Math 362, Problem Set 6

Due 3/23/11

- 1. (6.1.2) Let X_1, X_2, \ldots, X_n be a random sample from a $\Gamma(\alpha = 3, \beta = \theta)$ distribution, $0 < \theta < \infty$. Determine the mle of θ .
- 2. (6.1.5) Suppose X_1, \ldots, X_n are iid with pdf $f(x; \theta) = 2x/\theta^2, 0 < x \le \theta$, zero elsewhere. Find
 - (a) The mle $\hat{\theta}$ for θ .
 - (b) The constant c so that $\mathbb{E}[c\hat{\theta}] = \theta$.
 - (c) The mle for the median of the distribution.
- 3. (6.1.9) Suppose X_1, \ldots, X_n are iid with pdf $f(x; \theta) = (1/\theta)e^{-x/\theta}$. Find the mle of $\mathbb{P}(X \leq 2)$.
- 4. (6.1.10) If $X_1, X_2, \ldots X_n$ be a random sample from a Bernoulli distribution with parameter p. If p is restricted so that we know that $\frac{1}{2} \leq p \leq 1$, find the mle of this parameter.
- 5. (6.2.1) Prove that \bar{X} , the mean of a random sample of size *n* from a distribution that is $N(\theta, \sigma^2)$ is, for every known $\sigma^2 > 0$, an efficient estimator of θ .
- 6. (6.2.7) Let X have a gamma distribution with $\alpha = 3$ and $\beta = \theta > 0$.
 - (a) Find the Fisher information $I(\theta)$.
 - (b) If X_1, \ldots, X_n is a random sample from this distribution, show that the mle of θ is an efficient estimator of θ_{i} .
 - (c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$?

Note: I changed $\alpha = 4$ in the original problem to $\alpha = 3$ since you computed the mle for θ in this case above.