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ABSTRACT. Let A = (X| R) be a finitely presented algebra in a variety
V. The algebra A is said to have an undecidable word problem if there is no
algorithm that decides whether or not any two given words in the absolutely free
term algebra Ty (X) represent the same element of A. If V contains such an
algebra A, we say that it has an undecidable word problem. (It is well known
that the word problem for the varieties of semigroups, groups and I-groups is
undecidable.)

The main result of this paper is the undecidability of the word problem for a
range of varieties including the variety of distributive residuated lattices and the
variety of commutative distributive ones. The result for a subrange, including
the latter variety, is a consequence of a theorem by Urghart [7]. The proof here
is based on the undecidability of the word problem for the variety of semigroups
and makes use of the concept of an n-frame, introduced by von Neumann. The
methods in the proof extend ideas used by Lipshitz and Urquhart to establish
undecidability results for the varieties of modular lattices and distributive lattice-
ordered semigroups, respectively.

1 Introduction

Definition 1.1. A residuated lattice, or residuated lattice-ordered monoid, is an alge-
bra L = (L,A,V,-,e,\,/) such that (L, A, V) is a lattice, (L, €) is a monoid and
multiplication is both left and right residuated, with \ and / as residuals, i.e.,
a-b<c e a<c/b & b<ale foralla b ce L.

This definition of a residuated lattice is more general than the original given by
Ward and Dilworth [1] in 1939. Here it is not stipulated that the monoid reduct is
commutative nor that the lattice reduct has e as its top element. Residuated lattices
have arisen also in logic, in connection to the Lambek calculus: see; e.g. the papers
of .M. Dunn and H. Ono in [9]. The structure theory of residuated lattices was first
studied by K. Blount and C. Tsinakis in [2]. Although no further knowledge of what
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is included in this section is required for the comprehension of this paper, the reader
is advised to refer to [2] for more information about residuated lattices.
It is not hard to see that RL, the class of all residuated lattices, is a variety and

e eA(zyVz)y, xlyVvz)mayVez (e/y)yVese

yrmyAz\(yrVz), (yVarmyrVze, yy\o)Vera
together with the monoid and the lattice identities form an equational basis for it.
Actually RL 1s an ideal variety, i.e., congruence relations are determined by their
e-classes. Moreover, the latter are subalgebras with specific properties described in
[2]: they have to be order convex and closed under all conjugation maps A4, p,, where
Aa(z) = (a\(za))Ae, pa(x) = ((ax)/a)Ae, and a ranges over elements of the residuated
lattice.

The following lemma of [2] contains all the necessary identities for algebraic manip-
ulations in residuated lattices.

Lemma 1.2. Ifz, y, z are elements of a residuated lattice, then the following properties

hold.
1) 2(yVvz)=2yVaz and (yVz)r =yx V zz.
2) e\ (yAz)=(@\y)A(x\2) and (yAz)/e=(y/x) A(z/2).
3) w/(yVz)=(x/y) A(x/z) and (yVz)\z=(y\z)A(z\ ).
4) (z/y)y <z and y(y\=z) < 2.
5) w(y/z) < (wy)/z and (z\y)w < 2\ (yx).
6) (¢/y)/z=x/(zy) and 2\ (y\ )= (y2) \ z.
) 2\ (y/z) = (x\y)/=
8) rfe=z=c¢\z.
9) e<x/r and e <z \ .
10) #(x\z) =z = (¢/2).
11) (z\2)? = (¢\ 2) and (z/2)? = (z/z).

12) If the residuated lattice has a bottom element 0, then it has a top element 1, as

well, and for all 2, x0 =02z =0, 2/0=0\z=1and 1/Jz =2\ 1= 1.
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This paper is heavily influenced by work on similar problems. Lipshitz [5] estab-
lished the undecidability of the word problem for modular lattices and Urquhart for
DL-semigroups [8] and models of relevance logic [7]. Moreover, [3] contains undecid-
ability results about relation algebras, while Freese [4] proved that the word problem
for the free modular lattice on five generators is undecidable. The proofs of all the
above make use of the notion of an n-frame, introduced by von Neumann in [10]. Tt is
a geometric concept that was originally used in the definition of the von Staudt prod-
uct of two points on a projective line. Taking advantage of the intrinsic connections
between projective geometry and modular lattices, von Neumann defined this product
in the latter. In other words, the notion of an n-frame can be used to define a semi-
group structure in a modular lattice. Lipshitz used this fact to reduce the decidability
of the word problem for modular lattices to the one for semigroups. Going one step
further and using a modified version of an n-frame, Urquhart applied similar ideas to
DL-semigroups. In this paper we give the definition of an n-frame and the results for
modular lattices from [5], some of which will be used later on, before presenting the
modified definition for residuated lattices together with the corresponding theorem.

