Math 500, Problem Set 1

March 3, 2010

- 1. Prove that for every $\epsilon > 0$ there is a finite $l_0 = l_0(\epsilon)$ and an infinite sequece of bits a_1, a_2, \ldots with $a_i \in \{0, 1\}$, such that for every $l > l_0$ and every $i \ge 1$, the two binary vectors $u = (a_i, a_{i+1}, \ldots, a_{i+l-1})$ and $v = (a_{i+l}, a_{i+l+1}, \ldots, a_{i+2l-1})$ differ in at least $(\frac{1}{2} \epsilon)l$ coordinates.
- 2. Let G = (V, E) be a simple graph, and suppose each $v \in V$ is associated with a set S(v) of colors of size at least 10*d*, where $d \ge 1$. Suppose, in addition, that for each $v \in V$ and $c \in S(v)$ there are at most *d* neighbors *u* of *v* such that *c* lies in S(u). Prove there is a proper coloring of *G* assigning to each vertex *v* a color from its class S(v).
- 3. Let X be a random variable which takes non-negative values only. Show that

$$\sum_{i=1}^{\infty} (i-1) \mathbf{1}_{A_i} \le X \le \sum_{i=1}^{\infty} i \mathbf{1}_{A_i},$$

where $A_i = \{i - 1 \le X < i\}$. Deduce that

$$\sum_{i=1}^{\infty} \mathbb{P}(X \ge i) \le \mathbb{E}[X] \le 1 + \sum_{i=1}^{\infty} \mathbb{P}(X \ge i).$$

4. The interval [0,1] is partitioned into n disjoint sub-intervals with lengths p_1, p_2, \ldots, p_n , and the *entropy* of this partition is defined to be

$$h = -\sum_{i=1}^{n} p_i \log p_i.$$

Let X_1, X_2, \ldots be independent random variables having uniform distribution on [0, 1], and let $Z_m(i)$ be the number of X_1, \ldots, X_m which like in the *i*th interval of the partition above. Show that

$$R_m = \prod_{i=1}^n p_i^{Z_m(i)}$$

satisfies $m^{-1}\log(R_m) \to -h$ a.s. as $m \to \infty$ (that is:

$$\mathbb{P}(\lim_{m \to \infty} \frac{\log(R_m)}{m} = -h) = 1.$$

5. Let A_1, A_2, \ldots be a sequence of events. Show that

$$\mathbb{P}(A_n \ i.o.) \ge \limsup_{n \to \infty} \mathbb{P}(A_n)$$

6. Suppose X_1, X_2, \ldots are independent and exponentially distributed with paratmeter one. Show that

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{X_n}{\log(n)} = 1\right) = 1$$

7. Let X be a random variable with $\mathbb{E}[X] = 0$ and $\operatorname{Var}(X) = \sigma^2$. Prove that for all $\lambda > 0$,

$$\mathbb{P}(X \ge \lambda) \le \frac{\sigma^2}{\sigma^2 + \lambda^2}.$$

(Note: this is a slight improvement on Chebyshev, which gives a bound of the form $\frac{\sigma^2}{\lambda^2}$.)

8. Let X be a random variable taking integral nonnegative values, let $\mathbb{E}[X^2]$ denote the expectation of its square, and let Var(X) denote its variance. Prove

$$\mathbb{P}(X=0) \le \frac{\operatorname{Var}(X)}{\mathbb{E}[X^2]}.$$

9. Show that there is a positive constant c such that the following holds. For any n vectors $a_1, a_2, \ldots, a_n \in \mathbb{R}^2$ satisfying $\sum_{i=1}^n ||a_i||^2 = 1$ and $||a_i|| \leq \frac{1}{10}$, where $|| \cdot ||$ denotes the usual Euclidean norm, if $(\epsilon_1, \ldots, \epsilon_n)$ is a $\{-1, 1\}$ random vector obtained by choosing each ϵ_i randomly and independently with uniform distribution to be either -1 or 1, then

$$\mathbb{P}\left(\left\|\sum_{i=1}^{n}\epsilon_{i}a_{i}\right\|\leq\frac{1}{3}\right)\geq c.$$

- 10. Let $S_n = \sum_{i=1}^n X_i$ where the X_i are iid variables that are uniformly ± 1 .
 - (a) Show that

$$\mathbb{P}\left(\sqrt{\left(\frac{S_n}{\sqrt{n}}\right)^2} \ge \frac{1}{3}\right) \ge c$$

for some absolute constant c. (This is a special case of the previous problem.)

(b) Show that

$$\mathbb{E}[|S_n|] = n2^{1-n} \binom{n-1}{\lfloor \frac{n-1}{2} \rfloor}.$$

Apparently a 1974 Putnam problem.

(c) Derive that

$$\mathbb{E}[|S_n|] \sim (\sqrt{\frac{2}{\pi}} + o(1))\sqrt{n}.$$

11. Let X_2, X_3, \ldots be independent random variables such that:

$$\mathbb{P}(X_n = n) = \mathbb{P}(X_n = -n) = \frac{1}{2n\log n}, \quad \mathbb{P}(X_n = 0) = 1 - \frac{1}{n\log n}$$

Show that this sequence obeys the weak law but not the strong law, in the sense that $n^{-1} \sum X_i$ converges to zero in probability but not almost surely.

- 12. Construct a sequence $\{X_r : r \ge 1\}$ of independent random variables with zero mean such that $n^{-1} \sum_{r=1}^n X_r \to -\infty$ almost surely, as $n \to \infty$.
- 13. Prove that $\mathbb{P}(X = 0) \leq \frac{\sigma^2}{\mu^2}$ when X has mean $\mu \neq 0$ and variance σ^2 (essentially, we did this in class.) Then show that the stronger inequality below is true:

$$\mathbb{P}(X=0) \le \frac{\sigma^2}{\mu^2 + \sigma^2}.$$