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Abstract. We consider a variant of the contact process concerning multi-commodity allocation on
networks. In this process, the demands for several types of commodities are initially given at some
specified vertices and then the demands spread interactively on a contact graph. To allocate supplies
in such a dynamic setting, we use a modified version of PageRank vectors, called Kronecker PageRank,
to identify vertices for shipping supplies. We analyze both the situation that the demand distribution
evolves mostly in clusters around the initial vertices and the case that the demands spread to the
whole network. We establish sharp upper bounds for the probability that the demands are satisfied as
a function of PageRank vectors.

1 Introduction

Efficient allocation of resources to meet changing demands is a task arising in numerous applications.
For example, institutions such as governments or corporations respond to the needs of a populace,
and wish to meet the demands within allowed expenditure of resources. In some cases where demand
spreads, one has to be able to act before demand becomes unmanageable. In the case of an epidemic,
for instance, one desires to find a way to distribute medicine so that the disease will be contained.
Such problems have been studied in several contexts using the contact process model [9], [7], [2],
[11], [5]. In [5], it was demonstrated how to use PageRank vectors to both restrict the number of
nodes inoculated and to provide certain containment guarantees.

In this paper, we study a variant of the classical contact process, a continuous time Markov
process on a contact graph. In our scenario, vertices in the graph each have varying levels of demand
for multiple commodities. Demand at a vertex propagates to its neighbors at a rate depending on
the current demand. Our model allows for interactions between different commodities; demand for
one commodity may influence demand for another. This fits many scenarios that arise, for instance
demand for iPhones may accelerate the demand for iPads. As another example, demand at a node
can might be viewed as a measure of discontent with the current supply of a resource. It is natural
for an unhappy node to create unrest in its neighbors. As the modified contact process continues,
demands at a vertex are increased at a rate based on the demands at neighboring vertices. There
are also decreased at a satisfaction rate, which can be thought of of as a frequency of shipments.
Demand spreads at rates which are a linear combination of demands from neighboring vertices.
These rates are encapsulated in a spread matrix, B, roughly analogous to the infectivity parameter
in the classical contact process. The goal of this paper is to find satisfaction rates, dependent on the
spread matrix B and the geometry of the contact graph which ensure that eventually all vertices
have no demand and the process dies out. Our process will be defined, in detail, in Section 2.



To satisfy the demands which evolve according to our model as defined in Section 2, the goal is
to ship commodities and supply vertices with unsatisfied demands in an efficient way. The model
here differs somewhat from typical resource allocation problems in the sense that we do not specify
the location of the “warehouses” for the supply. We will not be concerned with either the sources
of the supply or the detailed incremental costs of shipping supply. Instead, our goal is to identify
how often to ship each commodity to a particular vertex, in order to contain and satisfy demands,
given an initial seed set. The reader is referred to [4] for the usual resource allocation problem.

Contact graphs of interest take many forms: Cities and countries exert trade pressure on neigh-
boring cities and countries. Communication on the internet can also spread demand for products,
or discontent leading to a revolution. Instead of studying this problem on particular models for
these contact graphs, we study the problem on arbitrary finite graphs. Two schemes of making
shipments are considered. First is a global solution which involves “scheduling shipments” to all
vertices in the graph, and ensures that all demand is satisfied in O(log n) time, with high proba-
bility and regardless of the initial demand. This is made precise in Theorem 1 once the model is
formally defined. The next scheme is a local solution, in the sense that shipments are scheduled to
only a subset of vertices which contain the initial demand. In particular, when the contact graph
has some clustering structure we are interested in subsets so that the demand within the subset is
satisfied quickly (in O(log n) time) and demands reach a vertex not receiving shipments with low
probability. Precise results to this end are given in Section 5.

This latter scheme relies on understanding the geometry of the particular contact graph being
studied. Our scheme uses PageRank to identify important vertices and to bound the probability
that demand in our process leaves a set. We also introduce a variant of PageRank, which we call
Kronecker PageRank and is introduced in Section 3, which provides sharper bounds by better
utilizing the structure of the spread matrix B as well as the geometry of the graph in its estimates.
Our analysis provides a tradeoff in the following sense: we may use PageRank estimates to identify
a set of vertices containing the initial demand which are important to ship to or we may use our
PageRank estimates to give a guarantee on the escape probability of leaving a particular set of our
choosing. Precise results to this end are given in Theorems 3 and 4, using standard PageRank and
Kronecker PageRank respectively.

