Practice Final

Math 362Name:2/25/10______Read all of the following information before starting the exam:

- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Show all work, clearly and in order, if you want to get full credit. I reserve the right to take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- A single 8 $1/2 \times 11$ sheet of notes (double sided) is allowed. Calculators are permitted.
- Copies of normal, t-distribution and χ^2 tables are at the back
- Circle or otherwise indicate your final answers.
- Please keep your written answers clear, concise and to the point.
- This test has . problems and is worth 100 points. It is your responsibility to make sure that you have all of the pages!
- Turn off cellphones, etc.
- READ EACH OF THE PROBLEMS OF THE EXAM CAREFULLY!
- Good luck!

1	
2	
3	
4	
5	
\sum	

1. (25 points) Suppose X_1, X_2, \ldots, X_n is a sample from a $Expo(1/\theta)$ distribution, and let Y_1, \ldots, Y_n denote the order statistics of the sample. **a.** (10 pts) Find the constant c so that cY_1 is an unbiased estimator of θ .

b. (10 pts) Using the knowledge that $Z = \sum X_i$ is an sufficient statistic for θ , find an MVUE for θ . Explain why you know that you estimator is an MVUE. (You need not use Part (a)).

c. (5 pts) Compute the variance of the estimators you found in (a) and (b).

2. (25 points) **a.** (15 pts) Suppose X_1, \ldots, X_n are $N(\mu, \sigma)$ where both μ and σ are unknown. Supposing $\bar{X} = 1$, $S^2 = 2.5$ and n = 100, construct an exact 95% confidence interval for σ^2 .

b. (10 pts) Suppose X_1, \ldots, X_n are a sample from an unknown distribution. If $\overline{X} = 1$, $S^2 = 2.5$ and n = 100, construct an approximate 95% confidence interval for $\sigma^2 = \text{Var}(X_i)$.

3. (15 points) A Weibell distribution is a distribution with $f(x) = \frac{1}{\theta^3} 3x^2 e^{-x^3/\theta^3}$ for $0 < x < \theta$. Suppose we know how to generate uniform (0,1) random variables U, explain how to generate a random variable with the Weibell distribution using U. **4.** (30 points) Let X_1, \ldots, X_n have the Poisson(θ) distribution. **a.** (20 pts) Show \bar{X} is an efficient estimator of θ . (You may use the fact that $Var(\bar{X}) = \theta/n$, and need not compute it.)

b. (10 pts) Show that \overline{X} is a complete and sufficient statistic for θ .

5. (25 points) Let X_1, \ldots, X_n be a random sample from a $\Gamma(\alpha, beta)$ distribution where α is known and β is not. a. (10 pts) Determine the likelihood ratio test for $H_0: \beta = \beta_0$, against $H_1: \beta \neq \beta_0$. In particular, suppose $Z = -2 \log \Lambda$. For what values of Z should we reject H_1 and accept H_0 if we want a test with approximate size .99.

b. (10 pts) Find a uniformly most powerful test for $H_0: \beta = \beta_0$ versus $H_1: \beta > \beta_0$.

c. (5 *pts*) Is there a uniformly most powerful test of $H_0: \beta = \beta_0$ versus $H_1: \beta \neq \beta_0$? Why or why not?

6. (25 points) Suppose X_1, \ldots, X_n are a sample from the following distributions. Find an mle $\hat{\theta}$ of θ . **a.** (10 pts) $f(x;\theta) = (1/\theta)e^{-x/\theta}, 0 < x < \infty$, and $0 < \theta < \infty$, zero elsewhere.

b. (15 pts) $f(x;\theta) = \frac{1}{\sqrt{2\pi\theta}}e^{-\frac{1}{2\theta}x^2}$, for $-\infty < x < \infty$ and where $1 \le \theta \le 2$.

7. (25 points) Let X_1, \ldots, X_n denote a random sample from a distribution of pdf $\theta e^{-\theta x}$, for $0 < x < \infty$ and zero elsewhere, and $\theta < 0$. $\sum x_i$ is a sufficient statistic (and complete) for θ . Show (n-1)/Y is the MVUE of θ . Hint: What is the distribution of $\sum X_i$. 8. (25 points) The Pareto distribution has CDF

$$F(x;\theta_1,\theta_2) = \begin{cases} 1 - (\theta_1/x)^{\theta_2} & x \ge \theta_1 \\ 0 & else. \end{cases}$$

Find the mles of θ_1 and θ_2 . Note: I gave you the CDF!