2 Modular lattices.

We begin with a version of the original definition of von Neumann that is essentially
equivalent to it.

Definition 2.1. A modular n-frame in a lattice L is an n x n matrix, C' = [¢;;],
cij €L, (set a; = ¢;; and e = A{a; |1 € N, }; N, = {1,...,n}), such that:

1) \/A1 A \/A2 = \/(A1 ﬂAz), for all Al,Az g {al,az, ...,an}, where \/0 = €]

1) ¢; = ¢j5, for all i, j € Ny;

i) a; Va; =a; Ve, forall i) j € Ny;
)
)

a
iv) a; A ¢;; = e, for all distinct ¢, j € Ny;
v) (eij Vejr) A (a; V ag) = cig, for all distinct triples 4, j, k € I,,.

The following examples, taken from [3], give some idea of the motivation for the
definition.

Example 2.2. Consider the real projective plane P. The lattice L of subspaces of P
contains points, projective lines, P and §§, ordered under inclusion. Meet is intersection
of subsets of P, while the join of two projective subspaces is the least subspace con-
taining both of them. Modularity of L is well known and easy to establish. A modular
3-frame, see Figure 1, will consist of essentially six points: ai,as,as, 12, €13, cag, be-
cause of (i1). The points a1, as, ag are not collinear, by condition (i); ¢;; has to be on
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Figure 1: The geometric meaning of a modular 3-frame.

the line a; V a;, by (iil), while ¢19, ¢13, ¢23 are collinear, by condition (v); actually, ¢k
is the point of intersection of the lines a; V a; and ¢;; V ¢ji.

Example 2.3. Let V be an n-dimensional real inner product space, {e; |7 € N,,} an
orthonormal base of V, a; = (e;), the subspace generated by e;, and ¢;; = (e; — e;).
Then [¢;;], i, j € Ny, is a modular n-frame in the lattice L of subspaces of V.

Given a modular n-frame one can define operations of multiplication and addition
on certain elements of the lattice.

Definition 2.4. Let [¢;;] be a modular n-frame in a modular lattice L. Define

i) Lij={z€L|xVa;=a; Va; and z Aa; = e}, for all distinct ¢, j € Ny;

)
) bQijud=(bVd)A(a; Vag), forall b€ Li;,d € Liy;

i) b @5 d = (b®ijk ¢jr) Qirj (ks Quij d), for all b,d € L;j;

iv) bPi;d=[((bVewr) Ala; Var))V((dVag) Aa; Ver)) A (a; Vaj), for all b, d € Ly;.

In [5] it is shown that the definitions of ©;; and @;; are independent of the choice
of k eN, fork £ik#j.

Remark 2.5. The definitions of b ©®;; d and b @;; d differ from [10] and [5]. There
multiplication and addition are not defined for elements of L;;, but for L-numbers.
An L-number « in a modular n-frame C' is a set of lattice elements indexed by
{(4,4)4,j € Ny, i # j}, such that (a)kn = [P(4, 4, k, )] ((«)s;), where («);; symbolizes
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(crid)(ara;)

a; Cij d b b @ij d a;
Figure 2: The geometric meaning of ©;;.

the (i, j)-coordinate of o and P(i,j, k, h) is the composition of the two perspective
isomorphisms with axes ¢;;, and ¢;z. Lemma 6.1 of [10] guarantees that one can work
with the fixed (7, j)-coordinates of L-numbers instead of them, since given ¢, j € N,, the
correspondence between o and («);; is a bijection. Moreover, this bijection between
L-numbers under the multiplication and addition defined in [10] and L;; under ®;; and
@i; 1s a ring isomorphism, as it can be deduced from Lemmas 6.2, 6.3, Theorem 6.1
and the appendix to Chapter 6, Part IT of [10]. Freese, in [4], is the first one to use
©i; and @;;, instead of multiplication and addition of L-numbers, and essentially the
definition of an n-frame presented here.

