



reduces to the previous case. °

Finite, commutative, strictly simple, residuated chains look very much

like T,,s.

Lemma 1.9 Let L be a finite, commutative, strictly simple member of RLC
and let T be its top element. Then T =z, Vo € (T) — {e}.

Proof: L € SI(RL), since L is strictly simple; thus L is a chain by Theo-
rem 1.3.
If L = 2, then the conclusion is obvious.
Otherwise, T # e, hence e # ¢/ T, sinceif e = ¢/T, then e <e/T = T <,
a contradiction. We have ¢/T =¢/T? = (¢/T)/T =¢/T < (e/T)/T =
(e/T)T < e/T. But ¢/T < (¢/T)T, also, since e < T. Thus, ¢/T =
(e/T)T.
Suppose x - T =z and y- T = y. Then
Doy T=zy- T =2T -yT = zy.
i) 2fy < T(efy) < (T2)fy = o/y.
iii) T(e/z) =e/z, since e/z < T(e/x) and z(e/z) < e=2aT(e/z) < e=
T(e/x) < efx.

Now, we prove the statement: (z € (T)) = (zT =2 or x =e).
If x € (T), then & = ¢(T), for some unary term t. It is clear that ¢ can be
reduced to a termin {-, /, e}, since (T) is a chain. Assume that the statement
is true for terms of complexity less than that of .
Let ¢ = wv. Either at least one of u,v is the identity, in which case the
statement is trivially true, or they are both different from the identity and
consequently strictly less complex than ¢. In this case the induction hypoth-
esis and (i) imply the validity of the statement for ¢.
Let t = u/v. If u = e then the the statement is true for v, since the com-
plexity of it is smaller than that of ¢ and, using (iii), we get the desired.
If w # e, then if v = e we are done. If v # e then the the statement is true
for u and by (ii), it’s true for ¢ also. o

Lemma 1.10 Let L be as above. Then
i)e/T <e<T.
i) x/T =z, Vo #e.



i) x/x =T, Vo #e.
wrx(e/T) <z A(e/T).

Proof: i)e<2z=T < Tz==z. Thuse<T.

If ¢/T £ e, then e < ¢/T, since L is totally ordered. Thus, T = eT <
(e/T)T < e, a contradiction. So, e/T < e.

Moreover, z < e= Tz <e=>x<e¢/T. Thuse/T < ¢

i) z2T =z=2<z/T. Also, z/T < z/e =z.

i) 2T =2=T < z/z.

iv) e/T <e=ux(e/T) < z. Moreover, z < T =¢e/T < efr=u2z(e/T) <
e=z(e/T)T <e=ux(e/T)<e/T. Thus, z(e/T) <z A(e/T). .

The assumption of commutativity in the previous two lemmas is essential.

T’ is an example of a non-commutative residuated lattice in RLY;

T

0-z2=2-0=0

e
T/. oT (e/T) - T=¢/T
T-(e/T)=T.

Me=0

while T/, is commutative, but not in RLC.




1.4 Equational bases for a certain class of varieties

Certain pairs of subvarieties of RL are so different that their join decomposes
nicely into their varietal product. Such a pair is the variety of [-groups
together with the variety of negative cones of [-groups. Another example is
the variety generated by the strictly simple T, and the variety of negative
cones of cancellative residuated lattices. In both cases we exploit the fact
that in all members of one of the varieties the multiplicative identity is their
top element. First we give a general lemma that allows us to obtain such
decompositions of the join of two varieties provided that there exist two
projection-terms.

Lemma 1.11 Let L4, Ly be subvarieties of RL with equational bases Ax(Ly)
and Ax(Ly), respectively, and let m(x), mo(x) be unary terms, such that
Ly | (mi(z) =z and m(x) = e) and Ly | (m(z) e and my(z) ~ x).
Then L1V Ly = Ly X Ly and the following list, Ax(Ly,Ls), of equations is
an equational basis for it.

1) mi(x) mo(zx) = x

) mi(mj(x)) ~ e, 1,5 € {1,2},1 # 5 and m;(mi(x)) =~ m(x), 1 € {1,2}.

1) mi(x Ay) ~ m(x)Ami(y), YA € {\,V, -, /,\}, t € {1,2}

IV) e(mi(z1), .oy mi(n)), Ve(zy, ..., x,) € Az(Ly)

V) e(ma(z1), ..., m2(2,)), Ve(zy, ..., x,) € Ax(Ly)

Of course, for any pair of subvarieties of L1,Ly, the same decomposilion
holds for their join.

Proof: It’s easy to see that the equations Az hold both in £; and L,
hence they hold in £; V L5, also.

Now suppose that the residuated lattice A satisfies the equations Ax; we
will show that A is in £ x L,.
Define A; = {z € A| my(z) =€} and Ay ={z € A|m(z) = e}

A; is a subalgebra of A.

ry € A= i) = mi(y) = e = mi(ety) F mi(e)Amily) = ¢, for i,j €

{172}7l %]' Thus7 ajAy E A? VA E {/\7\/7‘7/7\}

Al € ,Cl.
Let e(zy,...,2,) € Az(Ly) and a3 € Ay, Yk € N,,. Then, by (IV), ¢(m1(z1), ..., mi(2,))
€ Ax(Ly, L), hence, Ay = e(mi(ar),...,m(ay,)). But, m(ax) = ax, Yk € N,

since ap € Ay = ma(ay) = e = ay, @ mi(ag)me(ag) = mi(ag)e = m(ag).

Thus, A1 E €(ar, ..., an).
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Ay € L.
Similarly.

Define f: A — Ay x Ay, by f(z) = (m(x), m2(x))

f 1s well defined.
mi(mi(x)) = e, and mi(m(x)) = m(x), Vi, 5 € {1,2},1 # 7, by (1I).
Thus m;(z) € A;, Vi € {1,2}.

f 1s a homomorphism.
fxly) = (mi(zly), ma(zly)) = (m(x)Ami(y), ma(x) Ama(y)) =
(ﬂ-l(f)v Tr?(‘r))A(ﬂ-l(y)v 7T2(y>) = f($)Af(y)7 VA € {/\7 Vi, /7 \}

is one-to-one.

f(l’) = f(y) = 7T1($) = Wl(y) and 7T2($) = 7r2(y) = 7T1(«’1?)7T2(£l?) = Wl(y)ﬁ(y) (:I>)

r =Yy

f 1s onto.
(111) 2 €As
Let (x1,22) € A1 x Ag. If 2 = zq29, then: m(2) = m(x122) "= m(21)m1(22) =
z1EA; )
m(zy)e =" m(x)ma(xr) = 24
Similarly, ma(2) = x2; so, f(x) = (z1, x2).
Thus A is isomorphic to Ay x Ay € L1 x L3 C L1V L. °

Definition 1.7 i) £ = Mod(z A e & =) = Mod(e/z ~ €)
ii) o = ENMod(y\(yz) = = ~ (zy)/y) = (Mod(y\(yz) = = ~ (zy)/y))~

Corollary 1.12 i) Ax(LG,E) is an equational basis for LGV E = LG x €
ii) Ax(LG,LG™) is an equalional basis for LGV LG = LG x LG~

Proof: Let mi(z) =e/(e/x) and my(z) = (e/x)x.
LG Ee/le)z)~elex ™) & and (e/z)r ~ z7'z ~ ¢, while

E, LG E(e/r)r ~ex~a and e/(e/z) ~ e, by Remark 1.3. .

Corollary 1.13 Let V | (e¢/(e/z))* <z and (z ANe)* = (z Ae)"t'. Then
chV = 50 x V. Hence, 50VV(T¢1,T2'2, ,le) = 50 X V(Til,TZé, 7T2k)
Proof: Take mi(z) = ((e Az)"t /(e Ax)*)Ae and ma(z) = (e/(e/x))" V z.
Ec Emlz) =((enz)" T /(eAz))Ner (eANz)ANe~x and my(z) =
(e/(e/z))"Vaeme*Vare
VEm(z)=(e/(e/z))"Var~z and m(z) = ((eAx)" /(e Az)")Ae~
((enz)"/(eNz)")Ne~ e, since RL = (x/z) Ner e.
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If n > m and z € T, then, m(z) = ((e A z)"" /(e Nz)*) AN e
(0/0)ANe=TAe=¢e,forxz#e T, m(e)=e and m(T) = (e/e) Ne=
Thus, V(T,,) E m(z) ~ e.

Moreover, if © € T,,, ma(z) = (e¢/(e/z))" V& = (e¢/T)"Va=0Vz =z, for
r#e T,m(e)=cand m(T) = (e/(e/T))"VT = T;s0 V(T,) E ma(z) =~ x.
If we pick n > max{i1,...,2x} then V(T,,,T,,....,T;,) E m(z) = e and
mo(z) = . .

Remark 1.7 Note that £V V(T,) # € x V(T,) since S € S(T; x 2) — € x
V(T:), where S ={(1,T),(1,¢),(1,0),(0,0)}, 2 ={1,0}, Ty = {T,e,0}. o

1.5 A “visual” representation of the congruence lattice
of finite residuated lattices

The description of congruences in a residuated lattice by convex normal sub-
algebras is pivotal. For finite residuated lattices, though, we can have a
better “picture” of their congruence lattices.

Definition 1.8 Let L be a residuated lattice and S C L. Then E(S) = {a €
Sla* = a} is the set of idempotent elements of S and CFE(S) = {a € S|a? = a
and (Vz € L)(ax = za)} is the set of central idempotents of S.

Lemma 1.14 Let L be a finite residuated lattice .
i) If a € CE(L™), then [a,e/a] € CNS(L) and
w)lf N e CNS(L) anda = AN, then N = [a,e/a] and a € CE(L™).

Proof: i) Note that e/a = a\e, since a - (e/a) = (e/a)-a < e=e/a < a\e
and similarly a\e < ¢/a.

Actually, e/a € E(L), since:
a<e:>e§e/a:>e/a§(e/a)(/ a
Let z,y € [a,e/a]. Then a = * Ja)(e

la,e/al.

Moreover, a = a* < af(e/a) < z/y < (e/a)/a = e/a* = e/a, that is
z/y € [a,e/al.

