Math 362, Problem set 4

Due 2/23/10

Note: If you turn HW in on 2/21, I will return it for you by 2/23 for the purpose of studying for the exam.

- 1. (5.5.13) Let p denote the probability that, for a particular tennis player, the first serve is good. Since p = .4, this player decided to take lessons in order to increase p. When the lessons are completed, the hypothesis $H_0 = p = .4$ will be tested against $H_1 : p > .4$ based on n = 25 trials. Let y equal the number of first serves that are good, and let the critical region be defined by $C = \{y : y \ge 13\}$
 - (a) Determine $\alpha = \mathbb{P}_{p=.4}(Y \ge 13)$.

(b) Find
$$\beta = \mathbb{P}_{p=.6}(Y < 13)$$
. That is $1 - \beta$ is the power at $p = 0.6$,

Answer: For (a),

$$\alpha = \mathbb{P}_{p=.4}(Y \ge 13) = \sum_{k=13}^{25} \binom{25}{k} (.4)^k (.6)^{25-k} \approx 0.154.$$

For (b),

$$\beta = \mathbb{P}_{p=.6}(Y < 13) = \sum_{k=1}^{12} \binom{25}{k} (.6)^{25-k} (.4)^k \approx 0.154.$$

Note that these are actually the same sums!

2. (5.6.2) Consider the power function $\gamma(\mu)$ and it's derivative given by (5.6.5). Show that $\gamma'(\mu)$ is strictly negative for $\mu < \mu_0$, and strictly positive for $\mu > \mu_0$. What does this mean about $\gamma(\mu)$?

Answer:

Let

$$a = \frac{\sqrt{n}(\mu_0 - \mu)}{\sigma}.$$

Then a < 0 if $\mu > \mu_0$ and a > 0 if $\mu < \mu_0$. Using (5.6.6)

 $\gamma'(\mu) = \frac{\sigma}{\sqrt{n}} (\varphi(a - z_{\alpha/2}) + \varphi(a + z_{\alpha/2})) = \frac{\sigma}{\sqrt{2\pi n}} \left(e^{-(a - z_{\alpha/2})^2/2} - e^{-(a + z_{\alpha/2})^2/2} \right).$

If $\mu < \mu_0$ then $(a + z_{\alpha/2})^2 > (a - z_{\alpha/2})^2$, so $e^{-(a + z_{\alpha/2})^2/2} < e^{-(a - z_{\alpha/2})^2/2}$, so $\gamma'(\mu) < 0$.

If
$$\mu > \mu_0$$
, then $(a + z_{\alpha/2})^2 < (a - z_{\alpha/2})^2$, so $e^{-(a + z_{\alpha/2})/2} > e^{-(a - z_{\alpha/2})^2/2}$, so $\gamma'(\mu) > 0$.

Therefore $\gamma(\mu)$ has a minimum at μ_0 : That is to say that the probability that I accept H_1 is smallest when H_0 is true; a very good thing!

3. (5.6.9) In exercise 5.4.14, (on HW 2) we found a confidence interval for the variance σ^2 using the variance S^2 of a random sample of size *n* arising from $N(\mu, \sigma^2)$, where the mean μ is unknown. In testing $H_0 : \sigma^2 = \sigma_0^2$ against $H_1 : \sigma^2 > \sigma_0^2$, use the critical region defined by $(n-1)S^2/\sigma_0^2 \ge c$. That is, reject H_0 and accept H_1 if $S^2 \ge c\sigma_0^2/(n-1)$. If n = 13 and the significance level $\alpha = 0.025$, determine *c*.

Answer

Recall, $(n-1)S^2/\sigma^2$ has $\chi^2(n-1)$ distribution. Thus if $H_0: \sigma^2 = \sigma_0^2$ is true, $(n-1)S^2/\sigma_0^2$ has $\chi^2(n-1)$ distribution, and

$$\alpha = \mathbb{P}_{\sigma_0^2}((n-1)S^2/\sigma_0^2 \ge c) = \mathbb{P}(\chi^2(n-1) > c)$$

Since n = 13, and we want $\alpha = 0.025$, we consult the table and find that c = 23.337.

Note: Since our test is 'one sided' (in the sense that we only reject H_0 if $(n-1)S^2/\sigma_0^2$ is large enough, we consult the table to find the c so that $\mathbb{P}(\chi^2(n-1) \leq c) = .975$.