In the context of the first example, L;; is the set of all points = on the line a; V a;,
(zVa; = a;Va;), different from a;, (x Aa; =€), b®;;x d is by definition the intersection
of the lines bV d and a; V a;, for b € L;;,d € Lk, while b ©;; d and b @5 d, b, d € Ly
are the (von Staudt) product and sum, see Figures 2 and 3, of b and d on the line
a; V a;, where a; plays the role of zero, ¢;; is the unit and a; is infinity. Some projective
geometry is required to verify this assertion.

The following theorem of [10] justifies the terminology of multiplication and addi-
tion, and validates the connection between projective geometry and modular lattices.

Theorem 2.6 [Von Neumann]. Let C' = [¢;;] be a modular n-frame in a modular
lattice L, where n > 4. Then R;; = (Li;, Pij, ©ij, @i, ¢ij) Is a ring for all distinct
t,j € N,. Moreover, all rings R;; are isomorphic.

In view of the last statement of the previous theorem the choice of indices ¢, in
R;; is inessential. So, Ris = (L12, P12, @12, a1, ¢12) s called the ring associated with
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Figure 3: The geometric meaning of &;;.

the modular n-frame C' of L.

For a vector space, V, denote by L(V) the set of all subspaces of V. Tt is well
known that L(V) = (L(V), A, V) is a modular lattice, where meet is intersection and
the join of two subspaces is the subspace generated by their union.

The following results of [5] make use of the definition of a modular n-frame.

Lemma 2.7 [Lipshitz]. Let V be an infinite-dimensional vector space. Then,
i) L(V) contains a 4-frame, C, where ¢ is the least element of L(V) and

ii) Any countable semigroup is a subsemigroup of the multiplicative semigroup of
the ring associated with C.

Theorem 2.8 [Lipshitz]. The word problem for modular lattices is undecidable.

3 Distributive residuated lattices.

A residuated lattice is called distributive if its lattice reduct is distributive. Obviously
the class of distributive residuated lattices is a variety and is denoted by DRL.
We modify the definition of a modular n-frame, to suit our purposes.

Definition 3.1. A residuated-lattice n-frame (or just n-frame) in a residuated lattice
L is an n x n matrix, C' = [¢;;], ¢;; € L, (set a; = ¢;;), such that:

1) aja; = aja;, for all 4, j € N,;
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i) J]TA1 A 142 =]](41 N As), for all Ay, As C {a1,as,...,a,}, where [[0 =¢;
iii) a? = a;, for all i € N,;
iv) eijein A ajap = e, for all distincet triples 4, j, k € N,;;
V) ¢ = ¢y, for all 4, j € Ny;
vi) ejja; = a;a;, for all 1, j € N,;
vii) ¢;j; A a; = e, for all distinet ¢, j € N,,.

It is clear that if multiplication is replaced by join, the conditions in the definition
reduce to the ones in Definition 2.1.

Definition 3.2. i) An element a of a residuated lattice L is called modularif c(bAa) =
cbAa and (a Ab)e = a A be for all elements b, ¢ of L, such that ¢ < a.

ii) An n-frame of a residuated lattice is called modular if J] A is modular, for all
A g {ala az, ..., an}'

Definition 3.3. Let [¢;;] be an n-frame in a residuated lattice L. Define
1) Ljj ={z € L |za; = a;a; and z A a; = e}, for all distinct 7, j € N,;
11) b®ijk d = bd Aa;ay, for all b € Lij,d S ij;

111) b ®ij d= (b Rijk Cjk) Rikj (C;ﬂ' ki d), for all b,d € Lij and for all distinct triples
1,7, k.

The definition of ©;; doesn’t depend on the choice of k, as is shown in the lemma
below.

Lemma 3.4. Let ¢ = [¢;;] be a modular 4-frame in a residuated lattice L.
1) Ifb € Lij, then b <ajaj;
i) Ifb € Lj; and d € Ljg, then b ®;;1 d € Ly, for all distinet triples i, j, k € N,,;

iii) Ifb € Lij, d € Ljx, and f € Ly, then (b ®;jr d) @irt f = b @451 (d @i f), for all
distinct quadruples i, j, k1 € Ny, ;

iv) Ifb,d € Lyj, then (b®gjk cjr) Qikj (cri Qrij d) = (b @iji cji) @aj (cii @i d), for all
distinct quadruples i, j, k,1 € Ny.
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Proof. i) b = be < ba; = a;a;.
i1) We first show that (b ®i;x d)ax = a;ax.

