
Math 361, Problem Set 2

September 17, 2010

Due: 9/13/10

1. (1.3.11) A bowl contains 16 chips, of which 6 are red, 7 are white and 3
are blue. If four chips are taken at random and without replacement, find
the probability that

(a) each of the 4 chips is red

(b) none of the four chips is red

(c) there is at least one chip of each color.

Answer:

For (a), there are
(
6
4

)
ways to make such a choice so

p =

(
6
4

)(
16
4

)
For (b), the probability is (10

4 )
(16

4 ) (there are 10 non-red chips, of which I must

choose 4).

For (c), the probability is:

p =

(
6
2

)(
7
1

)(
3
1

)
+

(
6
1

)(
7
2

)(
3
1

)
+

(
6
1

)(
7
1

)(
3
2

)(
16
4

)
Note that this is equivalent to 1

2 ×
6·7·3·13
(16

4 ) .

2. (1.3.24) Consider three events C1, C2, C3.

(a) Suppose C1, C2, C3 are mutually exclusive events. If P(Ci) = pi, for
i = 1, 2, 3 what is the restriction on the sum p1, p2, p3.

(b) In the notation of Part (a), if p1 = 4/10, p2 = 3/10, and p3 = 5/10
are C1, C2 and C3 mutually exclusive?

(c) Does it follow from your conclusion in part (b) that P(C1∩C2∩C3) >
0? Why or why not?
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Answer:

For (a), p1 + p2 + p3 ≤ 1. For (b), this implies that the answer is no.
However the answer to part (c) is also no - P(Ci ∩ Cj) ≥ 0 for some pair,
but all three need not intersect. For instance it is possible for C2 ⊆ C1

and C1 ∩ C2 = ∅ while obtaining those probabilities.

3. (1.4.7) A pair of 6-sided dice is cast until either the sum of seven or eight
appears.

(a) Show that the probability of a seven before an eight is 6/11.
(b) Next, this pair of dice is cast until a seven appears twice (as a sum)

or until each of a six and an eight have appeared at least once. Show
that the probability of the six and eight occuring before two sevens
is 0.546.

Answer: For (a) we ignore all rolls until we roll a seven or an eight. Now,
considering the first roll where we roll a seven or an eight, what is the
probability that it is a seven. Let Ri denote the probability that we roll
an i. We want to compute:

P(R7|R8 ∪R7) =
P(R7)

P(R7 ∪R8)
=

6/36
11/36

=
6
11

.

For (b) consider the possibilies of ending with a 6 or an 8, only considering
rolls where a 6,7, or 8 are rolled: We could get 68, 86, 678, 876, 768 or 786.
Clearly (since rolling 6 and 8 has the same probability) there is symmetry
in the problem: we only need to compute the probability that we end
because of a 68, 678or768. Let R6,8 (for instance) denote the event that I
end because I rolled a 6 then an 8 with no sevens ever rolled. Then

P(R6,8) = P(R6|R6 ∪R7 ∪R8)P(R8|R7 ∪R8)

=
P(R6)

P(R6 ∪R7 ∪R8)
· P(R8)

P(R7 ∪R8)
=

5
16

· 5
11

=
25
176

.

as to reach that ending condition, I must have reached a 6 before a 7 or
an 8, and then an 8 before a 7.

Likewise

P(R6,7,8) = P(R6|R6 ∪R7 ∪R8) · P(R7|R7 ∪R8)P(R8|R7 ∪R8)

=
5
16

· 6
11

· 5
11

=
150
1936

P(R7,6,8) = P(R7|R6 ∪R7 ∪R8) · P(R6|R6 ∪R7 ∪R8)P(R8|R7 ∪R8)

=
6
16

· 5
16

· 5
11

=
150
2816

Then

p = 2
(

25
176

+
150
1936

+
150
2816

)
=

4225
7744

≈ 0.546.
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4. (1.4.4) A hand of 13 cards is to be dealt at random and without replace-
ment from an ordinary deck of playing cards. Find the conditional prob-
ability that there are at least three kings in the hand given that the hand
contains two kings.

Answer

If I have at least 3 kings, I have either 3 or 4 kings, and if I have at least
two kings I have exactly 2 or 3 or 4 kings. Let A denote the event that I
have at least 3 kings, and B denote the event that I have at least 2.

Then

P(A|B) =
P(A ∩B)

P(B)
=

P(A)
P(B)

=

(4
3)(48

10)+(4
4)(48

9 )
(52
13)

(4
2)(48

11)+(4
3)(48

10)+(4
4)(48

9 )
(52
13)

=

(
4
3

)(
48
10

)
+

(
4
4

)(
48
9

)(
4
2

)(
48
11

)
+

(
4
3

)(
48
10

)
+

(
4
4

)(
48
9

)
5. (1.4.9) Bowl I contains 6 red chips and 4 blue chips. Five of these 10

chips are selected at random and without replacement and put into bowl
II, which was initially empty. One chip is then drawn at random from
bowl II. Given that this chip is blue, find the conditional probability that
2 red chips and 3 blue chips are transferred from bowl I to bowl II.

Answer:

Let Bi denote the event that i red chips were initially transferred, so that
P(Bi) =

(
6

5−i

)(
4
i

)
/
(
10
5

)
for i = 0, . . . 4, and let B denote the event that the

final chip is blue, so that p(B|Bi) = i
5 .

We want to compute P(B3|B). By Bayes rule:

P(B3|B) =
P(B|B3)P(B3)∑

P(B|Bi)P(Bi)

=
3
5

(
6
2

)(
4
3

)
1
5

(
6
4

)(
4
1

)
+ 2

5

(
6
3

)(
4
2

)
+ 3

5

(
6
2

)(
4
3

)
+ 4

5

(
6
1

)(
4
4

)
(Note that when writing this out, I multiplied top and bottom by

(
10
5

)
, so

that it’d be a bit simpler.)

6. (The two drunks problem): Two drunks, one stupid and one smart wander
back to their apartment after a night of drinking to by stymied at their
door. They both have n keys, but are unable to tell which one unlocks
their apartment.

(a) The first, stupid drunk picks a key from his keychain uniformly at
random repeatedly with replacement (i.e. he lets the key fall back
with the rest of his keys if it doesn’t work). Let Ak be the event that
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he successfully opens the door on the kth try. Compute P(Ak) for all
k.

(b) The smart drunk drops keys that don’t work on the floor so he doesn’t
repeat bad keys. That is, he picks keys repeatedly without replace-
ment. Let Bk be the event he successfully opens the door on the kth
try. Compute P(Bk) for k = 1, . . . , n. (Note: P(Bk) = 0 for k > n.
Why?)

Let Pk denote the event that the drunk picked the right key at time k.
Note that, for (a), Ak = P c

1 ∩ P c
2 ∩ · · · ∩ P c

k−1 ∩ Pk. Since P(Pi) = 1
n , and

the Pi are independent we have that:

P(Ak) = P(P c
1 )P(P c

2 ) . . . P(P c
k−1)P(Pk) =

1
n

(
n− 1

n

)k−1

.

For (b), the events Pi are no longer independent but:

P(Ak) = P(Pk|P c
1 ∩ · · · ∩ P c

k−1)× P(P c
k−1|P(P c

1 ∩ · · · ∩ P c
k−2)× · · ·

· · · × P(P c
2 |P c

1 )P(P c
1 )

=
1

n− (k − 1)
· n− (k − 1)
n− (k − 2)

· · · n− 2
n− 1

· n− 1
n

=
1
n

for k = 1, . . . n. That is, the door is equally likely to be opened at any
point.
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