1. (20 points) A coin is flipped until there are two heads in a row, or three tails. Find the
probability that the three tails comes first.
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2. (20 points) Three integers are chosen with replacement from the first twenty integers. Find
the probability that a. (10 pts) Their sum is even
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b. (10 pts) Their product is even.
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3. (20 points) X is a continuous random variable with cdf FX(:L') =1-(1-2)2for0<z <1,
with Fx(z) =0 for <0, and Fx(z) =1 for z > 1. a. (10 pts) Find the pdf of X.
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b. (10 pts) Let Y =2(X + 1)2. Find the cdf of Y.
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4. (20 points) A random integer N from 1 to 10 is chosen uniformly at random.
a. (10 pts) The random variable X denotes the number of distinct prime factors of N.
(So if N =8 =23, X = 1). Find the pmf of X.
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b. (10 pts) Another random integer N’ from 1 to 10 is also chosen uniformly at random.
Find the probability that N > 2N’.
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5. (20 points) Is it possible for two events A and B with P(A), P(B) > 0 to be both mutually
exclusive and independent. Why or why not?
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