(b @ijr d)ar, = (ajap Abd)ay,

bday N a;ay, a;ay is modular and ay < a;ay, since e < a;

bajar N azay, dap = ajag, since d € Ljy,

a;azap A a;ag, ba; = aza;, since b € Ly;
= a;ay, (ii) of Def. 3.1

To prove b ®;;5 d € L;; we also need to show that (b @i d) Aax =e.

(b Rijk d) A ag bd N azag A ag

= bdAayg, ap < a;ay, since e < a;

< bdAajar, ar < ajay, since e < a;

= (bAajax)d, ajay is modular and d < a;ag, by (1)
= (bAajar ANasa;)d, bAasa; =5, by (i)

= (b/\ a;)d, ajag Aa;a; = aj, by (i) of Def. 3.1

= d, bAaj =e, since b € Ly,
So, (b @ik d) Nag =b @ik dAar ANagy < dAay =e, since d € L. Moreover,
e=eeNee Ne <bdAaar Nag = (bR d) A ag.
Thus, (b Q5. d) A ax = e.

iil) Since b € L;;, d € Ly, and f € Ly, by (ii) we get, b @5 d € Lz and
d ®ju [ € Lji; thus, (b ®ijk d) @ikt £, b Qiji (dQjkr f) € Liy.

(b @sjr d) Qir [ = (bd ANazag)f A aa

= (bd ANasajap Aasagar) f A azar, (i1) of Def. 3.1

= (bd/\aiakal)f/\aial, bdg G;A;G; A = A;0;a),
by (i), since b € L;;,d € Ljy
and a? = a;

= bdf A\ a;ara; A a;ay, a;aga; 1s modular and
[ <aga; < azagay,
since f € L

= bdf A a;ay, (ii) of Def. 3.1

Similarly, b @51 (d @jri ) = bdf A a;ay, so
(b @ijr d) Qi =045 (dQjmi f).

iv) First note that condition (iv) of the definition of an n-frame can be written as
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Crs = Cpt Qpts Cts, for all distinct triples r,t,s € N,,.

(@ ik ¢jk) ikj (Crs Quij b) a Qijr (¢ @jik i) Qinj (Cri Quij b)
(@ @451 cji) Qitk Cik) Dikj (Cls Qrij b)
a @i i le) Rt (cik Rtk j (cri ki b))
a Qiji ¢j1) Qity (e Quki cri) Quij b)
a Qiji ¢j1) Qitj (e Quiz b)

(
(
=
=
(

Thus the definition of ®;; is independent of k. [

Lemma 3.5. Let ¢ = [¢;;] be a modular 4-frame in a residuated lattice L.
i) Ifb,d € L;;, then b ®;; d € L;;, for all distinct i,j € N,,.
i) Ifb,d, f € Lis, then (b ®12d) ©12 f =b®15 (d @12 f).

Proof. 1) Since b € Lij, Cik € ij and ¢g; € L, de Lij, we have b®ijk Cik €
L;, and cg; ki de ij. So,

b®ij d=(b®ijk cjr) Qirj (Chi Qrij d) € Lij.

i) (bO12d)®12 f = {[(b®123 c23) D132 (c31 ®312d

( ] X123 623} X132 (631 X312 f)
(b ®124 €24) @142 (€41 ®a12d
(

[
[ ] X123 623} X132 (631 X312 f)
(b @124 €24) ®143 [(€a1 @412 d) @423 c23]} @132 (€31 @312 f)
b @124 c24) @142 {[(ca1 ®a12 d) ®423 c23] Ra32 (c31 Q312 f)}
b @124 c24) @142 {[ca1 @13 (d @123 c23)] ®a32 (c31 @312 f)}

1}

1}

-_—=

b @124 c24) @142 {€41 @412 [(d @123 c23) @132 (€31 D312 f)
b ®123 ca3) @132 {31 @312 [(d @123 c23) @132 (€31 D312 f)
= bO12 (do12 f)

A fact that establishes the associativity of ®1s. [ ]

{
{
(
(
(
(

Corollary 3.6. Let C' = [¢;;] be a modular residuated-lattice 4-frame in a residuated

lattice L. Then, S15 = (L12,®12) is a semigroup, called the semigroup associated with
the 4-frame C.