Since, z V y,z A y,e € [a,e/a], the latter becomes a subalgebra, which is

) < ((e/a
< zy < (

)-e)/a< (e/a)/a=ela* = e/a.
e/a)(e/a

) = e/a. Thus, zy €

obviously a convex one.
To prove that it is normal also, let « € [a,e/a] and z € L. Then, a = aNe <
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azfzNe=zal/zNe < zx[zNe < e, that is p,(z) € [a, e/a], which completes
the proof of (i).

ii) Since a < e we get N 3 a® < a. Thus, a = a?, i.e. a € E(L).
Since, N is normal, Vz € L, za/z N e € N, hence a < za/z A e; but this is
equivalent to a < za/z , since a < e. Thus, az < za, Vz € L. Symmetrically,
we get za < az, Yz € L; so a is a central idempotent, i.e. a € CE(L™).
Moreover,a € N = ¢/a € N = [a,e/a] C N.
On the other hand, if b € N, then ¢/b € N=>a = AN < e¢/b=ab <
e=>ba<e=b<efa=bclae/a]. Thus, [a,e/a]=N. .

The next theorem shows that the congruence lattice of a finite residuated
lattice is sitting, reversed, in the residuated lattice as a dual subsemilattice.

Theorem 1.15 Let L be a finite residuated lattice. Then CE(L™) =
(CE(L7),-,V) is a lattice and ConL = (CE(L7)).

Proof: It’s easy to see that CE(L7) is a lattice and that z = 2y & a <

b avb=0b.

Let ¢ : CE(L™) = CNS(L), be defined by ¢(a) = [a, e/al.

¢ is well defined, by the lemma above.

¢ is one-to-one: ¢(a) = ¢(b) = [a,e/a] = [b,e/b] = Ala,e/a] = \]b,e/b] = a =

b.

It is onto: Let N € CN'S(L). By the previous lemma N = [a, ¢/a], for some

ac CE(L).

Order reversing : a < b=>[a,e/a] > [b,e/b].

Order anti-reflecting: [a, e/a] C [b,e/b] = Ala,e/a] > A[b,e/b] = a > b.
Thus, ¢ is a lattice anti-isomorphism and since ConL and CN'S(L) are

isomorphic, we get the desired result. °

Of course, the situation is simpler in the commutative case.

Corollary 1.16 Let L be a finite commutative residuated lattice. Then
E(L™) is a lattice with multiplication as meet and ConL = (E(L7))7.
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2 Decision problems

2.1 Basic notions

A certain amount of ingenuity is required to solve a general class of prob-
lems that hasn’t been considered before. Usually a theory is developed as a
consequence and algorithms can be used to solve any instance of the general
problem. An algorithm is to be understood as a program, i.e. a finite list
of instructions, for an ideal computer, written in a formal language. The
existence of an algorithm for a problem makes the latter trivial in principle,
because no ingenuity is required for the solution, but instead mental disci-
pline and sufficient time from the “executor”, who could be a human or a
fast enough and big enough in memory computer. What is not trivial is
to come up with an algorithm if it exists; considerations on efficiency come
later. A general problem is “hard” if there is no algorithm for it, because
an individual solution has to be invented for each instance of the general
problem. Thus it is important to know whether an algorithm exists or not;
this question is usually called a decision problem.

A lot of “models” for an algorithm have been proposed. The most stan-
dard one is that of a Turing Machine, while, amazingly enough, all other
reasonable models considered have been proven to be equivalent to it.

A Turing Machine, invented by and named after Alan Turing, is an ideal
machine consisting of i) an infinite, one dimensional tape divided into discrete
square boxes, each capable of storing a letter from a fixed alphabet X, with
a distinguished letter for the empty symbol, ii) a head, pointing at one box
at a time, able to read the contents of a box, overwrite a letter in a box or
move to one of the two adjacent boxes at a time, iii) a program or list of
instructions of the form (q,a) = (¢',a’, M), where ¢,q' € @, the set of all
possible internal states of the machine, a,a’" € X and M € {R, L}, according
to which the machine, being in the internal state ¢ and reading the letter a
in the box which the head is pointing at changes state to ¢’, writes the letter
a’ in the box and moves to the left or right if M = R or M = L, respectively
and iv) an initial state gy € @, in which the machine is when we start the
computation.

A Turing Machine halts at a state g, if there is no instruction of the
form (q,a) F (¢',a’, M). This situation is to be understood as a successful
recognition of the contents written on the tape before the machine started
“working”. If the original content of the tape was a word w, the head was
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pointing on the leftmost letter and the Turing Machine halts when the head
is pointing at the leftmost letter of a word u, we say that u is the value
of the Turing Machine for input w. Thus, a Turing Machine T'M defines a
partial function from X™ to itself, which is symbolized T'M, as well; of course
different Turing Machines can define the same function. Partial functions
defined by Turing Machines are called computable or (partial) recursive.

A Turing Machine is called deterministic if there are no two instructions
(g,a) F (¢',a’, M) and (q,a) - (g, @, M) such that (¢',a’, M) # (g,a, M). If
a Turing Machine is not deterministic then it defines a function from X* to
P(X™*). Such a Turing Machine halts at a w € X*, if TM(w) # 0. The
Turing Machine 'recognizes’ all the values of the domain of the function it
defines. It can be shown that deterministic and non-deterministic Turing
Machines have the same recognition power.

In the case when X = {0, 1}, we call a set R C N recursive if there is a
Turing Machine that defines the characteristic function of R, i.e. if there is
an algorithm that decides whether x € R or not, for every x € X*. R is called
recursively enumerable if there is a Turing Machine , such that TM(z) = 1 if
x € X*, i.e. if there is an algorithm that “answers” affirmatively if an element
is in R, but possibly never “stops” otherwise. Obviously, R is recursive iff
both R and N\ R are recursively enumerable.

A Turing Machine can also be viewed as a rewriting, or semi-Thue, sys-
tem RS, i.e. an alphabet X together with a set R of rules of the form u — v,
i.e. R C (X*)% The relation = gs or simply = is defined by: v =y iff
u = zzw,v = zyw, =,y,z,w € X* and r — y , for u,v € X*. A Thue
system is just a semi-Thue system such that for all words w,v, if (v — v)
then (v — u). The transitive closure of = is symbolized = . It can eas-
ily be seen that a rewriting system RS = (X, R) captures the notion of a
Turing Machine when the following are true for it:

i) X is the disjoint union of the state alphabet, @, and the tape alphabet, T
ii) The initial state go € @, the final state gr € @, the boundary marker
# € T, the blank symbol B € T and the terminal alphabet Ty C T, T; # ()
are fixed.

iii) The elements of R are of one of the following forms

a) qa — ¢'b b) qac — aqgc c) qa# — aqgBF# d) cqa — qea €) #qa — #qBa,
where q,¢' € Q,q # gr and a,b,c € T\ {#}.

iv) For every pair (g, a) either there are no productions of the forms (b) and
(c) or if a production of the form (c¢) exists then productions of the form (b)

exist for all ¢ € T'\ {#}.
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v) The same condition is true for productions of the forms (d) and (e).

vi) For every pair (q,a) there are no two productions of the forms (a), (¢)
and (e).

The Turing Machine halts at w iff there are words wy, w,, such that #quw# =
H#Fwi1qrwF.

Another “machine” of the same recognition power is a register machine
or Minskii Machine. A Minskii Machine consists of a finite set of counters
capable of storing natural numbers. The actions that the machine can per-
form are to increase the contents of a counter by one, or decrease it by one,
provided that it is not empty. These actions are organized in a program, a
labeled finite list of commands of the form 7 : R; + 1 (k) or ¢ : R; — 1 (k)({).
The intended meaning of the two types of commands in the line ¢ is add 1 to
the counter E; and move to the command on line k, and subtract 1 from the
counter R; and go to command £, if it’s not empty or otherwise go to line
[, respectively. Moreover, there is a command STOP. The machine halts if
the command STOP is reached. The input of a machine is the number in R,
if the other counters are empty, while a set S C N is accepted by a Minskii
Machine iff the Minskii Machine halts for every input x € S.

A Turing Machine or a Minskii Machine are definitely what one would
call an algorithm. But, are there algorithms that cannot be simulated by
these machines? Do we successfully capture the notion of an algorithm us-
ing machines? There is no way such an assertion can be proven, since it
cannot be even expressed in a formal language as long as the word “algo-
rithm” is not defined. This is a question of relating a mathematical no-
tion to an intuitive one and it should be taken only on faith if at all. The
facts, though, are for the acceptance of such a statement. As mentioned
before any other reasonable model for an algorithm can be captured via a
Turing Machine and every procedure that would be characterized as an al-
gorithm has a Turing Machine formalization. Thus, the assertion that “a
Turing Machine is a sound and adequate model for the notion of an algo-
rithm”, stated by Church, is widely accepted among mathematicians and is
known as Church’s Thesis.

Now that we have a model for an algorithm, we can formulate decidabil-
ity questions, i.e. questions about the existence of an algorithm that would
answer 'yes’ or ‘no’ for specific instances of a problem. The first problem that
one could deal with is the halting problem. The halting problem for Turing
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Machines is decidable if there is a Turing Machine that when given as input
a pair of a Turing Machine TM and one of TM’s inputs z, it outputs “yes”
if TM halts at z and “no” otherwise.

Theorem 2.1 The halting problem for Turing Machines is undecidable.

This result is the most basic undecidability result and other such results
are based on it. More specifically, other undecidability problems are reduced
to this one, i.e. one proves that if the problem under consideration were
decidable then the halting problem would be so, also. This is usually done by
interpreting a Turing Machine in the structure at hand, that is constructing
a Turing Machine inside the given structure. Once an undecidability result
has been proven for a specific structure, it in turn can be interpreted in
other structures to prove related new undecidability results. This is exactly
the aim of this chapter. In all three cases the problems are reduced to the
undecidability of the word problem for semigroups. But, let’s first see what
a word problem is.