2 Preliminaries and The Demand Model

We model demand spreading within an undirected simple graph, G = (V,E). We write this v ∼ w
when v and w are adjacent. For each vertex v ∈ V , let dv be the degree of v, which is the number of
neighbors of v. While not strictly necessary, we assume that there is a self loop at each vertex. In
this case, dv includes v in the count of neighbors and hence the loop counts as 1 towards the degree.
We let n = |V |, the number of nodes of G. An exponential random variable with parameter λ has
probability density function given by f(x) = λe−λx for x ≥ 0, and 0 for x < 0. This distribution
will be denoted Exp(λ). One important property of exponential random variables is the memoryless
property: if X is an exponential random variable then for any constants a, b > 0,

P(X > a+ b|X > a) = P(X > b).



If X and Y are independent and X ∼ Exp(λ1), Y ∼ Exp(λ2) then min{X,Y } ∼ Exp(λ1 + λ2). A
Poisson point process at rate λ is a sequence of random variables {Xi}∞i=1 so that X1 and Xi−Xi−1,
for i ≥ 2, has distribution Exp(λ).

Before we describe our model, let us briefly recall the contact process on a graph G, which we
denote CP (T, β,σ, G). In the contact process (see for example [2] or [5]), a disease initially infects a
set T ⊆ V (G). The disease has an infectivity parameter, β, and each vertex has a certain amount of
“medicine” σv. An infected vertex v infects its neighbor u at times given by a Poisson point process
{Xuv} at rate β, and each infected vertex is cured at times given by a Poisson point process at
rate σv. In the most frequently studied case, σ is constant and the host graph is an infinite graph.
The process ends when all vertices are cured, and the basic problem is to determine under which
conditions on σ, and β the process ends almost surely. In the case of finite graphs, if σv > 0 for
every vertex, it is easy to observe that the process ends a.s., so the problem becomes determining
how fast the process ends.

The k−commodity dynamic demand model on a graph G is a variant of the contact process,
DD(τ (0), B,σ, G,N). In this situation, B is a real valued k×k-matrix (not assumed to be symmet-
ric, or even non-negative), which we call the spread matrix. The supply function is σ : V → Rk, and
τ (0) : V → Nk is the initial demand. The state of the process at time t is given by τ (t) : V → Rk,
which gives the demands for each vertex at time t. We use τ v(t) ∈ Nk to denote the demand at
vertex v at time t, and τ jv (t) ∈ N to denote the demand for commodity j at time t. A node v is said
to be satisfied at time t if τ v(t) = 0, and unsatisfied otherwise. N ∈ N serves as a uniform bound
for the maximum demand for any resource at any point (for instance, it could be the population
of a city, if a vertex is a city.) The existence of N is simply to ensure integrability of some random
variables. In the case of the contact process, N = 1.

The spread matrix B = [βij ] describes how the demand for one commodity influences demands
for other commodities. The i, j entry of B, βij , determines the spread rate of the demand for
commodity j that is caused by demand for commodity i. In particular, we can describe the rate
of spread events as follows. If v is a node that is unsatisfied at time t, and w an adjacent vertex,
then there are spread events from v to w with rates max{τ v(t)B, 0}. That is the rate at which
τ jw increases due to the demand at v is given by max{

∑
i τ

i
v(t)βij , 0}. Here, when we say an event

occurs with rate λ, we mean that the elapsed time until that event takes place is distributed as
Exp(λ). Because the minimum of exponential random variables is itself an exponential random
variable, we can capture the total spreading rates in a condensed form. We define the rate function
at time t, ρ(t) : V → Rk, by

ρv =
∑
w∼v

τw(t)B = (τ (t)(A⊗B))v ,

where τ (t) is viewed as a vector with indices indexed by V × k. ρiv(t) is the rate at which τ iv is
increasing at time t. Any spread events that would raise τ iv above N are ignored.

Supply events occur with rates given by τ (t)Diag(σ), independently of any neighboring supply
events. That is, the time until τ iv is decreased by 1 is distributed as Exp(σivτ

i
v).