Lemma 3.7. Let L be a distributive residuated lattice, with a top element, T', and a
bottom element, B. If a,a,€ L, a> < a,aa < a, aa< a, aANa=PB and avVa="T,
then, a is modular.

Proof. Let b,c € L,c < a. Then, (¢ Ab)e < ac < a? < a and (a Ab)e < be; thus,
(a Ab)e < aAbe. On the other hand,

aNbe = an(bAT)e=aA(bA(aVa))e
= an((bra)vbra)c=aAn((bAa)eV (bAa)c)
< an((bAa)eVaa) <(aA(bAa)e)V(aAa)
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< (bAa)evB=(bAa)
Thus, a A be = (b A a)e. Similarly, we get the other condition a A ¢b = ¢(a A D). ]

Let 'V be a vector space. For A, B € Ly = P(V), the power set of V let AAB =
ANB, AVB=AUB, AB={a+blac A,y € B}, A\B=B/A={c|{c}AC B} and
e = {0v}. Tt’s easy to see that Ly = (Lv,A,V, - e,\,/) is a distributive residuated
lattice. Moreover, L(V) is a subset of Ly, but L(V) is not a sublattice of the lattice
reduct of Ly. Nevertheless, a subset A of V is in L(V) if and only if e < A and
AA = A. Additionally, Ap(vy = ALy, and Viv) = Ly-

Definition 3.8. If S = (S,e), S = <x1,x2, o z2n] PY(E) = sY(T), ..., rh(T) = s}
a finitely presented semigroup and V is a variety of residuated lattlces let L(S
the residuated lattice in )V with the presentation described below:

(7)), is
, V) be

Generators:
o ah, e, e (1,7 €ENg), T, L and HA (A€ A(C) =P({a1,az,a3,a4})).
Relations:
i) Equations (i)-(vii) of Definition 3.1 (for n = 4);
i) zfas = ajaz and z) Aaz = e, for all i € Ny;

iii) rP12(F) = sP12(7'), for all i € Ny, where 912 denotes the evaluation of ¢ in the
semigroup associated with the 4-frame [c;;];

iv) L2=1, T?2=T=T/L=1/1l=1\T=1\1, L <e<Tand L<z<
T, lez==zl =1, for every generator z;

V)l‘2<l‘ 2 < r,xx < Z,xANZ =L1Land tVva = T, for all z of the form

[14,4A€ AC )

Let R(Z) denote the conjunction /\iENk 7i(Z) = si(T) of the relations of S and
R'(T',C, A(C), L, T) of the relations of L(S,V). (F denotes (1, z3, ..., z,))

Lemma 3.9. For every semigroup S, L(S,V) has a bounded lattice reduct and L, T
are the bottom and top elements.

Proof. We will prove that L < w < T, for every word w in the generators. We
first prove that “L < w and lw = wl = 17 for every word, w, using induction on
the complexity of w. Properties stated in Lemma 1.2 will be used without reference.
The statement is true for the generators and for e, by (iv) in the relations of L(S, V).
If the statement is true for words u, v, 1.e. L <wu,v and lu=ul =1lv=vl =1
then:
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e l(uvv)=luvlv=1 and (uVev)L=L1. Also, L <uVu.

o L <uAvand L =11 < L{uAv) < LluAlv= 1, while (uAv)L = Lis
proven in a similar way.

o | <11 <wuv and Lluv = Llv= 1, while the other products equal L also.
e Since Lv =1 <wu, we have L <w/v;thus L = L1 < 1(u/v) and L < (u/v)L.

Moreover, L(u/v) < (Lu)/v = L/v < L/L =T,s0u/v < L\T=L\L1=L1/1;
hence L(u/v) < L and (u/v)Ll < L. Thus, L(u/v) = L and (u/v)L = L. For left
division we work analogously. Consequently, L is the bottom element of L and, by
(12) of Lemma 1.2, T = L/.L is the top element of L. ]

The following lemmais a well known fact from the theory of Universal Algebra fact.

Lemma 3.10. Let A = (Z|R(T)), be a finite presentation of an algebra A in a variety V
where T = (21, ..., 2,), n € N is the sequence of generators and R(T) the conjunction of
the relations. Also, let r, s be n-ary semigroup terms; then the following are equivalent:

i) A satisfies rA(E) = sh (7).

ii) For every algebra B in V, if there exist elements y1,...,y, € B, such that R(Y)
holds in B, then B satisfies rB(y) = sB(y).