4. (5.7.3) A die was cast n = 120 time independent times, and the following data resulted:

Spots Up
1
2
3
4
5
6

Frequency
$$b$$
20
20
20
20
 $40 - b$

If we use a chi-square test, for what values of b would the hypothesis that the die is unbiased be rejected at the 0.025 significance level.

Answer:

If the die is unbiased, $p_i = \frac{1}{6}$ for i = 1, ..., 6. Thus

$$\sum \frac{(X_i - pn)^2}{pn} = \frac{(b - 20)^2}{20} + \frac{(40 - b - 20)}{20} = \frac{(b - 20)^2}{10}.$$

Since our test (at the 0.025 significance level) is to reject this if $\frac{(b-20)^2}{10} > 12.833$ (this number is obtained by comparing to a $\chi^2(5)$ distribution), we solve

$$\frac{(b-20)^2}{10} > 12.833$$

 $b > \sqrt{128.33} + 20$

if

or

$$b < 20 - \sqrt{128.33}$$

There are two sides, coming from the positive and negative square root of $(b-20)^2$; both need to be accounted for.

5. (5.7.7) A certain genetic model suggest that the probabilities of a particular trinomial distribution are, respectively, $p_1 = p^2$, $p_2 = 2p(1-p)$ and $p_3 = (1-p)^2$, where $0 . If <math>X_1, X_2, X_3$ represent the respective frequencies in n independent trials, explain how we could check on the adequacy of the genetic model.

Answer: If $p = p_0$ is given, then we simply compute

$$\frac{(X_1 - p_0^2 n)^2}{p_0^2 n} + \frac{(X_2 - 2p_0(1 - p_0)n)^2}{2p_0(1 - p_0)n} + \frac{(X_3 - (1 - p_0)^2 n)^2}{(1 - p_0)^2 n}$$

and for our desired significance level, we compare the outcome with the c we find for a $\chi^2(2)$ random variable.

Generally, we are not so lucky as to be given p_0 , and our goal is to test whether there *exists* a p so that the data fits the distribution. Hence we need to find an estimate $\hat{p} = \hat{p}(X_1, X_2, X_3)$ and use that estimate to compute

$$\frac{(X_1 - \hat{p}^2 n)^2}{\hat{p}^2 n} + \frac{(X_2 - 2\hat{p}(1 - \hat{p})n)^2}{2\hat{p}(1 - \hat{p})n} + \frac{(X_3 - (1 - \hat{p})^2 n)^2}{(1 - \hat{p})^2 n}.$$

Then we would compare to the value of c coming from our desired significance level, comparing now with a $\chi^2(1)$ random variable. *Important point:* The number of degrees of freedom is reduced by one since we estimate a parameter.

As far as finding \hat{p} , there are a couple of reasonable ways to estimate the parameter. I think what the book had in mind is the following:

Note that (if H_0 is correct)

$$X_1 \approx p^2 n$$
 and $X_2 \approx 2(p-p^2)n$

Therefore

$$2X_1 + X_2 \approx 2pn$$

$$p \approx \frac{2X_1 + X_2}{2n} = \frac{2X_1 + X_2}{2(X_1 + X_2 + X_3)}.$$

Therefore we can take

$$\hat{p} = \frac{2X_1 + X_2}{2(X_1 + X_2 + X_3)}$$

Note: I am flexible as to how you found \hat{p} .

6. (5.8.3). Suppose X is a random variable with the pdf $f_X(x) = b^{-1}f((x-a)/b)$, where b > 0. Suppose we can generate observations from f(z). Explain how we can generate observations from $f_X(x)$.

Answer:

Recall: If X = g(Y) (where g(y) is increasing or decreasing) and Y has pdf f(z), then

$$f_X(x) = f(g^{-1}(x))|(g^{-1})'(x)|.$$

We see $f_X(x) = b^{-1}f((x-a)/b)$ is of this form, where $g^{-1}(x) = \frac{x-a}{b}$. That is g(y) = by + a. In other words, if we can generate Y with pdf f(z), we can find X with pdf $f_X(x)$ by taking X = bY + a.

Remark: I promised some test-like questions, but the book questions are pretty good in this regard this time - especially 1, 3, 4. Even problems like 5 written a bit less open endedly is okay. 6, I would try and make more concrete. As I hit sections where the book problems are less suitable for exam problems, though, I will try and write some of my own problems. Please give me feedback as to whether how the homework problems are going for you as we head towards this exam.

 \mathbf{SO}