We briefly give a construction of the process, to show it is well-defined. Let
−→
E denote the

set of ordered edges; that is, ordered pairs that are edges in the graph, so that uv and vu are



distinct. We run independent Poisson point processes {Xj,ρ
e }e∈−→E (G),j∈[k],ρ∈[N ]k

so that Xj,ρ
e is at

rate max{0, [τ vB]j} and independent Poisson point processes {Xi,n
v }v∈V (G),i∈[k],n∈[N ] so that Xi,n

v

is at rate nσiv. Then these finitely many point processes can easily be seen to define the entire
process; a spread event of type j from a vertex v to a vertex u which is currently in state ρ is
controlled by the point process Xj,ρ

vu with satisfaction events handled similarly.

Such a formulation is that it gives an easy coupling between processes that shows that if B′ ≤ B
pointwise, the stochastic processDD(τ (0), B,σ, G,N) stochastically dominatesDD(τ (0), B′,σ, G,N).
That is, in the coupling the demands in the B process are always at least those in the B′ process.
This is accomplished by noting that the rates ρB ≥ ρB′ pointwise for all ρ ∈ Nk. We thus take
point processes Y j,ρ

e at rate [ρB − ρB′]i. If the point processes {Xj,ρ
e } and {Xi,n

v } are used to
determine DD(τ (0), B,σ, G,N), then the point processes {Xj,ρ

e ∪ Y j,ρ
e } and {Xi,n

v } are used to
determine DD(τ (0), B′,σ, G,N).

In particular, this allows us to replace B with B′, where B′ij = max{Bij , 0}, and conclusions
about the extinction of the B′ process still hold for B. Furthermore, this turns out not to be
entirely unreasonable. One hopes that the negative entries in B would afford better bounds on the
extinction time, but in many cases with negative entries in B extinctions of some demand types
mean that the process is eventually run in a non-negative case. In light of this, we will assume for
the rest of this paper that B is non-negative for convenience.

Given an initial demand τ (0) and spread matrix B, our goal is to find a supply function σ such
that demand is satisfied. Ideally we would like to do this with small supply rates. Furthermore,
the supply rates should only depend on the contact graph G, the spread matrix B, and the initial
demand τ (0), but not on t or τ (t).

Because we take B to be an arbitrary positive k×k matrix, we will at times need to use various
matrix norms in order to understand the process. For a square matrix B, there are many different
matrix norms that can be used (see [8]). We will use the following notation for the following norms:

1. ||B||1 =
∑

i,j |aij | is the `1 norm.

2. |||B|||1 = maxj
∑

i |aij | is the maximum column sum norm.

3. |||B|||∞ = maxi
∑

j |aij | is the maximum row sum norm.

4. |||B|||2 = max{
√
λ|λ is an eigenvalue of A∗A} is the spectral norm.

3 PageRank and Kronecker PageRank

The notion of PageRank was first introduced by Brin and Page [3] in 1998 for Google’s search
algorithms. Although PageRank was originally used for the Web graph, it is well defined on any
finite graph G. The basis of PageRank is random walks on graphs. A walk is a sequence of vertices
(v0, v1, ..., vk) where vi ∼ vi+1. A simple random walk of length k is a sequence of random variables
(x0, ..., xk) where the starting vertex x0 is chosen according to some distribution, and

P(xi+1 = v|xi) =

{
1
dxi

if xi ∼ v
0 if xi � v

.



Let D be the diagonal degree matrix with entries Dvv = dv, and let A be the adjacency matrix
with entries

Avw =

{
1 if v ∼ w
0 if otherwise.

Then the transition probability matrix for a random walk on G is given by W = D−1A.

We will mainly use a modified version of the PageRank, called personalized PageRank. Person-
alized PageRank has two parameters, a jumping constant α ∈ [0, 1] and a seed s which is some
probability distribution on the vertex set V of G.

The personalized PageRank vector pr(α, s) for jumping constant α and the seed distribution s
on V is given by

pr(α, s) = α
∞∑
`=0

(1− α)`sW `.

Note that here we view s as a row vector, which is our convention for all vectors throughout this
paper. We note that the PageRank vector is also the solution to the recurrence relation

pr(α, s) = αs + (1− α)pr(α, s)W.