Let X be a finite set, the alphabet, L be a language, i.e. a ranked al-
phabet L = (L, f), (a set, L, together with a function, f : L - N), R a
finite subset of (TL(X))?, where Tr(X) is the set of all terms on X in the
language, L, 7 a finitely axiomatized equational theory on L, and Az(T) a
finite axiomatization of it. Then the system RS = (X,L, R, Az(T)) is called
a generalized rewriting, or semi-Thue, system in the theory 7. (u,v) € R
is symbolized u — v. The relation = gs or just = is defined by u = gsv
iff u=t(x),v="=(y), (t,t') € T, and = — y, for some z,y,t € TL(X), for
u,v € Tp(X), while its transitive closure is symbolized = . A semi-Thue
system such that for all terms u, v, if (u — v) then (v — u), is called a Thue
system.

The word problem for a finitely axiomatized theory 7 on a language, L,
is solvable iff for all pairs of Thue systems RS = (X,L, R, Az(T)) and
(u,v) € (TL(X))?, there is an algorithm deciding whether v = gsv, or not.

Theorem 2.2 The word problem for semigroups is unsolvable.

Proof: See [RS] or any other textbook on Decision Problems. In the proof
one makes use of the unsolvability of the halting problem and the definition
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of a Turing Machine as a semi-Thue system. o

Undecidability results about modular lattices, distributive lattice-ordered
semigroups and relational algebras have been proven using essentially the
same idea. In what follows we present a similar new result for distributive
residuated lattices and try to reveal the analogies in the proofs.

As it can be seen from the proofs the main idea in all of them is to reduce
the decidability question for the algebra in consideration to the analogous
one for semigroups, for which the equational theory has been shown to be
undecidable and the word problem unsolvable.

2.2 Undecidability results

The key vehicle that carries a semigroup into a lattice-ordered structure is
the notion of an n-frame. This concept was first defined by von Neumann
in the context of his celebrated Coordinization Theorem in [18]. [1] gives a
very nice picture of the intuition behind this notion and mentions some of
the structures for which it has been used, in a different form each time.

2.2.1 Modular lattices.

We begin with the original definition due to von Neumann as stated in [13].

Definition 2.1 A (normalized) n-frame in a modular lattice L is an n X n
matrix, C' = [¢;jlijen,, ¢; € L, (each ¢; is called a; and A{a; |i € N,} is
called 0), such that:

i) V{ai e € I} AN \Ha; |t € 1} =0, VI C N, (independence of the a;s)

i) ¢;j = ¢ji, V1,5 € N, (symmetry)

111) a; \% a; = a; V Cijy \V/’L,] € Nn

iv) a;Neij =0, Vi, € N, i # j

v) (e Vejp) A (a; Voag) = ¢, for all distinct triples ¢, 5,k € N,,.

Remark 2.1 We write [¢;;] instead of [¢;;]i jen,, where n is understood. e
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Figure 1: The geometric meaning of a 3-frame.

The following examples [1] give some idea of the motivation for the defi-
nition.

Example 2.2 Consider the real projective plane P. The lattice L of sub-
spaces of P contains points, projective lines, P and ), ordered under inclusion.
Then, A is just intersection of subsets of P, while the join of two projective
subspaces is the least subspace containing both of them. Modularity of L
is well known and easy to establish. A 3-frame, see Figure 1, will consist
of essentially six points: a1, as, as, 12, €13, ca3, because of (ii). Condition (i)
stipulates that a;, az,as are not collinear , ¢;; has to be on the line a; V a;,
by (iii), while, by condition (v), ¢12, 13, ca3 are collinear; actually c¢;; is the
point of intersection of the lines a; V a; and ¢;; V cjp.

o

Example 2.3 Let V be an n-dimensional vector space over R, {e; i € N, }
an orthonormal base of V| a; = (e;), the subspace generated by e;, and
¢ij = (e; —e;). Then [¢;] is an n-frame in the lattice L of subspaces of V. e

Let’s see now how a semigroup can be defined from an n-frame.

Definition 2.2 Let [¢;;] be an n-frame in a modular lattice L. Define
i) Lij={z€LjzVaj=a; Va; and x Na; =0}, Vi,j €N, 1 #J
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11) b®2]k d= (b\/ d) A ((12' V ak), \V/b € Lij,d € L]'k
ii1) b @45 d = (b Qiji cji) Qirj (Chi Qpij d), Vb, d € Ly;

Remark 2.4 As Freese points out, in [8], b @;; d = [((bV ¢ji) A (a; V ag)) V
((cki\/d)/\(ak\/aj))] /\(ai\/a]-). [

Remark 2.5 The definition of b ®;; d differs from [18] and [13]. There
it is not defined for elements of L;;, but for L-numbers. An L-number (3
in an n-frame C is a set indexed by {(¢,7)| ¢,7 € N,, ¢ # j}, such that
(B)kn = (B8)ijP(i,7,k,h), where (3)rn symbolizes the (i, 7)-coordinate of 3
and P(z,7,k, h) is the composition of the two perspective isomorphisms with
axis ¢j; and ¢ . Lemma 6.1 of [18] guarantees that one can work with the
fixed (1, j)-coordinates of L-numbers instead of them, since given ¢,5 € N,
the correspondence between 3 and (3);; is a bijection. Moreover, this bijec-
tion between L-numbers under the multiplication defined in [18] and (L;;, ®;)
is a semigroup isomorphism, as it can be deducted from Lemmas 6.2 ,6.3,
Theorem 6.1 and the appendix to Chapter 6, Part II of [18]. Freese, in [8],
is the first one to use ©;; instead of multiplication of L-numbers. °

Remark 2.6 The notation is different from all the sources mentioned above,
which have differences in notation among themselves. For example no one
uses A and V for meet and join, while [8] uses @ for ©. °

Let’s view the definition in the context of one of the examples.

Example 2.7 [;; is the set of all points z on the line a;Va;, (xVa; = a;Va;),
different from a;, (z A a; = 0).
b @i d is by definition the intersection of the lines bV d and «; V a;, for
be Lij,d e L.

b©;;d, b,d € L;; is the (von Staudt) product, see Figure 2, of b and d
on the line a; V a;, where a; plays the role of zero, ¢;; is the unit and «; is
infinity. A bit of projective geometry is required to verify this assertion. e

Another operation, &;;, can be defined for points b,d € L;;, which gives
the (von Staudt) sum of the two points; see Figure 3.

Definition 2.3 Under the conditions of the previous definition,
b @ij d= [((b V cik) A (CL]' V ak)) V ((d V ak) A (aj V cik))] A (ai V CL]‘).
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a; Cij d b b ®z'j d a;

Figure 2: The geometric meaning of ©;;.

Figure 3: The geometric meaning of &;;.
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The set L;; isn’t just a semigroup under (;;, but a ring with unit.

Theorem 2.3 (Von Neumann) Let C = [¢;;] be an n-frame in a modular
lattice L, where n > 4. Then Ry; = (Lij, ®4j, ©ij, ai, ¢ij) is a ring for all
1,7 € N,,1# 7. Moreover, all rings R;; are isomorphic.

Proof: See [§] or [18]. .

In view of the last statement of the previous theorem the choice of indices
1,7 in R;; is inessential.

Definition 2.4 Riy = (L3, P12, ©12, a4, ¢12) is called the ring associated
with the n-frame C of L.

Definition 2.5 For be a vector space, V, denote by L(V) the set of all
subspaces of V.

Remark 2.8 It is well known that L(V) = (L(V), A, V) is a modular lattice,
where meet is intersection and the join of two subspaces is the subspace
generated by their union. o

The last bit of machinery required to establish the undecidability of the
theory of modular lattices is the following.

Lemma 2.4 (Lipshitz) Let 'V be an infinite-dimensional vector space. Then,
i) L(V) contains a 4-frame, C, and

ii) Any countable semigroup is a subsemigroup of the multiplicative semigroup
of the ring associated with C.

Proof: See [13]. .

Now the mail result in [13] is easy to prove.

Theorem 2.5 (Lipshitz) The word problem for modular latlices is unde-
cidable.
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Proof: Let S =(S,:), S = (x1,29,...,2,] 11 = 51,...,7% = 5i), be a finitely
presented semigroup with unsolvable word problem; see [16]. Now let L be
the modular lattice defined by the following presentation:

Generators: a7, 25, ..., 2., ¢ij, 1,] € Ny
Relations: i) Equations (i)-(v) of definition 2.1 for n =4 (i.e. C' = [¢;;] is an
4-frame)

i) ziVay=a; Vay and i ANay =0, Vi € N, (i.e.z} € L13)

i) r(T) = s,(7), Vi € Nk, where ¢(@) denotes the evaluation of ¢ in a semi-
group G at @ = (a1, ...,a,), a; € G, for every semigroup term ¢(7).

Let R(Z) be the conjunction Ajen, ri(T) = s;(T) and R'(Z',C) the conjunc-
tion of the relations in the presentation of L. Also, denote by SG and ML
the theories of semigroups and modular lattices, respectively.

Claim: For all semigroup termsr, s, SG |= (‘v’y)(R( )= r(Y) =s(7)
ML £ (77, CY(R(3.C) — 1(7) = 5(3)).

Proof: “=". It suffices to show that L | r(Z') = s(z’'). Since R'(7',C)
is satisfied, C' is a 4-frame in L, 2} € L1y and r;(7') = 5,(7'), i.e. R(Z'). But,
then, by Theorem 2.3, L1, is a semigroup and by hypothesis if a semigroup
satisfies R(T), it also satisfies r(T) = s(T). Thus, r(T') = s(T') is true in Lis.

e 1SG ¥ ()(RE) = () = s()) then SG = (3R)(R()
r(y) = s(y)). Thus, S £ r(7) = s(T). But, by Lemma 2.4, S is embed-
dable, via f, say, into the multiplicative semigroup of the ring, P, associ-
ated with a 4-frame in L(V). So, r(f(7)) = s(f(T)) is false in P, where
f(@) = (f(z1),..., f(z,)), and thus also false in L(V), if viewed as a lat-
tice equation. Moreover, L(V) E R'(f(T ),C’), if we take (' as the above
mentioned 4-frame : (i) of R'(T is obvious, (ii) is true, since f(z;) € P,

0
which plays the role of L5 and (iii) holds because it holds in S for Z. Thus,
L(V) | (37, C)(R(7,C) A r(7) # (7). hence L(V) £ (g, O)(R'(,C) —

r(y) = s(v)), i.e. ML E Vg, C)R'(y,C) — r(¥) = (7)), because L(V) is
a modular lattice.

