Sample Final Exam

Math 112Z	Name:
9/28/08	

Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single $8.1/2 \times 11$ sheet of notes (double sided) is allowed. No calculators are permitted.
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the point.
- This test has xxx problems and is worth xxx points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (20 points)

a. $(10 \ pts)$ Give an example of a *sequence* which is convergent, and one that is divergent. Clearly label which is which.

b. (10 pts) Determine the limit of the following sequence, if it exists:

$$a_n = \frac{\sqrt{1+n} - 1}{n}.$$

- 2. (20 points) Determine whether the following series converge or diverge. If they converge find the sum:
 - **a.** (5 pts)

$$\sum_{n=0}^{\infty} \frac{e^n}{2^{2n}}.$$

b. (5 pts)

$$\sum_{k=1}^{\infty} \frac{\sqrt{k}+1}{k^{3/2}}.$$

c. (10 pts)

$$\sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{4^{2n} (2n)!}.$$

- **3.** (20 points)
 - **a.** (10 pts) Sketch the polar curve

$$r = \cos(3\theta)$$
.

b. (10 pts) Find the area contained within one petal of the curve:

$$r = \cos(3\theta)$$
.

- **4.** (20 points)
 - **a.** (10 pts) Simplify the following expression by combining all the terms:

$$\frac{1}{2}\ln(a) + 2\ln(b) - 3\ln(c^2).$$

b. (10 pts) State the definition of ln(x) as an integral.

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{2n^2} x^n.$$

Find the radius and interval of convergence of this series. Be sure to check the endpoints!

$$g(x) = \sum_{n=0}^{\infty} n(x-2)^n.$$

What is $f^{(1000)}(2)$?

- **6.** (20 points)
 - a. (10 pts) Find the area contained within the circle defined by the polar curve

$$r = 2\cos(\theta)$$
.

Hint: If you don't get π^2 you are doing something wrong. See part b. Think: what is wrong with my limits. You may even want to sketch the curve.

b. (10 pts) The polar curve defined in part (a) is a circle of radius one. Explain (in words) why

$$\int_0^{2\pi} \frac{1}{2} r^2 d\theta = 2\pi^2,$$

as opposed to π^2 (which is the area of the circle.)

7. (10 points)

a. (10 pts) Find an equation for the following polar curve in standard coordinates (that is, describe the curve in terms of x, y):

$$r = 4\sin(\theta)$$
.

Hint: Start by multiplying both sides by r.

b. (10 pts) What is the polar equation describing a circle of radius π centered at the origin?

- 8. (20 points) a. (10 pts) Does $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ converge absolutely, conditionally or neither?

b. (10 pts) Use the comparison or limit comparison test to determine the convergence of

$$\sum_{n=1}^{\infty} \frac{n^3 + 2n - 1}{n^5 - n + 10}.$$

- **9.** (20 points)
- a. (10 pts) Estimate the error incurred by using the first 10 terms of

$$\sum_{i=1}^{\infty} (-1)^n \frac{1}{n^3}$$

as an estimate for the infinite series.

b. (10 pts) Estimate the error incurred by using the first 10 terms of

$$\sum_{i=1}^{\infty} \frac{1}{n^3}$$

as an estimate for the infinite series. Hint: Recall that this error is bounded by an integral!

a. (10 pts) Find a Taylor series centered at 2 for

$$f(x) = x^3 - 3x^2 + 1.$$

Note: The Taylor series you find will be a finite polynomial.

$$\int_0^{infty} xe^{-x} dx.$$

Note: be careful with the limits when computing this (improper) integral!

Scrap Page

(please do not remove this page from the test packet)