The original definition of PageRank [3] is the special case where s is the uniform distribution over
all the vertices.

For a subset of vertices H ⊂ V , the volume of H is the sum of degrees of the vertices of H. The
Cheeger Ratio of H, h(H), measures the cut between H and H̄ via the relationship

h(H) =
e(H, H̄)

min{vol(H), vol(H̄)}
.

The α−core of a subset H is the set of vertices

Cα =

{
v ∈ H|pr(α, 1v)1H ≥ 1− h

α

}
.

Personalized PageRank naturally gives bounds on the probability that demands leave a given
set in the k-commodity dynamic demand model. These bounds lose some of the structure of the
process given by B, however. In order to better understand the process and get tighter bounds, we
will use generalization of the personalized PageRank vector, the Kronecker PageRank vector.

If B is an k×k matrix, and A an n×n matrix, then the Kronecker product A⊗B is the nk×nk
block matrix

A⊗B =

 a11B · · · a1nB
...

. . .
...

an1B · · · annB


With this, we can define Kronecker PageRank.



Definition 1 (Kronecker PageRank) Let B be a square k×k matrix with spectral radius strictly
less than 1, and W be the transition matrix for a random walk on a graph G. Let s be a non-negative
vector in Rk×|V |. The Kronecker PageRank vector with parameters B and s is defined as

Kpr(B, s) =
∞∑
`=0

s(W ⊗B)` =
∞∑
l=0

s(W ` ⊗B`)

Requiring the spectral radius of B less than 1 is necessary to ensure convergence of the infinite
sum, as the spectrum of W ⊗B is the product of the spectra of W and B. Since the eigenvalues of
W have absolute value at most 1, the sum will converge.

We note that in the case where B is a 1×1 matrix B = β < 1 and s is a probability distribution,
then we have the relationship

Kpr(B, s) =
∞∑
l=0

s(W ⊗ β)l =

∞∑
l=0

sβlW l =
1

1− β
pr(1− β, s),

so the Kronecker PageRank is a natural extension of personalized PageRank. We will see in Theorem
4 that the Kronecker PageRank will arise naturally in our analysis in Section 3, and give better
bounds than those that will be afforded by standard PageRank by incorporating the spread matrix.

4 Global analysis: Supplying every vertex

Here we show that if supply rates are above a certain threshold, then with probability approaching
1 demands will be satisfied. Recall that B is a non-negative real valued k × k matrix, and σ is the
vector of supply rates for the process DD(τ (0), B,σ, G,N).

Theorem 1 Consider the k−commodity demand model on a graph G with n vertices parameterized
by spread matrix B = [βij ]. Let X(t) = ||τ (t)||1, the total amount of demand at time t. If the supply

rates to each vertex v are σiv > dv

(∑
j
βij+βji

2

)
+ δ for δ > 0 then with probability 1− ε all vertices

are satisfied at time t for all

t >
1

δ

(
1

2
log(nk) + log(X(0)) + log

(
1

ε

))
.

Proof.

We begin by considering the quantity ∂
∂tE[τ (t)]. From the discussion in Section 2, we know

that demand is increasing with rates given by ρ(t) = τ (t) (A⊗B), but also demand decreases
proportionally to the supply rates and current demand. Indeed, let S = diag(σ), the diagonal
nk × nk matrix with entries given by the supply vector. Then demand decreases at each vertex
according to rates given by the supply rate vector τ (t)S.

It is not difficult to encapsulate all of the above information in the simple expression

∂

∂t
E[τ (t)] = E[ρ(t)− τ (t)S] = E[τ (t)](A⊗B − S). (1)



A detailed proof of (1) is left to the appendix for space reasons.

Solving the matrix differential equation with initial condition E[τ (0)] = τ (0) yields

E[τ (t)] = τ (0)et(A⊗B−S). (2)

Let Q = A⊗B − S. Then by [6], |||etQ|||2 ≤ etν , where ν is the largest eigenvalue of Q+Q∗

2 . We

note that Q+Q∗

2 = A⊗ (B+B∗

2 )− S, which has diagonal terms βii − σiv, ranging over all values of v

and i. By the Gershgorin Circle Theorem, the eigenvalues of Q+Q∗

2 are contained in the intervals−(dv − 2)βii − dv

∑
j 6=i

βij + βji
2

− σiv, dv

∑
j

βij + βji
2

− σiv
 .