If the word problem for ML were decidable then the one for SG would also
be decidable, a contradiction to Theorem 2.2. Thus, modular lattices have
undecidable word problem. °

[8] uses the notion of an n-frame to show that the word problem for the
free modular lattice, F M(5), on five generators is unsolvable. Using a quite
complicated construction the word problem for groups is reduced to the word
problem for F'M(5). A group with undecidable word problem is obtained as
a quotient of an isomorphic copy of a subgroup of the ring associated with a
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particular n-frame of F'M(5). For details, see [8].

2.2.2 Distributive lattice-ordered semigroups and distributive resid-
uated lattices.

It seems that the notion of an n-frame, appropriately modified, can be ap-
plied to a lot of algebras that have a lattice reduct. Urquhart in [17] uses
it to prove that the word problem for certain varieties of DL -semigroups,
which he calls just DL-semigroups, is undecidable. The undecidability proof
he gives for DL -semigroups works, with a slight change for DL-semigroups
and, not surprisingly, for distributive residuated lattices. Thus, we give the
details of the proof for the last case.

Just for completeness, we give the definition of a DL-semigroup.

Definition 2.6 A distributive, lattice-ordered semigroup (DL-semigroup) is
an algebra (L, A,V, -}, such that

i) (L, A, V) is a distributive lattice

ii) (L,-) is a semigroup and

iii) a(bVe) =abVac and (bV ¢)a =baV ca, Va,b,c € L.

Definition 2.7 A DL, -semigroup is an algebra (L,A,V,-, L), such that
(L,A,V,-) is a DL-semigroup, L is the least element of the lattice and
a-1l=1-a=1,Vae L.

Remark 2.9 Obviously, a distributive residuated lattice has a DI-semigroup
reduct. o

First we modify the definition of an n-frame, to suit our purposes; this
will cause no confusion since this definition will be used only for this section.

Definition 2.8 An n-frame in a residuated lattice L is an n X n matrix,
C = [¢ij], ¢ij € L, (each ¢;; is called a;), such that:

1) a;a; = a;dsg, \V/Z,] € Nn

i) TTA1 A TT Az =TI(A1 N A), VAL, Ay C {ay,az,...,a,}, where [T0 = ¢
i) a? = a;, Vi € N,

V) ¢ijcik N aap = ci, for all distinct triples ¢, j,k € N,
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V) Cij = Cji, \V/Z,] € Nn
Vl) Cija; = azay, VZ,] € Nn
vii) ¢ij Naj =€, Vi,j € N,

Definition 2.9 Let a be an element of a residuated lattice L. Then, a is
called modular iff (Vb,c € L)(¢c < a= ¢(bAa)=cbAa and (a Ab)e = aAbe).

Definition 2.10 An n-frame, C', of a residuated lattice L is called modular
iff [T A is modular VA C {ay, az, ..., a,}.

The following definition bears no surprises.

Definition 2.11 Let [¢;;] be an n-frame in a residuated lattice L. Define

i) L;; ={z € L|za; = a;a; and z ANa; =€}, Vi,j € N,,i #j

11) b ®ijk d= bd/\ a;a, \V/b € Lij,d € ij

111) b®¢] d= (b ®z’jk Cjk) ®ikj (Cki ®kij d), \V/b, d € Lij and for all distinct triples
i, 7, k.

Remark 2.10 The definition of ©;; doesn’t depend on the choice of &, as
will be shown in the lemma below. °

Remark 2.11 If b € L;;, then b < a;a;, since b = be < ba; = a;a;. °

We need to establish a theorem like Theorem 2.3. Here we prove a lemma
that will lead to the associativity of ;.

Lemma 2.6 Let ¢ = [¢;;] be a modular 4-frame in a residuated latlice L.
Then,

iIfb e Li; andd € Ljy, then b®;xd € Lig, for all distinct triples i, j, k € N,,.
ZZ)]fb,d € Lij, then bQZ] de Lij, \V/Z,] € Nn,Z 7£ ]

ZZZ)]fb € Lij,d € L]'k and f € Ly, then (b sk d) Qi [ =0 &sj1 (d @kl f);
for all distinct quadruples @, 7, k,l € N,,.

i) If b,d € Lij, then (b ®ijk ¢jr) Qikj (cki Qkij d) = (b @1 ¢j1) Qi (cii Ruij d),
for all distinct quadruples v, 7, k,l € Ny.

v) If b,d, f € L1, then (b®12d) ©12 f =b©12 (d ©12 f).
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Proof: 1) (b ®ijk d) A ap = bd N a;ap A A ———=—==—=—== bd N ap S

(%

bd A a;ag (;) (ajak A b)d :) (ajak A a;a; A b)d —==== a; A b)d (:::_:) d
(*): ajag is modular and d < ajag, since d € L.
(**): b=0bA a;a;, since b € L;.

(dELJk)

So, (b Qijk d) Nayp = (b sk d) A az < dap === e.

Moreover, e = eeAeeNe < bdAa;apNay = (b®ijrd)Nay, thus, (b&rd)Nay = e.

(b @ijk d)ax = (aiay A bd)ay © giax A bday, S22 g0, A bajay, Ol ian A
((i1)ofDef. 2.11)

a;a;ap =====" ;0

Thus, b sk dcl.
ii) Obvious from (i).
111)(b ®ijk d) ikl f = (bd A aiak)f N a;a; (;) (bd A a;a;0p A aiaka;)f N a;a; (*:*)

(e

(bd/\ aiakaz)f/\aial = ) bdf/\aiakal/\aiag (;) bdf/\aiaz (;) bdf/\aiajaz/\aial =

b(df A aiajal) A a;a; = b(df N a;a;a; N a]-aka;) A a;ag (;) b(df A ajal) A a;a; =

b®iji (d@ju f),

(*): Condition (ii) of Def 5.8

(**): be Lij,d € L]‘k = bd < a;a;0;0) = A;0;0)
(***): Modularity of a;ara; and f < ara; < a;a;a.
V) (2 @ik k) Qing (i Crij y) = (2 Qijr (¢t Qi k) Rikj (Cri Qrij y) =
((z @41 ¢j1) @k ar) Pirj (chi Qrij y) = (2 Qiji ¢i) Ritj (cik Qugj (cri Opij y)) =
( @iji cjt) Daj ((cix i cri) @uij y) = (T Quji ¢j1) Qatj (i Duij y)-

v) First note that condition (iv) of the definition of an n-frame can be written
as Cp5 = Cpp @5 Crs, for all distinet triples r, ¢, s € N,,.

(b ®12d) 12 [ = [((b @123 €23) R132 (€31 R312 d)) D123 €23] D132 (€31 D312 f) =
[((b @124 €24) P42 (€41 Ra12 d)) P123 €3] P32 (€31 R312 f) =
[(b @124 C24) @143 ((ca1 Pa12 d) Rass 23)] @132 (€31 @312 f) =
(b @124 c24) D142 [((ca1 D412 d) Ra23 €23) @32 (€31 D312 )]
(b @124 c24) D142 [(ca1 D13 (d 123 €23)) Paz2 (€31 D312 )]
(b @124 c24) D142 [€a1 Da12 ((d R123 €23) D132 (€31 D312 [))]
(b @123 €23) D132 [€31 D312 ((d ®123 €23) D132 (€31 D312 [))]

b2 (d©1a f) e

Corollary 2.7 Let C = [¢;;] be a modular 4-frame in a residuated lattice L.
Then, S;; = (Li;, ®i;) is a semigroup for all 1,5 € Ny, i # j.

Lemma 2.8 Let L be a distributive residuated lattice, with a top element,
T, and a bottom element, B. Ifa,a,€ L, a* < a,aa <a,aa <a,aNa= B
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and aVa=T, then, a is modular.

Proof: let b,c€ L,c <a. Then, (a Ab)c < ac< a?* <a and (aAb)c < be
thus, (a A b)e < a A be.
On the other hand, aAbec = a A(DAT)c = aA(bA(aVa))c =aA((bAa)V (bA
a))c=aA((bAa)eV(bAT)e) <aA((bAa)eVaa) < (aA(bAa)e)V(aNa) <
(bAa)eV B =(bAa)c.
Thus, aAbe = (bAa)c. Similarly, we get the other condition aAch = c¢(aNb). o

Remark 2.12 Let V be a vector space. For A, B € Ly =P(V)let ANB =
ANB,AVB = AUB,AB ={a+bla € A,y € B}, A\B = B/A={c|{c}AC
B}, € = Ov.

It’s easy to see that Ly = (Lv,A,V,- e, \,/) is a distributive residuated
lattice. Additionally, L(V) is a subset of Ly but L(V) is not a sublattice
of Ly. Nevertheless, (VA € Lv)(A € L(V) ¢+ e < A and AA = A),
AL(v) = ALy and VL(V) = ‘Ly- °

Theorem 2.9 Let V be a variety of distributive residuated lattices, contain-
ing L, for some infinite-dimensional vector space V. Then, there is a finitely
presented lattice L € ¥V, with unsolvable word problem.

Proof: Let S =(S,-), S = (x1,29,..., 2, 71 = S1,..., 7k = Sg), be a finitely
presented semigroup with unsolvable word problem (See [16]). Now let L be
the distributive residuated lattice with the presentation described below:
Generators: @, xh,...,2%, ¢;j, (1,7 € Ny), T, L, [TA, (A € A(C)), where
A(C) = P({a1,az,as,as}).

Relations: i) Equations (i)-(v) of Definition 2.8 for n = 4 (i.e. C' = [¢;5] is an
4-frame)

i) ziay = ajay and i Nay=-¢€, Vi € N, (l.e.z} € L13Vi € N,)

i) r(7') = s,(7'), Vi € Ny, where ¢(@) denotes the evaluation of ¢ in a semi-
group G at @ = (a1, ...,a,), a; € G, for every semigroup term ¢(T).

W) L2= 1, T2=T=T/L=1/1=1\T=1\L, L<e<T,L<z<
T, Lz =x1 = 1, for every generator z.

v)2? < z,27 <7, 7¢ <T,2ANT= L1, 2VvVT =T, for all z of the form
[TA,Ae AC).