Proof. For the non-trivial direction, note that the natural epimorphism from the
free algebra of V on T to the subalgebra of B generated by 7, Fy(Z) — S¢n(7),
z; — y;, factors through Fy(Z)/R(Z) = A. So, f: A— S¢s(y) C B, &; — y; is
a homomorphism. Since r#(z) = s*(T), we get

in B. [ ]

Lemma 3.11. Let S be a semigroup, r,s semigroup terms and )V a variety of
distributive residuated lattices. If S satisfies r*(Z) = s*(%) then L(S,V) satisfies
r@lz(f/) — 012 (E/)

Proof. C = [¢;;] is a 4-frame in L(S,V), by (i) of R’(E’,C,JZ(C),J_,T) and
x} € L1, by (ii). Moreover, by (v) and Lemma 3.7, [] A is modular, for all A € A(C),
hence C'is modular. By Corollary 3.6, (L12, ®12) is a semigroup and, by (iii), it satisfies
R(7'); thus, by Lemma 3.10, it also satisfies r®12(z') = s©12(7’). [ ]

We can now prove the main theorem.
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Theorem 3.12. Let V be a variety of distributive residuated lattices, containing Ly,
for some infinite-dimensional vector space V. Then, there is a finitely presented resid-
uated lattice in V', with undecidable word problem.

Proof. Let S = (S,e), S = (21, 22,...,2,| 7}(T) = s}(T), ..., 72(T) = sp(T)), be
a finitely presented semigroup with undecidable word problem (see [6]) and consider
L(S,V).

We will show that, for every pair r, s of semigroup words, S satisfies »*(Z) = s*(7)
if and only if L(S,V) satisfies r©12(Z’) = 59:2(7’). Since one direction follows from
Lemma 3.11, suppose that S does not satisfy r(Z) = s(7). By Lemma 2.7, S is embed-
dable, via f, say, into the multiplicative semigroup of the ring, R, associated with a
modular 4-frame C' in the modular lattice L(V). So, r®(f(%)) = s®(f(7)) is false in R,
where f(Z) = (f(z1), ..., f(xn)), thus also false in L(V), if viewed as a lattice equation.
Since, as noted before, ALvy = AL, and Vyv) = L, Ly fails rR(f(7)) = sB(f(7)),
where the latter is considered a residuated lattice equation (rLV (£(Z)) = sV (f(z))).
On the other hand, if we view the above mentioned modular 4-frame as a residuated
lattice 4-frame and take @ as L, V as T and V—z as T, forall T € A(C’), it follows that
Ly satisfies R'(f(%), C, .Zl(CA'), 1, T). Indeed, (i) and (iv) of R'(f(%), C, .%T(CA'), 1, T)are
obvious, while (ii) is true, since f(#;) is a member of the multiplicative semigroup of
R and this semigroup plays the role of Li,. Condition (iii) holds because it holds in S
for T and (v) is very easy to check. So, for ¥ = f(T), Lv satisfies R'(y, C, .Z(C'), 1,7T),
but not rv (y) = sV (7); hence, by Lemma 3.10, L(S, V) fails r©12(z') = 5912 (7).

If the word problem for L(S, V) were decidable then the one for S would be decid-
able, too. Thus, V has an undecidable word problem. [

Corollary 3.13. If V is a variety such that HSP(Ly) C V C DRL, for some infinite-
dimensional vector space V| then V has an undecidable quasi-equational theory, namely,
there is no algorithm that decides whether a quasi-equation in the language of residu-
ated lattices is valid in V or not.

Corollary 3.14. The word problem and quasi-equational theory for (commutative)
distributive residuated lattices is undecidable.

As pointed out by one of the referees, results in [7] inply the consequence of Theo-
rem 3.12 in the commutative case. Moreover, the result for DR.L alone can be proved in
a much more simple and direct way; [11] contains a discussion on decidability and resid-
uated lattices. Thus the novelty of the result in this paper lies in the non-commutative
varieties different from DRL.

The equational theory of RL is known to be decidable (see [11]). Tt is an open
problem, though, whether the same is true for DR.L or for other subvarieties of RL.
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