Practice Midterm Exam I

Math 362 2/25/10

Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single 8 $1/2 \times 11$ sheet of notes (double sided) is allowed. Calculators are permitted.
- Copies of normal, t-distribution and χ^2 tables are at the back
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the point.
- This test has . problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (20 points) A sample X_1, X_2, \ldots, X_n is drawn from the pdf $f(x; \theta) = \frac{2x}{\theta^2}$ for $0 < x < \theta$. Let $Y_1 < Y_2 < \ldots < Y_n$ denote the order statistics of the sample. **a.** (5 pts) Find the pdf of Y_n .

b. (7 pts) Find c that makes cY_n an unbiased estimator for θ .

c. (8 pts) Suppose n = 5, and $\theta = 1$. Find the probability that Y_n is a potential outlier for its distribution.

2. (20 points) X_1, \ldots, X_n are independent Poisson random variables with mean λ . We wish to test

$$H_0: \lambda = \frac{1}{10} \qquad vs \qquad H_1: \lambda > \frac{1}{10}.$$

a. (10 pts) Suppose n = 10. We accept H_1 if $Y = \sum X_i > C$. How large must C be in order for the size of the test to be less than .05?

b. (10 pts) Another possible test is the following: We accept H_1 if more than 1/10 of the observed values are non-zero. Find the *approximate size* of this test. You may leave your answer in terms of Φ , the cdf of the standard normal distribution and n. Do not assume n = 10. *Hint:* The number of non-zero X_i 's is binomially distributed.

3. (20 points) 100 Emory students are asked their favorite course, the distribution of their answers is as follows:

Subject	ENG 317	TBT 102	MATH 362	PE 168	CHEM 350
Freq	10	15	50	20	5

Our initial impression of the popularities of the courses (in the order presented above) is $q_0 = .1, q_1 = .1, q_3 = .55, q_4 = .15, q_5 = .1$. We wish to test

 $H_0: q_0 = .1, q_1 = .1, q_3 = .56, q_4 = .14, q_5 = .1$ vs $H_1:$ all other possibilities

Using the chi-square test, will we accept H_0 or H_1 at the 0.05 confidence level? At the 0.1 confidence level?

4. (20 points) A sample of 20 $N(\mu, \sigma)$ random variables, where μ and σ are both unknown, is generated with $\bar{X} = 13.27$ and $S^2 = 24.15$.

a. (10 pts) Construct a 99%-confidence interval for μ . Note: Construct a real, not approximate, confidence interval.

b. (10 pts) Construct a 95% confidence interval for σ^2 . Hint: You know the distribution of $(n-1)S^2/\sigma^2$. **5.** (20 points) A sample X_1, \ldots, X_n of points in (0, 1) is drawn from some pdf of the form $f(x; \theta) = \theta x^{\theta-1}$. We wish to test

$$H_0: \theta = 1;$$
 vs $H_1: \theta > 1.$

Design and explain a test to accomplish this goal, and find it's power function.

Hint: There are a *ton* of reasonable answers here. Two that come to mind: Base something on the mean, or on the distribution of the points - say the number of points in the first half of the strip.

Table III Normal Distribution

The following table presents the standard normal distribution. The probabilities tabled are

$$P(X \le x) = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-w^{2}/2} \, dw.$$

Note that only the probabilities for $x \ge 0$ are tabled. To obtain the probabilities for x < 0, use the identity $\Phi(-x) = 1 - \Phi(x)$.

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	-8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9986	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998

٢

Table IV t-Distribution

The following table presents selected quantiles of the *t*-distribution; i.e., the values x such that $\int_{-\infty}^{x} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{$

$$P(X \le x) = \int_{-\infty}^{\infty} \frac{\Gamma[(r+1)/2]}{\sqrt{\pi r} \Gamma(r/2)(1+w^2/r)^{(r+1)/2}} \, dw$$

for selected degrees of freedom r. The last row gives the standard normal quantiles.

	$P(X \le x)$							
r	0.900	0.950	0.975	0.990	0.995	0.999		
1	3.078	6.314	12.706	31.821	63.657	318.309		
2	1.886	2.920	4.303	6.965	9.925	22.327		
3	1.638	2.353	3.182	4.541	5.841	10.215		
4	1.533	2.132	2.776	3.747	4.604	7.173		
- 5	1.476	2.015	2.571	3.365	4.032	5.893		
6	1.440	1.943	2.447	3.143	3.707	5.208		
7	1.415	1.895	2.365	2.998	3.499	4.785		
8	1.397	1.860	2.306	2.896	3.355	4.501		
9	1.383	1.833	2.262	2.821	3.250	4.297		
10	1.372	1.812	2.228	2.764	3.169	4.144		
11	1.363	1.796	2.201	2.718	3.106	4.025		
12	1.356	1.782	2.179	2.681	3.055	3.930		
13	1.350	1.771	2.160	2.650	3.012	3.852		
14	1.345	1.761	2.145	2.624	2.977	3.787		
15	1.341	1.753	2.131	2.602	2.947	3.733		
16	1.337	1.746	2.120	2.583	2.921	3.686		
17	1.333	1.740	2.110	2.567	2.898	3.646		
18	1.330	1.734	2.101	2.552	2.878	3.610		
19	1.328	1.729	2.093	2.539	2.861	3.579		
20	1.325	1.725	2.086	2.528	2.845	3.552		
21	1.323	1.721	2.080	2.518	2.831	3.527		
22	1.321	1.717	2.074	2.508	2.819	3.505		
23	1.319	1.714	2.069	2.500	2.807	3.485		
24	1.318	1.711	2.064	2.492	2.797	3.467		
25	1.316	1.708	2.060	2.485	2.787	3.450		
26	1.315	1.706	2.056	2.479	2.779	3.435		
27	1.314	1.703	2.052	2.473	2.771	3.421		
28	1.313	1.701	2.048	2.467	2.763	3.408		
29	1.311	1.699	2.045	2.462	2.756	3.396		
30	1.310	1.697	2.042	2.457	2.750	3.385		
∞	1.282	1.645	1.960	2.326	2.576	3.090		

Table IIChi-square Distribution

The following table presents selected quantiles of chi-square distribution; i.e, the values x such that

$$P(X \le x) = \int_0^x \frac{1}{\Gamma(r/2)2^{r/2}} w^{r/2-1} e^{-w/2} \, dw,$$

for selected degrees of freedom r.

				$\overline{P(X)}$	$\leq x)$			
r	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277
5	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725
12	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932
22	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289
23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642
27	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278
29	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588
30	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892

Scrap Page

(please do not remove this page from the test packet)