Let R(Z) be the conjunction A, (%) = i(Z) and R'(T,C, A(C), L, T)

the conjunction of the relations in the presentation of L. Also, denote by SG

27



and DRL the theories of semigroups and distributive residuated lattices,
respectively.

Claim: For all semigroup terms r,s, SG = (V9)(R(y) — r(y) = s(y)) <
DRL = (v, C)(R'(F, C, A(C), L, T) — r(7) = (7). :
Proof: “=-". It suffices to show that L |= r(7') = s(7’). Since R'(Z',C, A(C),
1,T) is satisfied, by (i), C is a 4-frame in L and by (ii) ! € Li2. Now we
can prove, using (iv), that L < w < T, for every word, w, in the generators.
We first prove that L < w and lw = wl = L for all words, w, in the
generators, using induction on the complexity of w:

The statement is true for the generators an for e.
If the statement is true for words u,v, i.e. L <wu,v and Llu=ul = Llv =
vl = 1 then;
-Ll(uVv)=LluVlov=_1 and (uVv)L=_1.Also, L <uVow.
-l <uAvand L< 11 <l1l(uAv)<luAlv=_1, while(uAv)L=_1
is proven in a similar way.
-1 <11 <wv and Lluv = Lv = L, while the other products equal L,
also.
-lv=1<wu=1 <uwufv, thus,L < 11 < L(u/v) and L < (u/v)L
Moreover,
Llu/v)<(Lu)fv=L/v <1/l =T=ufo<I\T=L\L=1/1= 1(u/v) <
1 and (u/v)Ll < L.
Thus, L(u/v) =L and (u/v)L = L. For left division we work analogously.
Thus, L is the bottom element of L. So, T = L/L is the top element of L.
Now, by (v) and Lemma 2.8, [T A is modular, for all a € A(C), while by
Corollary 2.7, (L12, ®12) is a semigroup and, by (iii), satisfies R(Z'); thus, by
hypothesis it also satisfies r(7') = s(7').

<7, 1 SG 1 (Vg)(R(3) - 1(7) = 5(7)) then SG b= (F)(R(F) A r(7) =
s(y)). Thus, S £ r(T) = s(7). But, by Lemma 2.4, S is embeddable,
via f, say, into the multiplicative semigroup of the ring, P, associated with
a 4-frame in the modular lattice L(V). So, r(f(Z)) = s(f(T)) is false in
P, where f(7) = (f(x1),..., f(z,)), and thus also false in L(V), if viewed
as a lattice equation. Moreover, by the remark preceding the Theorem,
r(f(T)) # s(f(T)) in Ly, if Vlewed as a residuated lattice equation. On the
other hand, Lv = R'(f(%), C JAC ) T), if we take C as the above men-
tioned 4-frame, P as L, V as T and V —zas T, forall T € A(C ) Indeed, (i)
and (iv) of R'(f(), CA',X(CA'), 1, T) are obvious, (ii) is true, since f(z;) € P,
which plays the role of Lis, (iii) holds because it holds in S for T and (v) is re-
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ally easy to check. Thus, Ly |= (37, C)(R'(7,C, A(C), L, T)) Ar(y) # s(7)),
hence Ly £ (Vy, C)(R'(y,C, A(C), L, T) — r(¥) = s(7)), i.e. DRL [~
(Vy, C)(R'(y,C, A(C), L, T) — r(y) = s(¥)), because Ly € V.

If the word problem for V were decidable then the one for SG would be de-
cidable, too. Thus, V has undecidable word problem. .

Corollary 2.10 The word problem for distributive residuated latlices is un-
solvable. Hence, the quasi-equational theory of distributive residuated lattices
is undecidable.

Corollary 2.11 The word problem for distributive commutative residuated
lattices is unsolvable.

2.2.3 Relational Algebras.

Let’s see the role an n-frame plays in decidability results for certain varieties
of relational algebras. All of this section is taken from [1].

Definition 2.12 A relation algebra is an algebra A = (A,V,—,-, ", 1), such
that:

i) (A,A,V,—,0,1) is a Boolean Algebra, where a Ab = —(—a V —b) and
0=-1

ii) (A,-,1) is a monoid

iii) (a”)”Y = a and (ab)” =b"a", Ya,be A

iv) a(bVe)=abVae, (bVc)a=baVca, (aVb)”=a"Vb" Va,bce A
v)a“(—ab) < —b, Va,be A

Remark 2.13 The order of the operations is -, ©, —, A, V. °

3

Example 2.14 Let U beaset,a,b € A CP(UxU),aVb=alUb,—a=JA\
a,ab={(z,2)|(z,y) € a,(y,2) € b},a” ={(z,y)|(y,2) € a},1 = {(z,2)]z €
U} and A be closed under these operations. Then, A = (A,V,—,-, " 1) is a
relation algebra, called a set relation algebra on U. If A = P(U x U), then
A is called the full set relation algebra on U, in symbols A = R(U). The
~reduct is denoted S(U) = (A, ) . o

Definition 2.13 If a relation algebra is isomorphic to a set relation algebra,
it is called representable.
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Definition 2.14 Let G = (G, -, 7' €) be a group. For X,Y € P(() define:
XVY=XUY, - X=G\X, XY ={aylze X,ye Y} X’ ={a7z €
X}, 1 ={e}. If A C P(G) is closed under these operations then A =

(A,V,—,-,%, 1) is called a group relation algebra on G, or the complex algebra

on G and is symbolized by A = Cm(G).

Remark 2.15 If we define h* = {(g,9h)| g € G}, then the map H
U{r*| h € H} is an embedding of Cm(G) into R(G). Thus, any group

relation algebra is isomorphic to a set relation algebra. o

The third version of the definition of an n-frame in the context of relation
algebras is given below.

Definition 2.15 An n-frame in a relation algebra A is an n X n matrix,
C = [cij], cij € A, (each ¢; is called a;), such that:

i) at = a;, Vi € N,

i) aiafal A a;aia; < azayp, for all distinct quadruples 4, 5, k,1 € N,

iii)e;jcin A azap = cig, for all distincet triples ¢, j, k € N,,.

Remark 2.16 It is obvious that very little is required from an n-frame. The
idempotency and commutativity of the a;s with respect to multiplication, the
symmetry of the ¢;;s and the conditions ¢;;a; = a;a; and ¢;; Aa; = e A q
have disappeared, while the independence of the a;s is substantially weaker.
o

Even the definition of the L;;s is different.

Definition 2.16 Let [¢;;] be an n-frame in a relation algebra A. Define
1) Lij:{x€A|x§ai\/a]’}, \V/Z,]ENTL,Z%]

11) b ®ijk d=bd N a;a, Vb € Lij, d € L]'k

i) b @y d = (b®@ijk ¢ji) Qinj (cri Qnij d), Yb,d € Ly

iV) b @ij d == [(bcik A (Cl]‘ V ak)) V (dak A CL]'CZ';C)] A a;a;.

The following example illuminates the definition in the new context.
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Example 2.17 Let G = (G,-, ~',€) be a group. Then, C' = [C};] is an
n-frame in Cm(G"), where

A;={z € G"|z(k) =0, Vk € N, \ {i}}, Vi € N,.

Cij ={r € G"|z(i) = —x(j) and z(k) =0,k € N, \{¢,j}},Vi,7 € N,,i #
J. (z(k) is the k-th coordinate of x € G™.)

Since, A; - A; ={(0,...,0,a,0,...,0,b,0,...,0)| a,b € G}, where a,b appear in
the i-th and j-th position, respectively, encodes the universal relation G x G,
L;;, being the powerset of A; - A;, encodes all binary relations on G. In
general, for every R € P(G' x () and 1,57 € N,,,i # j, define R;; = {z €
G"| z(1) = a,xz(y) = —b and z(k) =0, Yk € N, \ {1,75},(a,b) € R}.

It’s €asy to check that Rij ®ijk S]‘k = (RS)Z]C and Rij Gij SZ = (RS)”, for
all distinct triples ¢, 5,k € N,,, reminding us again the strong bond between
L-numbers and their coordinates, which uniquely determine them. Here the
L-number R, having as coordinates (R);; = R;;, could be identified with R
or with any of the R;;s, once a pair (i,7), ¢+ # j has been fixed. R;; ®i; Si;
is just the (i, 7)-coordinate of the L-number, having R;; ®;;x Sjr as its (¢, k)-
coordinate, where S;i is the (j, k)-coordinate of the L-number, that has S;;
as its (7, j)-coordinate. This in exactly the idea behind the simplification of
L-numbers to elements of an arbitrary but specified “line” (1, j).
Conversely, for X C A;, A;, define Rx = {(z(2),z(j))| = € X}. Obviously,
(RX)ij = X and RSU = S, vX - AZ',A]',S € p(G X G)

It’s easy to see that (L1, ®12) is a semigroup and that the map S — Siy is
an isomorphism between Sg and (L2, ®12). This fact is not circumstantial,
as we will see. o

To be able to interpret semigroups into relation algebras we need to es-
tablish the associativity of ©;;. This task is easier in the current context
because of the simplicity of the definitions.

Lemma 2.12 Let ¢ = [¢;5] be a 4-frame in a relation algebra A. Then,
iIfb e Li; andd € Ljy, then b®;xd € Lig, for all distinct triples i, j, k € N,,.
ZZ)]fb,d € Lij, then bQZ] de Lij; \V/Z,] € Nn,Z 7£ ]

ZZZ)]fb ~ Lij,d € L]‘k and f € Ly, then (b ik d) Qi [ =0 ] (d @ikl f);
for all distinct triples 1,5, k,l € N,.

iv) ]fb, d,f € Lij; then (b O d) O f = b®2] (d O f), \V/Z,] € Nn,l 7£ ]

Proof: (i) and (ii) are completely straight forward, (iv) has exactly the
same proof as in Lemma 2.6, while (iii) has a different proof because of the
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differences in the definitions.

We’ll make use of the following facts, which are true in every relation algebra.
(I) 21 < 2y and y1 < yo = 2191 < T2y»

(I zy Az < z(yAz2) Az

(1) 2y Az < (x A zy®)y A z

Claim (b ®;jx d) Qixr f = bdf N a;a

Proof: (b®i;jk d) @irt f = (b ®ijk d) N a;ay (é) bdf A a;a;, because b ®;;, d < bd,
by definition.