Since σiv > dv

(∑
j
βij+βji

2

)
+ δ all the eigenvalues of Q+Q∗

2 are less than −δ. Therefore

E[X(t)] = ||τ(0)et(A⊗B−S)||1 ≤
√
nk||τ(0)et(A⊗B−S)||2

≤
√
nk||τ(0)||2|||et(A⊗B−S)|||2 ≤

√
nk||τ(0)||1etν

≤
√
nkX(0)e−tδ

Thus Markov’s inequality gives that P(X(t) > 0) < ε if t > 1
δ

(
1
2 log(nk) + log(X(0)) + log

(
1
ε

))
.

�

We note that this approach works for all initial distributions τ (0), and on any graph G. In
particular, it is agnostic to the shape of the graph. This indicates that in many situations this
approach may be overkill and that we could have used smaller supply rates. In the next section,
we analyze the process more carefully and give conditions that depend on the initial distribution
of demand and the geometry of the underlying contact graph.

5 Local analysis: Supplying a small subset

For the remainder of the discussion, it is convenient to introduce reformulation of the model that
takes advantage of the fact that demands take on integer values. Rather than view demands as
a function τ : V → Nk, we view demands as discrete objects sitting on each node. Borrowing
language from chip-firing games on graphs (see, for example, [10]) we view units of the demand
as chips located on vertices of the graph. For example, if k = 7 then for a vertex v with τ v(t) =
(0, 1, 2, 0, 2, 0, 3) then we would say that at time t there was 1 2-chip, 2 3-chips, 2 5-chips, and 3
7-chips at vertex v, corresponding to 1 “unit of demand” for commodity 2, etc. Unlike in classical
chip-firing games, the number of chips is not static, and the process is continuous time. We restate
the possible transitions in terms of demand chips. For an i−chip at vertex v, there are two types
of transition events:



– For each vertex w ∼ v and each j = 1, ..., `, a j−chip is added at w at rate βij . When this
occurs we say that the new j−chip is created by the i−chip.

– The i−chip itself is removed with rate σiv.

Due to the properties of exponential random variables, the rates add linearly, and the model is
equivalent to the original description discussed in Section 2. The main advantage of this reformula-
tion is the ability to trace back the history of a chip. If there is a chip c at vertex v at time t, then
either c existed at time t = 0, or there is a sequence of ` chips (c0, ..., c` = c) located at vertices
along a walk π = (v0, v1, ..., v` = v) with the following properties:

1. c0 existed at t = 0
2. cr is created by cr−1 for r = 1, ..., `.

We allow π to have repeated vertices to allow for the case where demand created more demand at
the same vertex. If a chip c exists at time 0, we refer to it as an initial chip.

For a path π = (v0, v1, ..., v`) and a chip c0 located at v0, we define the event Sπ,c0 to be the
event there is a sequence of m chips (c0, ..., c`) located respectively at (v0, v1, ..., v`) and cr is created
by cr−1 for r = 1, ..., `.

It is important to note that Sπ,c0 occurring does not imply that there is any demand at v` at
time t because it could be satisfied sometime before t. However, if there is a demand at v` at time
t, then Sπ,c must have occurred for some initial chip c at vertex v0 and some walk π from v0 to v`.

We begin by relating P(Sπ,c0) to the length of the walk π. Inspired by Theorem 1 we make the
assumption that supply rates are proportional to the degree of the vertices. That is, we assume
that σiv > µi(dv) for all v for constants µi > 0.

Lemma 2 Let M = diag(µ1, ..., µk), B̂ = M−1B and ζ = min{|||B̂|||1, |||B̂|||∞}
Then for any chip c0 located at v0 and any walk π = (v0, ..., v`) of length `,

P(Sπ,c0) ≤ kζ`
∏̀
j=0

1

dvj

Proof.

Let Sr denote the event that a chip cr at vr creates a chip at vr+1. If cr is an i−chip, then for
it to create any chip at vr+1 a spread event must occur before cr is removed. The time until cr
creates a j−chip at vr+1 is an exponential random variable with rate βij . Since the time until cr is

removed is given by Exp(σiv), the probability of cr creating a j−chip is
βij

βij+σi
v
≤ βij

σi
v
<

βij
µidvr

. Thus

P(Sr) <
∑

i,j
βij
µidvr

= 1
dvr

1B̂1∗.

