Sample Midterm Exam

Math 112Z	Name:	
9/28/08		

Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single $8.1/2 \times 11$ sheet of notes (double sided) is allowed. No calculators are permitted.
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the poin.
- This test has xxx problems and is worth xxx points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (20 points) The Fibonacci sequence is $\{f_n\} = 1, 1, 2, 3, 5, 8, 13, 21, ...$ is defined so that $f_n = f_{n-1} + f_{n-2}$; that is each term of the sequence is the sum of the two previous terms. **a.** (5 pts) Does $\{f_n\}$ converge or diverge?

b. $(15 \ pts)$ Mathematician Abraham de Moivre found an exact formula for the nth term of the Fibonacci sequence, which is

$$f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

Use this to show that the sequence

$$a_n = \frac{f_n}{\left(\frac{1+\sqrt{5}}{2}\right)^n}$$

converges, and find the limit.

- ${\bf 2.}~~(\it 20~points)~$ Determine whether the following series converge or diverge. Indicate how you know.
 - **a.** (10 pts)

$$\sum_{n=1}^{\infty} 3^{-\ln(n)}$$

b. (10 pts)

$$\sum_{k=1}^{\infty} \frac{x^2 + 3}{x^2 - 1}$$

3. (20 points) Use the integral test to determine whether or not

$$\sum_{i=10}^{\infty} \frac{1}{i \ln(i) \ln \ln(i) \ln \ln \ln(i)}.$$

is convergent or divergent. HINT: Try letting $u = \ln \ln \ln(x)$.

- **4.** (20 points) For each statement, mark it true of false. If it is false give a (counter)example. If it is true give a reason if the reason is a theorem, state the theorem, otherwise give a brief proof. No credit for answers without a correct reason or example.
- **a.** (3 pts) If $\lim_{n\to\infty} a_i = 0$ then $\sum_{i=1}^{\infty} a_i$ converges.

c. (3 pts) If $\sum_{i=1}^{\infty} a_i$ converges, then all $a_i > 0$.

d. (4 pts) If $\{a_i\}$ is a monotone sequence then it is increasing.

e. (4 pts) If $\{a_i\}$ is convergent, then it is bounded and monotone.

f. (3 pts) The integral $\int_0^\infty x^p dx$ diverges for all p.

- **5.** (20 points)
- **a.** (10 pts) Find an explicit formula for the following sequence $\{a_n\} = 1, -\frac{1}{2}, \frac{1}{4}, -\frac{1}{8}, \dots$ What type of sequence is this?

b. (10 pts) Find the value of the series $\sum_{i=1}^{\infty} a_i$ if it converges, where $\{a_i\}$ from part (a). If it diverges, state how you know.

Scrap Page

(please do not remove this page from the test packet)