On the other hand, f € Ly = f < ara;= [V ara; = ara; = (f V arpa))” =
(ara)” = f°V (ara))” = (arar)” = 2 < (apa))” = afaf = aar, = aaf° <
aia?ak

and be L;j;,d € Ljy =b< aa;,d < ajap = bd < aiafak.

Thus, bd A a;a; f* < aia?ak A azatay, < a;ay, by definition.

(I11)
Now, bdf A a;ja; < < (bd A ajarf°)f A ajar = (bd A bd A a;aif°)f N ajar <
(bd A a;ar) f N aa; = (b®ijk d) @i f, which establishes the claim.
Similarly, b @1 (d ;w1 f) = bdf A a;a;, which completes the proof. o

Corollary 2.13 Let C = [¢;;] be an n-frame in a relation algebra A, where
n >4. Then S;; = (L, ©ij) is a semigroup for all 1,5 € N,,.1 # j.

Definition 2.17 Si; = (L;;, ©12) is called the semigroup associated with
the frame C of A.

The following lemma is the analogue of Lemma 2.4.
Lemma 2.14 Let G = (G, -, 7' €) be an infinite group. Then Vn € N, there
is a 4-frame C|c;;] in Cm(G) with ¢;; finite subsets of G, such that S(N,,) is
embeddable into the semigroup associated with C'.

The main undecidability result for relation algebras is the following.

Theorem 2.15 Let V be a variety of relation algebras that contains an al-
gebra A with an infinite subsel, G, of pairwise disjoint elements, such that
9°g=h"h,Yg,h € G and G = (G,-,* ,€) is a group, where e = g“g,g € G.
Then, EqTh(V) is undecidable.
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Remark 2.18 The proof of the theorem follows a different approach than its
two previous analogues. It is stronger than the others, because it establishes
the unsolvability of the word problem for the free algebra in V and not just
for a specific algebra in V and still it is a weaker version of the theorem in
[1], which implies that any equational theory of relation algebras contained
in £qTh(V) is undecidable and is stated in the general case where V doesn’t
have to be a variety.. The proof exploits the nice properties of simple re-
lation algebras. For every open formula, ¢(T), in the language of relation
algebras there is an equation €4(7), on the same free variables,z, such that
Si(RA) E (VZ)(¢(T) > €4(T)). This fact helps establish the undecidability
of the equational theory of a class V of relation algebras, provided that one
can interpret finite semigroups into Si(V), i.e. any finite semigroup is em-
beddable into the semigroup associated with a 4-frame of some A € V. All
that remains to be shown is that this is the case under the conditions of the
last theorem. o

Corollary 2.16 The word problem for relation algebras is undecidable.

2.3 Decidability results

Definition 2.18 Let L be the signature of residuated lattices and 77, the
set of all residuated lattice terms. A sequent is a sequence of the form
WY1y ooy Yy 11(2), s () F H(Z), where & = (24, ..., 21), n,m,l € N, wis a
monoid word on its arguments and ¢4, ..., ¢,, are residuated lattice terms. An
instance of a sequent is obtained by substituting (t1x, ...t;x) for v and s; for
z;, 1 €Ny, k€ Ny, 1 € N, 55,1 € Tr. A Gentzen rule is a sequence of the
form I'y, ..., 1, T')g1, where m € N and T'; are sequents for all 7 € N,,,;; and
an instance of the rule is obtained by substituting instances of the sequents
in it. We denote the empty monoid word by ¢ and the empty sequence of
sequents by space. A Gentzen rule R is usually written in fraction notation:
M R. A Gentzen system is a set of Gentzen rules.

Let $'be a set of instances of sequents, I' an instance of a sequent and 5 a
Gentzen system. We call I' an immediate consequence of ¥ via S, if there
are I'y,....,I",, € ¥ and R € 5, such that w is an instance of R. We
say that I' is provable from ¥ via 5, if there is a sequence I'y, ..., I, = I'; such
that for all « € N,,, I'; is an immediate consequence of Y U{I'y,...,I;_1}, via
S. If T' is provable from () via S, we say that I' is provable in S.

We define the interpretation, [ |, of a sequence of terms, an instance of a
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sequent and an instance of a Gentzen rule in the following way.

["}/] = [(tl,tg, ,t[)] = tl . tz et tl, [E] = €,

[T = w1, s s 11(8) s s b)) F 4(S)] = (w([n], [ye]--[va]s 11(5), s (5)) <
[t(5)]), where w is the same monoid word as w where multiplication is the

one in residuated lattices, vx = (t1x,...ti,x) and s = (1, ..., Sk),

{w} = (([T4] and [I'3] and ... and [I,]) imply [I]).

Consider the following Gentzen system, G-

1 Jj{;i e—left  —— c—right
% Teft % - ight
J'y;(st/sﬁ)yéél—'_uu fleft :/ts [right
e TR TR
7(2‘/@% A left, f&% A lefty % A right

It is easy to check that if I' is provable in G, then RL = [T'], by verifying
that the interpretation of every immediate consequence of ¥ is satisfied, if the
interpretation of every element of ¥ is satisfied. But more than soundness
of the rules is true; the following completeness theorem is a restatement of
a theorem for a fragment of intuitionistic linear logic, proven in [15]. The
observation and the details are due to Peter Jipsen and can be found in [10].

Theorem 2.17 For a residuated lattice term p the following are equivalent:
i) RLEe<p
ii) ¢ F p is provable in G.

Proof: For a proof see [10] and [15]. o

Corollary 2.18 The equational theory of residuated lattices is decidable.
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Proof: lLet {,s be residuated lattice terms. Note that t = s < (1 < s
and s <1t) & (e < s/t and e < t/s). Thus, to decide whether ¢t = s
holds in RL it suffices to decide whether RL |= e < p, where p is a term.
By Theorem 2.17, this is equivalent to deciding whether ¢ F p is provable
in (G. But, provability in G is decidable, because if I' is provable then there
is a sequence of immediate consequences, of which I' is the last member.
There are only finitely many choices for the rule used in the last step. Actu-
ally, only the rules for which there is an instance with I' as the denominator
are candidates. Moreover there are finitely many ways in which I" can be
a denominator of a given instance of a rule. Thus, we have finitely many
collections of finitely many sequent instances as the only choices for numer-
ators of rule instances that can produce I'. Additionally, all these sequent
instances have strictly lower complexity than I', where complexity of a se-
quent instance could be taken as the sum of the heights of the terms that
are members of it (a sequent instance is a sequence of terms and F). Of
course the same argumentation applies to the candidate sequent instances.
This process of checking possible elements for being denominators has to stop
because of the decreasing-complexity nature of it. If a possible route, which
can be visualized as a branch of a search tree, leads to the numerator of the
Id rule or of the e-right rule then I' is provable in GG. Otherwise, if all routes
stop at something that is not a denominator of any instance of a rule in G,
then there is no way for I' to be provable. Thus, it is decidable whether ¢ F p
is provable in (G, for every term p. °
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3 Duality Theory for bounded distributive
residuated lattices

In what follows we try to extend Priestley duality to bounded distributive
residuated lattices. All the ideas and most of the definitions stem from [17],
where a duality theory for bounded DI-semigroups is developed. The tech-
niques work in our case also, because of the similarities between residuated
lattices and DL-semigroups (Definition 2.6).

3.1 Priestley duality

Priestley established a duality between the category of bounded distribu-
tive lattices and certain topological spaces. The theory is useful because it
presents an alternative understanding of distributive lattices and suggests a
different approach to problems about them. Proofs of the theorems can be

found in [6].

Definition 3.1 i) A structure S = (5,7,<) is called a Priestley space if
(S,7) is a compact topological space, (S, <) is a bounded partially ordered
set and S is totally order-disconnected, i.e. for all z,y € S if x < y, then
there exists a clopen increasing set containing y, but not z.

ii) A map h : S; — Sy between two Priestley spaces is a Priestley map if it
is order-preserving, continuous and preserves bounds.

Definition 3.2 i) If L = (L, A,V,0,1) is a bounded distributive lattice, then
its dual space is the structure S(L) = (S(L),7, <), where S(L) is the set of
all prime filters of L, 7 is the topology having the family of all sets of the
form f(I) or (f(1))5, | € L, as subbasis, where f(I) = {X € S(L)|l € X},
for [ € L and < is set inclusion.

i) If S = (S9,7,<) is a Priestley space then its dual lattice is the struc-
ture £(S) = (L£(S5),N,U, 0, S), where L(S) is the set of all clopen increasing
subsets of S.

Theorem 3.1 i) The dual space of a bounded distributive lattice L is a

Priestley space and L(S(L)) = {f(D)|l € L}y U{0,S(L)}.
ii) The dual lattice of a Priestley space is a bounded distributive lattice.
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Theorem 3.2 i) If Ly, Ly are bounded distributive lattices and h : Ly — Ly
is a bounded-lallice homomorphism, then the map S(h) : S(Ly) — S(Ly),
defined by S(h)(X) = h~[X], is a Priestley map.

ii) If S1,Sy are Priestley spaces and h : S; — Sy is a Priestley map, then
the map L(h) : L(Sy) — L(S1), defined by L(h)(A) = h™'[A], is a bounded-

lattice homomorphism.

Theorem 3.3 The calegories of bounded distributive latlices with bounded-
lattice homomorphisms and of Priestley spaces with Priestley maps are dual.

3.2 Duality for bounded distributive residuated lat-
tices

First, we prove some useful lemmas.

Definition 3.3 Let X,Y be subsets of a residuated lattice. Then X - Y =
{a-blae X, beY} and XeV =1(X V).
Note that if Z is a filter then X - Y C Z & X eY C 7.

Lemma 3.4 If X, Y are filters in a residuated lattice, then X oY is also a
filter.

Proof: X eY =1(X -Y) is obviously increasing.