For a walk π of length `, we want to consider the intermediate steps more carefully. Since there
are ` transitions that occur, we can use the same reasoning as above to obtain the bound

P(Sπ,c) <
∏̀
r=0

1

dvr
1B̂`1∗ =

∏̀
r=0

1

dvr
||B̂`||1 ≤ k

∏̀
r=0

1

dvr
|||B̂`|||1 ≤ k

∏̀
r=0

1

dvr
|||B̂|||`1.



The factor of k that appears in the final lines above is just a consequence of switching from the
vector 1-norm ||B̂`||1 to maximum column sum norm |||B̂`|||1 (see [8]).

We could have just as easily switched to the maximum row sum norm and obtained the term
k|||B̂|||`∞, and so it follows that

P(Sπ,c) < min{k
∏̀
r=0

1

dvr
|||B̂|||`1, k

∏̀
r=0

1

dvr
|||B̂|||`∞} = kζ`

∏̀
j=0

1

dvj
.

�
We note that the use of ζ = min{|||B̂|||1, |||B̂|||∞} in Lemma 2 reflects the difficulty in working
with arbitrary spread matrices B. For certain classes of spread matrices (e.g. if B is symmetric
or diagonalizable) it is possible to obtain tighter bounds. Lemma 2 will be allow us to obtain a
bound using PageRank, but note that our use of matrix norms ignores some of the structure of
the spread matrix B. Following the proof of Theorem 3 below, a more careful analysis fully using
the structure of the spread matrix B will lead naturally to use of Kronecker PageRank, which we
explore in Theorem 4.

Theorem 3 Suppose that initial demand is contained in S ⊂ H ⊂ V with and each vertex v ∈ H
has supply rates σiv > µidv, and σiw = 0 for w ∈ H̄. Let M = diag(µ1, ..., µk), B̂ = M−1B and
ζ = min{|||B̂|||1, |||B̂|||∞}. Let x(t) be defined by xv(t) =

∑
i τ

i
v(t), and X(t) = ||τ (t)||1. Let EH

denote the event that demands spread outside the set H. Then

1. P(EH) ≤ X(0)
ζ pr

(
1− ζ, τ(0)

X(0)

)
1∗
H̄

2. If S in the (1− ζ) core of H, then P(EH) ≤ 2X(0)h(H)
ζ(1−ζ) , where h(H) is the Cheeger ratio of H.

Proof. Let P` denote the set of all paths of length ` from an initial chip in S to H̄ such that the
first k− 1 steps are in H. Let P =

⋃∞
l=1 P`. The key observation is that if w ∈ H̄ ever has demand,

then Sπ,c must have occurred for some initial chip c and path π from the location of c to w. Thus
we can use the union bound to get that∑

π∈P
P(Sπ,c) ≤

∑
`

∑
(π,c)∈P`

P(Sπ,c)

≤
∑
`

∑
v0∈S

∑
c at v0

∑
v`∈H̄

∑
π=(v0,...,v`)∈P`

P(Sπ,c)

≤
∑
`

∑
v0∈S

∑
c at v0

∑
v`∈H̄

∑
π=(v0,...,v`)∈P`

ζ`
∏̀
r=0

1

dvr

=
∑
`

x(0)ζ`(D−1A)`1∗H̄

=
∑
`

x(0)ζ`W `1∗H̄ =
X(0)

ζ
pr
(
1− ζ, x

X(0)

)
1∗H̄ .



proving the first statement. The second statement follows the same proof as Theorem 3.2 of [5]. �

Finally we show how Kronecker PageRank arises in a natural way as the bound of the escape
probability of this process.

