Math 361, Problem set 6

Due 10/18/10

1. (1.8.3) Let X have pdf f(z) = (z 4 2)/18 for —2 < x < 4, zero elsewhere.

Find E[X],E[(X + 2)?] and E[6X — 2(X + 2)3].

Answer:
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E[6X —2(X 4 2)%] = 6E[X] — 2E[(X +2)°] =12 — =

. (1.8.5) Let X be a number selected uniformly random from a set of num-
bers {51,...,100}. Approximate E[1/X]. Hint: Find reasonable upper
and lower bounds by finding integrals bounding E[1/X].

Answer:
Note that
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Plenty of other reasonable estimates are available, eg.
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. Let X have the pdf f(z) = 1/2®. Find E[X], but show that e[X?] does
not exist.



Answer: This problem is badly misstated. To make it make sense, we can

assume that f(z) =1/2% on z > % so that the pdf integrates to 1. Then

E[X] = L= a.
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. (1.8.14) Let X have the pdf f(x) = 322, 0 < x < 1, zero elsewhere.
(a) Compute E[X?3]
(b) Show that Y = X3 has a uniform(0,1) distribution.

(¢) Compute E[Y] and compare this result with the answer obtained in
Part (a).

Answer:
We have
! 1
E[X?] :/ 3x0dr = —.
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Note that if Y = g(X) where g(z) = x*. Thus g~ '(y) = %'/, and
(97 (y) = $y~*/3. Thus
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for 0 < y < 1, zero else. Thus Y has a uniform(0,1) distribution.
Thus
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and (of course) the answer to (a) and (c) are the same.
. (1.9.4) If the E[X?] exists, show that
E[X?] > (E[X])*
Answer:
We have that
0 < E[(X — E[X])"] = E[X?] — (BIX])”

Rearranging gives the result. (Note: This is a special case of Jensen’s
inequality).



6. (1.9.8) Let X be a random variable such that E[(X — b)] exists for all real
b. Show that E[(X — b)?] is minimized when b = E[X].

Answer:
We have that

E[(X —b)?] = E[X? — 2bX + b*] = E[X?] — 20E[X] + b*.
Differentiating with respect to b, we have

d
%E[(X — )% = —2E[X] + 2b.

This has a critical point at b = E[X]. This point is a minimum as -FE[(X —
b)?] is positive if b > E[X] and negative if b < E[X].