Let k1,ky € X oY. Then, a1by < ki and azby; < ky, for some aj,ay €
X, bi,by € Y. Thus, (a1 Aaz)(by Aby) < (a1 Aag)by A(ay Aag)by < arby Aazby <
ki Nky and a3 Aay € X, by Aby €Y, hence, ky A ks € X oY, showing that
X oY is a filter. °

Lemma 3.5 If X,Y, 7 are filters in a distributive residuated lattice L, 7
is prime and XY C Z, then there are prime filters X' Y', such that X C
X, YCY', X'YCZ and XY' C Z.

Proof: Let I={le€ L|IY € Z}.
If ' <1 €1, thenl € I, because otherwise I' ¢ [ =1'Y C 7 = (Vy €
NZ3ly<ly)=NVMyeY)lye Z)=1Y CZ=1¢ I, a contradiction.
Iflhy,l € [ then LY € Z and LY € Z,ie. liyy € 7 and Ly, € 7, for
some y1,ys € Y but 7 is prime, so 1y Visyz: ¢ 7 and, since (I1VIz)(y1 Ay2) =
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Li(ys AN y2) V(i A y2) < Ly Vlyz, we get (I V ) (v A yz2) € Z, thus
(LVvi)Y ZZ ie lLVIpel

Thus I is an ideal. Moreover, X N [ = {, since (Vz € X)(zY C Z), and
by the prime ideal Theorem, there exists a prime filter X', such that X C X’
and X'NI =10, ie (Ve X')(x &I), hence (Vo € X')(zY C Z); thus,
XY CZ.

The existence of Y’ is proven similarly. .

Using the lemma above twice we get the following.

Corollary 3.6 If X.,Y,Z are filters in a distributive residuated lattice L,
Z is prime and XY C Z, then there are prime filters X', Y', such that
XCX,YCY" and X'Y' C 7.

Remark 3.1 If R is a ternary relation on a set S (R C 5%), z,y,z € S
and A, B C S, we write R(z,y,z) for (z,y,2) € R, R[A,B,] for {z €
S| (3= € A)(Jy € B)(R(z,y,2))}, R[z,B,] for R[{z}, B, ] and R[A,y, ]
for R[A,{y},]. Moreover, if h : A — B and C C B we write h~'[C] for
{z € Al h(z) € C}. o

In order to encode the the multiplication of a residuated lattice into the
dual space we need to add a ternary relation to the structure.

Definition 3.4 A bDRL-space is a structure S = (5, 7,<, R, F), where
(S,7,<) is a Priestley space, R is a ternary relation on S such that:

i) (Va,y,z,w € S)((Fu € S)(R(z,y,u) and R(u, z,w)) < (Jv € S)(R(y, z,v)
and R(z,v,w)))

i) (Ve,y,u,v € S)(z <y= ((R(y,u,v) = R(z,u,v))and (R(u,y,v) = R(u,z,v))
and (R(u,v,z)= R(u,v,y))))

iii) If A, B are clopen increasing subsets of S then R[A, B, _|,{z € S|R[z, B, C
A} and {z € S| R[B,z,.] C A} are clopen.

iv) (Va,y,z € S)(=R(z,y,z) & (A, B clopen increasing subsets of S)(z €
Ay € B and z ¢ R[A, B, ]))

and F is a clopen increasing subset of S such that R(K, E,_) = R(E, K,_) =
K, VK clopen increasing subset of 5.

The dual space of a distributive residuated lattice is an extension of the
Priestley space of the distributive lattice reduct.
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Definition 3.5 i) If L = (L, A,V,-,\,/,e,0,1) is a bounded distributive
residuated lattice then its dual space is the structure S(L) = (S(L), 7, <
, R, E) , where,

S(L) is the set of all prime filters of L,

7 is the topology having the family of all sets of the form f(I) or (f(1)),l € L
as subbasis, where f(k) = {€ S(L)|k € X}, for k € L.

<isset inclusion, R(X,Y,7) = (XeY C 7),VX,Y,Z € S(L) and E = f(e).
i) IfS = (5, 7,<,R, E)isa bDRL-space then its dual algebra is the structure
L(S) =(L(S),A,V,0,\,/, E,0,S), where,

L(S) is the set of all clopen increasing subsets of S, A =N, V=U, Ao B =
R[A,B, ], A/B={z€ S|zo BC A}, B\A={z€ S| BozC A}

Theorem 3.7 1) The dual algebra, L(S), of a bDRL-space, S, is a bounded
distributive residuated lattice.

2) The dual space, S(L), of a bounded distributive residuated lattice, L, is a
bDRL-space.

Proof: 1) £(S)is closed under multiplication, left and right division.

Let A, B € L(S), i.e. A, B are clopen and increasing. By (iii) in the
definition of R, Ao B, A/B, B\A are clopen.
Moreover, if Ao B>z <y then z € R[A, B, ], i.e. R(a,b,z)for somea € A
and b € B. By condition (ii) in the definition of R, we get R(a,b,y) for the
same a € A and b€ B,1e. y € Ao B. Thus, Ao B is increasing.
Additionally, if A/B > z < y then R[z,B,] C A. But, Rly,B,_] C
Rz, B, ], because ¢ € Rly, B, ] = (3b € B)(R(y,b,c)) =’ (3b € B)(R(y,b,c))
= c¢ € Rlz,B,]. Thus, Rly,B,] C R[z,B,] C A, hence, y € A/B; so,
A/B is increasing. Similarly, B\ A is increasing.
Thus, Ao B,A/B, B\A € L(S5).

Multiplication is associative.
we(AoB)o(C & we R[R[A,B,],C,] & (Ix€ A,ye B,z () (Fu €
L)(R(z,y,u) and R(u,z,w)) & (Jx € A,y € B,z € C)(Iv € L)(R(z,v,w)
and R(y,z,v)) & w € R[A,R[B,C,],.] = Ao(BoC). Thus, (Ao B)oC =
Ao (Bo().

L(S) is closed under A and V.
A, B € L(S)= A, B are clopen and increasing = AN B and AU B are
clopen and increasing = AA B, AV B € L(S5).

L(S) is a bounded distributive lattice.
It is a distributive lattice since A = N and V = U and it’s bounded since ()

and S are the bottom and top elements, respectively.
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Multiplication is residuated and \ and / are the residuals.

AoBCC & RIA,B,]CC ¥ AC{zreS|R+,B,]CC} & ACC/B.
(*): “=7: Let x € A. If z € R[z, B, ], then there is a y € B such that
R(x,y,z); thus ez € R[A, B, ] C C,ie. R[z,B,]CC.
“&7: Let z € R[A, B,_]. Then, there is an x € A such that z € R[z, B, ].
But, R[z, B, ] C C, hence ¢ € C.
The proof for left division is similar.

E is the multiplicative identity.
VK e L(S), KoEFE=RK,E,-]=K and Fo K =K.

2) By Theorem 3.1, (S(L),7,<) is a Priestley space and L(S(L)) =

{ITE LYo {0, 8(1)}

We need to check the properties for the relation R.

(i): Suppose R(X,Y,U) and R(U, Z, W) hold, i.e. XoY C U and UeZ C W.
Let V=Y o Z.

If d € X ¢ V' then there exist a € X and g € V' such that ac < d. Since
V' =Y eZ, thereexist b € Y and ¢ € Z such that bc < g. Moreover, ab € U,
since XoY C U, thus, (ab)ce UeZ = a(bc) e UeZ =agc UeZ=decW.
Thus, X ¢ V! C W. By Lemma 3.5 and the remark in Definition 3.3, there
exists a prime filter V such that X ¢ V C Z, V' CV and YeZ CV, ie.
R(X,V,W) and R(Y,Z,V).

(iv) “<=7 is obvious, since if Z ¢ Rla,3,.], then =R(U,V,7Z), YU €
a, V € 3, thus =R(X,Y, Z) holds.

“=" Let X,Y,Z € S(L). R(X,Y,Z)==(1(XY)C Z)=(Jce€ L)(ce
T(X-Y)and e€ Z)=(Jc€ L)(Fae X)(FbeY)(ab<c and c & 7).

Set o = f(a), B = f(b). Then, X € a and Y € g. If 7 € R|e, 3, ], then
R(X",)Y'" Z) for some X' € a,Y' € 3, 1e. T(X'-Y') C Z, a contradiction
sincec ¢ Z and ¢ €T (X' Y’), because a € X’ and b€ Y.

Thus, Z € R|a, 3, ].

i) If XY, U,V € S(L) and X C Y then, if R(Y,U,V) holds, i.e.
YeU CV, then XoU =1(X-U)CT(Y-U)=YeU CV, thus XelU CV,
i.e. R(X,U,V) holds. The other two implications are proven similarly.

Claim: Let L be a bounded distributive residuated lattice. Then
a) F(k-1) = [(k) 0 £(1), b) f(k/1) = [(k)/F(1) and ) F(R\D) = [N D)

Proof: a) “2%: I € f(k) o f(1) = RLI(k), ()] = (3U € f(R)(EV e
S (RWU, VW) = (3U € f(k))(3V € f(1))(UeV C W)= (U € f(k))(3V €
WU -VCW)=EUsE)EVD)EkeU - VW)= eW=We
J (kD)
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Corollary 3.6 (

“CHW e f(R)=>kleW = (TR)(T)CW 30,V € S(L))(k €
U,lev/amiCW/QIV%ﬁCﬂTkam/alﬂUovfng):(ﬂJE
f(R)3AV € FI)(RWU, VW)W € f(k)o f(l)

b) S f(/1) o (1) = F((6/10) = (W € S()] (k)L e W} T (e
S(L) ke W} = f(k). Now, if X € f(k/l), then X o f(I) C f(k)= X €
().

D% X < SIS = X o J) € S0 RIX (), € J9 = (4
S(IINEU 3 DHRX, U, V)=V 3 k)= WV eSWL)(FU3H(XelU C
Vi=keV) (D).

Now, for any U € f(I), if ¢ X ¢ U, then [ kN X ¢ U = (). Since X ¢ U
is a filter by Lemma 3.4, there is a prime filter V such that X ¢ U C V
and | kNV =0=>XeU CV and k ¢ V, contradicting (I). Thus,
VU D(ket(X-L) (ID).