Theorem 4 Suppose that the initial demand is contained in S ⊂ H ⊂ V with and each vertex
v ∈ H has supply rates σiv ≥ µidv. Let M = diag(µ1, ..., µk), B̂ = M−1B and ζ = ||B̂||1. Let
X(t) = ||τ (t)||1, the total amount of demands at time t. Let EH denote the event that demands
spread outside the set H. Then EH can be bounded above using the Kronecker PageRank vector via
the relationship:

P(EH) ≤ X(0)Kpr

(
B̂,

τ(0)

X(0)

)
1H̄

Proof. Let f be a vector indicator function of commodity type on chips, that is f(c) = ei if c is
an i−chip, where ei denotes the ith standard basis vector for Rk. Let C0 denote the set of initial
chips. By the same methods that were used in the proof of Lemma 2, we can bound the probability
that demand originating from c ever spreads along a path π = (v0, v1, ..., v`) by the sum

P(Sπ,c) ≤ f(c)B̂`1∗
∏̀
r=0

1

dvr

Therefore using the same technique as in the proof of Theorem 3 we obtain the bound∑
π∈P

P(Sπ,c) ≤
∑
`

∑
u∈S

∑
π∈B`

P(Sπ,u) ≤
∑
`

∑
c∈C0

∑
v`∈H̄

∑
π=(v0,...,v`)∈P`

P(Sπ,u)

≤
∑
`

∑
c∈C0

∑
v`∈H̄

∑
π=(v0,...,v`)∈P`

f(c)B̂`1∗
∏̀
r=0

1

dvr
=
∑
`

τ(0)(D−1A⊗ B̂)`1H̄

=
∑
`

τ(0)(W ⊗ B̂)`1H̄ = X(0)Kpr(B̂,
τ(0)

X(0)
)1H̄

�
On the event of non-escape, we would like to guarantee that all demand is satisfied quickly. To
make this precise, let St denote the event that all of the vertices are satisfied at time t. In order
to complete the analysis of the local case, we would like to bound P(St|EH), where EH is as in
Theorems 3 and 4. Such a bound is not immediately given by Theorem 1. To derive a bound on
P(St|EH), consider running a modified ‘Dirichlet’ process which is identical to the standard process
with the same supply rates, except demand leaving H is ignored. Let S ′t denote the event that
in Dirichlet process, all of the events are satisfied at time t then P(S ′t) can be bounded directly
by Theorem 1 as this Dirichlet process restricted to vertices in H is the standard process on H.
Furthermore P(St ∩ EH) ≤ P(S ′t). Therefore

P(St|EH) =
P(St ∩ EH)

P(EH)
≤ P(S ′t)
P(EH)

.



Combining this observation along with Theorems 3 and 4, yields that the probability of escape
from H is bounded and if the process does not escape from H it dies quickly.

Theorems 3 and 4 can be used in two different ways. As stated, they provide a way to bound the
probability demands escape from a given subset. However, they can be also used to construct such
a bounding subset. For example, given initial demand τ (0) contained in an initial set of vertices
S ⊂ V , we can algorithmically construct H such that demand stays in H with probability 1− ε by
iteratively selecting vertices with the highest (Kroneceker) PageRank.

6 An Example

An immediate question is whether anything is actually gained by the introduction of Kronecker
PageRank. Suppose we have a spread matrix B, and some initial demand on a graph G. We wish
to identify a subset of vertices H ⊂ G to make shipments to so that the escape probability is at
most ε. We may use either Theorem 3 or Theorem 4 to identify such a set. The bound afforded by
Theorem 4 is clearly sharper than the bound in Theorem 3 as the structure of the spread matrix B
is taken into account, but it is not guaranteed that the identified set is actually smaller. In many
cases it actually is, though depending on B it may not be significantly smaller.

To illustruate, we give a simple example calculation on synthetic data. Our graph G is an
instance of the following random process, which is designed to create a graph which contains
tighter clusters that are slightly more sparsely connected to neighboring clusters: We begin with a
cycle on 20 vertices. Each vertex is then replaced by an instance of the random graph G20,.3, that
is a graph 20 vertices and each edge existing independently with probability .3. Inter-cluster edges
are then created between vertices in neighboring clusters with probability .05.

We consider the case where k = 4, and

B =


.8 .4 .3 .2
.2 .7 .2 .1
.1 .2 .9 .3
.4 .2 .3 .6

 .

The initial demand is given by τ (0) = {2, 1, 2, 0, 0, 1, 0, 0, ..., 0}. In addition we assume µi = 2,
and ζ = .85.