Table III Normal Distribution

The following table presents the standard normal distribution. The probabilities tabled are

$$P(X \le x) = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-w^2/2} dw.$$

Note that only the probabilities for $x \ge 0$ are tabled. To obtain the probabilities for x < 0, use the identity $\Phi(-x) = 1 - \Phi(x)$.

x	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	-8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9998
3.5	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998	.9998

٢

Table IV t-Distribution

The following table presents selected quantiles of the *t*-distribution; i.e., the values x such that $\int_{-\infty}^{x} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$

$$P(X \le x) = \int_{-\infty}^{\infty} \frac{\Gamma[(r+1)/2]}{\sqrt{\pi r} \Gamma(r/2)(1+w^2/r)^{(r+1)/2}} \, dw$$

for selected degrees of freedom r. The last row gives the standard normal quantiles.

	$P(X \le x)$									
r	0.900	0.950	0.975	0.990	0.995	0.999				
1	3.078	6.314	12.706	31.821	63.657	318.309				
2	1.886	2.920	4.303	6.965	9.925	22.327				
3	1.638	2.353	3.182	4.541	5.841	10.215				
4	1.533	2.132	2.776	3.747	4.604	7.173				
5	1.476	2.015	2.571	3.365	4.032	5.893				
6	1.440	1.943	2.447	3.143	3.707	5.208				
7	1.415	1.895	2.365	2.998	3.499	4.785				
8	1.397	1.860	2.306	2.896	3.355	4.501				
9	1.383	1.833	2.262	2.821	3.250	4.297				
10	1.372	1.812	2.228	2.764	3.169	4.144				
11	1.363	1.796	2.201	2.718	3.106	4.025				
12	1.356	1.782	2.179	2.681	3.055	3.930				
13	1.350	1.771	2.160	2.650	3.012	3.852				
14	1.345	1.761	2.145	2.624	2.977	3.787				
15	1.341	1.753	2.131	2.602	2.947	3.733				
16	1.337	1.746	2.120	2.583	2.921	3.686				
17	1.333	1.740	2.110	2.567	2.898	3.646				
18	1.330	1.734	2.101	2.552	2.878	3.610				
19	1.328	1.729	2.093	2.539	2.861	3.579				
20	1.325	1.725	2.086	2.528	2.845	3.552				
21	1.323	1.721	2.080	2.518	2.831	3.527				
22	1.321	1.717	2.074	2.508	2.819	3.505				
23	1.319	1.714	2.069	2.500	2.807	3.485				
24	1.318	1.711	2.064	2.492	2.797	3.467				
25	1.316	1.708	2.060	2.485	2.787	3.450				
26	1.315	1.706	2.056	2.479	2.779	3.435				
27	1.314	1.703	2.052	2.473	2.771	3.421				
28	1.313	1.701	2.048	2.467	2.763	3.408				
29	1.311	1.699	2.045	2.462	2.756	3.396				
30	1.310	1.697	2.042	2.457	2.750	3.385				
∞	1.282	1.645	1.960	2.326	2.576	3.090				

Table IIChi-square Distribution

The following table presents selected quantiles of chi-square distribution; i.e, the values x such that

$$P(X \le x) = \int_0^x \frac{1}{\Gamma(r/2)2^{r/2}} w^{r/2-1} e^{-w/2} \, dw,$$

for selected degrees of freedom r.

	$P(X \le x)$									
r	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990		
1	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635		
2	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210		
3	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345		
4	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277		
5	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086		
6	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812		
7	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475		
8	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090		
9	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666		
10	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209		
11	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725		
$1\dot{2}$	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217		
13	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688		
14	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141		
15	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578		
16	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000		
17	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409		
18	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805		
19	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191		
20	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566		
21	8.897	10.283	11.591	13.240	29.615	32.671	35.479	38.932		
22	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289		
23	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638		
24	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980		
25	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314		
26	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642		
27	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963		
28	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278		
29	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588		
30	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892		

Scrap Page

(please do not remove this page from the test packet)