Let U = {l| (3a € X)(al < k)}. If I' <[ € U, then there is an a € X
such that al < k, thus al’ < al < k for the same a € X. If [1,1, € U,
then a1/, < k and asly < k for some ay,az € X. Now, (a1 Aaz)(ly Vi) =
(a1 Naz)ly V(ay Nag)ly < arlyVazly <kVE =k and (a1 ANaz) € X, since X is
a filter; so, [y VI € U. Thus U is an ideal, while 1/ is a filter. If [ € U then
UN 11 = ( and by the prime ideal Theorem there exists a prime filter U’
such that 11 C U’" and U'NU =, i.e. [ € U' and k €1 (XU), contradicting
(I). Thus, | € U = (Fa € X)(al < k)= (Fa € X)(a < k/I)= (k/l) € X,
since X is a filter. So, X € f(k/I).

¢) The proof is similar to (b).

Now, (iii) in the definition of R follows from the claim since
a,f € L(S(L))=(Fa € L)(be L)a= f(a) and 8= f(b)) = Rlo,3,] =
aofB = fla)o f(b) = flab) € L(S(L)) and {c € X|cofB Ca} =a/f =
F(@)] () = f(afb) € £(S(L)) and {c € X|foc C a} = fa = [\ f(a) =
f(0\a) € L(S(L)).

The last thing to check is the property for £ = f(e). Let K be a
clopen increasing subset of S(L). Then, K = f(k), for some k € L. Now,
RIK,E, ] = R[f(k), f(e),] = f(k)o f(e) = f(ke) = f(k) = K and similarly
RIE,K,]= K. .

The following theorem shows that both encodings work.

Theorem 3.8 1) The dual algebra, L(S(L)), of the dual space of a bounded

distributive residuated lattice, L, is isomorphic to L.
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2) The dual space S(L(S)), of the dual algebra of a bDRL-space, S, is home-

omorphic to S, under a map that respects the order and the ternary relation.

Proof: 1) Let f: L — L(S(L)) be the map [ — f(I). By Theorem 3.3 f
is a lattice isomorphism, by Theorem 3.7 £(S(L)) is a bounded distributive
residuated lattice, while by the claim in the proof of the previous theorem f
preserves multiplication and both divisions and f(e) = E, by definition.
2) Define ¢ : S — S(L(S)) by g(z) = {A € L(S)|z € A}. By Theo-
rem 3.3 ¢ is a topological homeomorphism that is also an order-isomorphism.
We need to show that it is a R-isomorphism, as well, i.e. Rg(z,y,z) <
Rs(z(s))(9(2), 9(y), g(2)), or equivalently Rs(z,y,2) & g(z) e g(y) C g(2)
“=7: Ceglr)egly) =1(g(x)og(y)) = (3A € g())(3B € g(y))(Ao B C
C= (3A 3 2)(3IB > y)(Rs[A,B,] C C. But, z € Rs[A, B, ], since
Rs(z,y, z) holds, thus z € C, i.e. C € g(z).
“<="=Rs(z,y,z)= (FA,B € L(S))(x € A,y € B and z ¢ R[A,B,] =
Ao B), thus (3A € g(z))(3B € g(y))(Ao B & g(z)), i.e. g(z) o g(y) £ 9(2),
thus g(z) e g(y) =1 (g(x) 0 g(y)) Z 9(=).

Finally, g is an E-isomorphism, i.e. z € Fs & g(x) € E' = Es(g(s))-
Indeed g(z) € ' = f(E) & E' €g(z) & z € E. .

Definition 3.6 Let S; = (51,71, <y, R, E1) and Sy = (53,79, <o, Ry, E3)
be bDRL-spaces. A bDRL-map, h, is a Priestley map h : S; — S5 that
satisfies:

1) Rl($7 Y, Z) = R?(h($)7 h(y)v h(2)>

i) Re(u,v,h(z))= (3z,y € S1)(u < h(zx
i) (VB,C € L(S2)(Vz € S1)((Vw € Sp)(
= h(w) € C) = (Vz € S9)((Fy € V) Ry
iv) h=[Fy] = Fy.

) and v < h(y) and Ri(z,y,z))
(Jv € S1)(h(v) € B and Ry(z,v,w))
h(z),y,z) =z € 7))

We can now prove the main result in this section.

Theorem 3.9 The categories of bounded distributive residuated lattices with
lattice homomorphisms that preserve the lattice bounds and bDR L-spaces with
bDRL maps are dual.

Proof: Let Ly, Ly be bounded distributive residuated lattices and ¢ : L; —
L, a residuated lattice homomorphism that preserves the lattice bounds. We
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define the map S(¢) : S(Lz) — S(L1), by S(¢)(A) = ¢7'(A). By Theo-
rem 3.2, it is a Priestley map. To show that it is a bDRL-map we need to
check four conditions.

() Ra(X,Y,Z) = XoY CZ= X-Y C Z= ¢ [X-Y] C o '[2] = ¢ [X].
SIY) C 6 [Z] = Ru(o[X], 67 V], 671 [2))

(ii) If Ry(U,V,¢7Z] holds,i.e. UV C ¢7'[7], define X' =1 (¢[U]), Y’ =1
(¢[V]). If a € U, then ¢(a) € d[U] C1(¢[U]) = X', so a € ¢~ '[X']. Thus
U C ¢ '[X'] and similarly V C ¢~ '[Y’]. Additionally, X’ - Y’ C Z, since
ifa e X' =1 (o[U]), b € Y =1 (¢[V]), then there are ¢ € U, d € V such
that ¢(c) < a and ¢(d) < b. Now, cd € UV C o7 HZ| = dled) € Z= 7 5
¢(c)-p(d) < ab= ab € Z. Moreover, by Corollary 3.6, there are prime filters
X,Y such that X' C X, Y’ CY and XY C Z,ie. U C ¢ ' [X],V C o' [Y]
and R1(X,Y, 7).

(iii) Let 3,~ be clopen increasing subsets of S = S(L;) and X € Sy = S(L»).
Then, 8 = f(b) and ~ = f(¢), for some b,c € L,.

Assume that (YW € S,)((IV € S3)(¢ 1[V] € Band R(X,V,W)) = ¢~ W] €
3) holds, i.e. (YW € 52)((FV € S2)(¢~ [ ] € f(b)and XV C W) = ¢~ '[W]
flc)) ie. (VW € 55)(FV € So)((b e ¢~ '[V] and XV C W) =ce ¢~ HW])
le. (YW € 95)((FV € S2)(¢(b) € V and XV C W)= ¢(c) € W).

Then, for all W € Sy,the following implications hold X- 1 (¢(b)) C W Lemmg 35
(FV € S)(T (p(b)) C V and XV C W)= ¢(c) € W). Thus, (VW €
S)(X- 1 (6() C W = d(c) € W), hence (VW € S,)(1 (X T (4(6))) C
W= d¢c)eW). ()

Note that 1 (X T (¢(b))) is a filter, by Lemma 3.4. Now, ¢(c) €1 (X- T
(¢(b))), because otherwise, T (X T (0(0))N | (é(c)) = 0 and by the Prime
Ideal Theorem (W € S3)(1(X: T(4(b))) CW and WnN | (¢(c)) =0, i.e.
(AW € So)(1T(X- 1(4(b))) CW and é(c) € W), contradicting (I).

Thus, 6(e) €1 (X- 1 (6(8)) = (3a € X)(ad(b) < o(c)) = (3a € X)(a <
H0)/6(8) = 9(c)/B(B) € X = dlefb) € X) = c/b € 6-1[X],

Now, if there is a Y € Sy such that b € Y, i.e. Y € f(b) = 3, then
XY 3 (¢/b)b < ¢, thus ¢ €1 (¢ '[X]Y). Moreover, if 1 (¢ [X]Y) C
7 € Sythenc € Z,ie. Z € f(c) =~. Inother words: (VZ € S1)((IY € 8) T
(@IUX)Y)C Z=Z€nr),ie (VZ € S)((FY € B)Ri(¢7X], Y, Z2)= 7 €

U{(S(@)' MY € B} & X €
e}

€
(Y 5 e)(X € (8(¢)7'(Y)) & (Y >
e)(¢H(X)=Y) & e €¢7H(X) & o(er) €
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XN & epeX & Xeky

Let S1,S; be bDRL-spaces and & : S; — S; a bDRL-map. We define the
map L(h) : L(Sz) = L(S1), by L(h)(A) = h~'[A]. By Theorem 3.2, L(h) is
a lattice homomorphism that preserves lattice bounds. To show that it is a
residuated lattice homomorphism we need to demonstrate that it preserves
multiplication, both division operations and the identity.
z € HAJoh Y B] = z € Ry '[A],h7Y[B],] = (3z € h'[A])(Fy € 7' [B])
(Ri(z,y,2) ¥ (32 € $1)(Fy € S1)(h(z) € A, h(y) € Band Ry(h(z), h(y), h(2)))
= h(z) € RyA,B, ]=h(z) e Ao B=z2¢€ h™'(Ao B)
z € h™Y(AoB = h(z) € AoB = Ry[A, B, ]= (3= € A)(Jy € B)(Ra(z,y, h(z))
= (Jdz € A)(Jy € B)(Fu)(Fv)(z < h(u),y < h(v) and Ry(u,v,z)) = (Ju)(Iv)
(h(u) € A, h(v) € B and Ry(u,v,z)) = (Fu)(Iv)(u € h7YA], v € h[B]
and Ry(u,v,2)=z € Ri[L7HA,h Y B],]=z¢€h '[A] o h™![B]
Thus, h~'[Ao B] = h™'[A] o h7![B].

h=C/Bloh™'[B] = L Y[(C/B)oB] C h™'[C] = L' [C/B] C L7 '[C]/h Y B].

z € Y C|/h™ Y B]= xoh ' [B]| C h'[C] = Ri[z,h7'[B],] C L (O] =
(V2" € S1)((Fy € 7Y B])Ri(z,y',2") = 2" € h7HC]) = (V2" € S)((Fy €
SO(h(y') € B and Ri(z,y',2) = h(z') € C) & (vz € $,)((3y € B)
Ry(h(z),y,2) € C)= Ry[h(z),B,] CC=h(x)oBC C=h(z)eC/B=z¢c
L= C/ B
h='(FEy) = Ey
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