We demonstrate the difference between Theorems 3 and 4 in the following way. The figure below
shows the graph G. The demands start in the large outlined vertices and spread outward from there.
Theorem 4 states that with 95% probability, demands stay in the circular vertices. Theorem 3 states
that with 95% probability, demands stay in the diamond and circular vertices. This small example
illustrates how the Kronecker PageRank can be used to obtain improved results.
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7 Appendix

In this section we establish the differential equation used in the proof of Theorem 1, namely:



Lemma 5 If τ (t) denotes the demand vector at time t, A is the adjacency matrix of G, B denotes
the spread matrix and S = diag(σ) denotes the supply matrix, then

∂

∂t
E[τ (t)] = E[τ (t)](A⊗B − S).

The key of Lemma 5 are the following two well known and simple facts concerning exponentially
distributed random variables. We use the notation f(h) = Oh→0(g(h)) to indicate that f(h) ≤
Cġ(h) for h sufficiently small.

Lemma 6 Suppose X is an exponentially distributed waiting time with rate λ, then

P(X < h) = λh+Oh→0(h2).

An immediate corollary is

Lemma 7 Suppose X, Y are independent exponentially distributed waiting times with rates λ1, λ2.
Then

P(X,Y < h) = Oh→0(h2).

Proof of Lemma 5.

Fix a vertex v and commodity i. We will show that

∂

∂t
E
[
τ iv(t)] = [E[τ (t)](A⊗B − S)

]i
v
,

Since this holds for all v, and i the result will follow.

To do this, we compute the derivative by the definition, that is we compute

lim
h→0

E[τ iv(t)− τ iv(t+ h)]

h
.

To do this, consider the conditional expectation, E[τ iv(t)−τ iv(t+h)|τ (t)]. Note that by Lemma
7, then probability that two independent events (either two spread events, or two satisfy events or
a spread and a satisfy event) occur is Oh→0(h2). On the other hand, given a neighbor u of v, and
a commodity j, the probability of a spread event originating from this neighbor and commodity in
time (t, t+ h) is exactly Bjiτ

j
u(t)h+Oh→0(h2). Likewise, the probability of a satisfaction event in

this time is τ iv(t)σ
i
vh+Oh→0(h2). Linearity of expectation yields

E[τ iv(t)− τ iv(t+ h)|τ (t)] = E[τ (t)(A⊗B − S)h+Oh→0(h2)|τ (t)]

= τ (t)(A⊗B − S)h+Oh→0(h2)|τ (t).

In particular, note that the Oh→0(h2) term means that there is a (large) constant C = C(τ(t), A,B),
so that Oh→0(h2) ≤ C · h2 for h ≤ 1. Note that due to our conditioning this constant depends on
τ(t), but critically not on h. Note that this constant is σ(τ(t))-measurable.



By the tower property of conditional expectation,

lim
h→0

E[τ iv(t)− τ iv(t+ h)]

h
= lim

h→0

E[E[τ iv(t)− τ iv(t+ h)|τ (0)]]

h
.

= lim
h→0

E[τ (t)(A⊗B − S)h] + E[E[Oh→0(h2)|τ (t)]]

h

= τ (t)(A⊗B − S) + lim
h→0

E[Oh→0(h)].

It suffices to show that
lim
h→0

∣∣∣E[Oh→0(h)]
∣∣∣ ≤ lim

h→0
E[
∣∣Oh→0(h)

∣∣] = 0.

But recall that the Oh→0(h) term is bounded by C(τ (t), A,B) · h for h ≤ 1. Thus it is enough to
show that

lim
h→0

E[|C(τ (t), A,B)h|] = 0.

This follows from the monotone convergence theorem, so long as

lim
h→0

E[|C(τ (t), A,B)|] <∞.

To complete the proof we note that we can give an upper bound on C(τ (t), A,B) in terms of ||τ (t)||1,
n and max{bij}. Indeed, the rates of the active point processes are at most ||τ (t)||1 max{bi,j}; and
thus the probability that any pair of point processes both have events in the period (t, t + h) is
bounded by

C(τ (t), A,B)h ≤ C||τ (t)||21 max{bi,j}2n2h.

But ||τ (t)||1 << n ·N · k, where n = |G|, k is the number of demands and N is our uniform upper
bound for the demand at a point (indeed, this is the precisely the motivation for such a bound.) �


