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Abstract

Consider the following process for a simple graph without isolated vertices: Order
the edges randomly and keep an edge if and only if it contains a vertex which is not
contained in some preceding edge. The resulting set of edges forms a spanning forest
of the graph.

The probability of obtaining k components in this process for complete bipartite
graphs is determined as well as a formula for the expected number of components in
any graph. A generic recurrence and some additional basic properties are discussed.

1 Introduction

Given a simple graph G with no isolated vertices, we consider the following forest building
process to form a subgraph of G:

Consider S, the empty graph on V (G), and some ordering of the edges of G,
e1, e2, . . . , em. For every edge, add the edge ej to S if ej is incident to a vertex
not incident to ei for all i < j.

We note that this process can be thought of as starting with the empty graph and then
considering edges one at a time in the ordering and adding to the graph only those edges
which connect to at least one isolated vertex.

The resulting subgraph must span because every vertex is incident to some edge, and so
the first time we consider an incident edge we will keep that edge. Further, we cannot form
cycles since we would need to keep an edge both of whose vertices have previously been seen.
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The result of the process is a spanning forest of G without isolated vertices, and moreover
any spanning forest without isolated vertices will occur for some ordering of the edges.

This process was implicitly considered in the edge flipping problem (see [3, 5]). In partic-
ular, let F (G, k) denote the number of edge orderings in the forest building process so that
the resulting forest has k components, let P (G, k) denote the probability that a randomly,
uniformly chosen forest building process (i.e., a random ordering of the edges) produces a
graph with k components (note m!P (G, k) = F (G, k)), and let pG(x) =

∑
k P (G, k)xk be

the generating function of the P (G, k) terms. Then the following was shown.

Theorem 1 (Butler-Chung-Cummings-Graham [3]). For the complete graph Kn we have

pKn(x) =
∑
k

(
n−1

n−2k,k,k−1

)
2n−2k(

2n−2
n

) xk.

(Throughout the paper we follow the convention that a sum with no bounds is interpreted
to run over all values which have nonzero terms.)

We will establish the corresponding result for complete bipartite graphs in Section 2.
We show how to determine the expected number of connected components of the forest
building process in Section 3 for an arbitrary graph. We give a recurrence relationship for
the polynomial pG(x) in terms of polynomials for some of the subgraphs in Section 4 and use
this to establish some basic results. Finally, we give some concluding remarks in Section 5.

2 Complete bipartite graphs

We now consider the analogue of Theorem 1 for complete bipartite graphs Ks,t.

Theorem 2. For the complete bipartite graph Ks,t, we have

pKs,t(x) =
∑
k

k(s+ t)
(
s
k

)(
t
k

)
st
(
s+t
s

) xk.

Proof. We need to show that P (Ks,t, k) = k(s+ t)
(
s
k

)(
t
k

)
/(st

(
s+t
s

)
), and to do this we will

find it useful to work on a recurrence which incorporates intermediate states in the process
on Ks,t. In particular, for s and t fixed let Qs,t(a, b, `) be the probability that the process
will finish with k components given that we have already used s−a vertices in the part with
size s and t− b vertices in the part with size t and currently have k − ` components.

From this definition we immediately recover some initial conditions as follows:

Qs,t(a, 0, `) = Qs,t(0, b, `) =

{
1 if ` = 0,

0 if ` 6= 0,
(1)

since we cannot introduce any new components (i.e., we have already saturated one side
of the complete bipartite graph and so every new edge will hook onto an existing tree).
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Hence the current number of components will no longer change. If we have the required k
components (` = 0), then we must succeed, and otherwise we must fail. We also adopt the
convention that Qs,t(a, b,−1) = 0 for all a and b (i.e., we have too many components and we
cannot reduce the number of components by adding new edges).

We also note that there is a simple recurrence that must be satisfied. This is because if
we are in a given situation corresponding to a given choice of a, b, ` then there are precisely
three things that can happen which affect the state of the current process.

• We add an edge incident to a new vertex in the part of size s and an old vertex in the
part of size t. There are a(t−b) such edges and then we are in a situation corresponding
to a− 1, b, `.

• We add a new edge incident to an old vertex in the part of size s and a new vertex
in the part of size t. There are (s − a)b such edges and then we are in a situation
corresponding to a, b− 1, `.

• We add a new edge incident to new vertices in both parts. There are ab such edges
and then we are in a situation corresponding to a− 1, b− 1, `− 1.

Altogether there are st− (s−a)(t− b) = at+ bs−ab such edges. Putting this together gives
the following recurrence:

Qs,t(a, b, `) =
a(t− b)

at+ bs− ab
Qs,t(a− 1, b, `) +

(s− a)b

at+ bs− ab
Qs,t(a, b− 1, `)

+
ab

at+ bs− ab
Qs,t(a− 1, b− 1, `− 1). (2)

Solving such a recurrence is nontrivial, but verifying a recurrence is straightforward. In
this case, the solution to the recurrence is

Qs,t(a, b, `) =

(
b
`

)(
s+t−b−1
a−`

)(
s+t−1
a

) =

(
a
`

)(
s+t−a−1
b−`

)(
s+t−1
b

) .

We will omit the verification that this satisfies (1) and (2), as this involves standard compu-
tations.

Finally, we have

P (Ks,t, k) = Qs,t(s, t, k) =

(
t
k

)(
s−1
s−k

)(
s+t−1
s

) =
k(s+ t)

(
s
k

)(
t
k

)
st
(
s+t
s

) .

2.1 Complete multipartite graphs

For the proof of Theorem 2, we implicitly relied on the high degree of symmetry in the graph.
Specifically, at every stage we have some variant of a complete bipartite graph to work with.
As a result, the basic approach we used for complete bipartite graphs would also work for
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complete multipartite graphs and would give similar initial conditions as in (1) and similar
recurrence as in (2).

The problem lies in solving the recurrence. For the complete bipartite graph, the solution
to the recurrence was found by inspection of small cases, where it was noticed that the
resulting probabilities consisted of products of small prime factors. For tripartite graphs
and larger, this is no longer the case and small cases can involve large prime factors. So we
have no natural candidate for a general solution. As an example, for the graph K3,3,3 we
have

pK3,3,3(x) =
1992

26125
x+

11724

26125
x2 +

10951

26125
x3 +

1458

26125
x4,

and we note 11724 = 22·3·977 for its prime factorization. It is an open problem to find
simple closed form solutions for complete multipartite graphs.

3 Expected number of components

For a given graph G the expected number of components in the forest building process
can be determined by considering

∑
k kP (G, k). However this involves first determining

P (G, k) which can be difficult. There is an easier way to determine the number of expected
components, as shown in the next result.

Theorem 3. For a given graph G without isolated vertices, the expected number of connected
components in the forest building process is∑

uv∈E(G)

1

d(u) + d(v)− 1
, (3)

where d(u) and d(v) indicates the degree of u and v, respectively.

Proof. Let us consider the forest building process. When we come to a particular edge one
of three things occurs. Namely, we have already seen both vertices, in which case we discard
the edge; we have only seen one vertex, in which case we add the edge onto an already
existing tree in our forest; or we have not seen either vertex, in which case we start a new
tree in our forest. To determine the number of connected components, we have to consider
the number of times an edge is added and neither vertex has been seen before.

For the edge uv ∈ E(G), there are d(u) + d(v)− 1 edges which contain either vertex u or
vertex v. The probability that in a random ordering we will see uv first, i.e., this edge adds
a new component, is 1/(d(u) + d(v)− 1). Therefore, by linearity of expectation, the number
of expected components is what is given in (3).

We note that in general just knowing the degrees of the vertices on each edge is not
enough to determine the P (G, k). As a simple example, consider the pair of graphs in
Figure 1. For the two graphs the edges collectively have the same corresponding degrees
of vertices, and hence we have that the expected number of components is 28/15, but the
individual probabilities are distinct.
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pG(x) =
16

63
x+

197

315
x2 +

38

315
x3 pG(x) =

11

63
x+

247

315
x2 +

13

315
x3

Figure 1: Two graphs with similar edge-degrees

We can apply Theorem 3 to the complete graphs and complete bipartite graphs to es-
tablish the following.

Corollary 1. For the complete graph Kn with n ≥ 2, the number of expected components is
n(n− 1)/(4n− 6). For the complete bipartite graph Ks,t, the number of expected components
is st/(s+ t− 1).

Proof. For Kn we have for each edge that d(u) + d(v) − 1 = 2n − 3 and that there are
(
n
2

)
such edges. Now apply Theorem 3.

For Ks,t we have for each edges that d(u) + d(v) − 1 = s + t − 1 and that there are st
such edges. Now apply Theorem 3.

The results of the preceding corollary can also be proven directly without the aid of
Theorem 3 by means of combinatorial identities. For example for the complete graph we
need to show that ∑

k

kP (Kn, k) =
∑
k

k2n−2k
(

n−1
n−2k,k,k−1

)(
2n−2
n

) =
n(n− 1)

4n− 6
.

To start this we begin by noting,∑
K

2N−2K
(
N

K

)(
N −K
N − 2K

)
=

(
2N

N

)
. (4)

The right hand side counts the number of N -element sets from {1, 2, . . . , 2N}. We now show
that the left hand side counts the same thing. First put the elements into N pairs, i.e.,
{1, N + 1}, {2, N + 2}, . . . , {N, 2N}, we now choose K of these pairs (in

(
N
K

)
ways) and take

both elements from these pairs; from the remaining N −K pairs we choose N − 2K of these
pairs (in

(
N−K
N−2K

)
ways) and from each of these pairs we take one element (2N−2K ways) to

form our set with N elements. As K runs over all possibilities we will form all N element
subsets giving the result. Now setting N = n− 2 and K = k − 1 then (4) becomes∑

k

2n−2k
(
n− 2

k − 1

)(
n− k − 1

n− 2k

)
=

(
2n− 4

n− 2

)
=

n

4n− 6

(
2n− 2

n

)
.

Noting that
(
n−2
k−1

)(
n−k−1
n−2k

)
= k

n−1

(
n−1

n−2k,k,k−1

)
and rearranging the terms then gives the desired

result.
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A similar, and simpler, argument works for complete bipartite graphs.
Looking at the results for the complete graph, we have that the connected components

in the forest building process tends to n/4. In general we can apply Theorem 3 to conclude
that for any d-regular graph, where d = d(n) tends to infinity with n, the expected number
of connected components in the forest building process also tends to n/4. Similarly, for
(p, q)-biregular graphs (i.e., bipartite graphs with parts of sizes s, t where the degrees in one
part are all p and the degrees in the other part are all q), Theorem 3 can be used to show if
p = p(n) and q = q(n) tend to infinity with n, the expected number of connected components
in the forest building process tends to st/(s+ t).

3.1 Components tend to emerge quickly

As we go through the process for a dense graph we should expect that many edges at the
start are initially used and most edges at the end will be discarded. In particular we should
expect that the final components will emerge quickly. We can make this more precise for
complete graphs.

For an edge e in the graph we let d′(e) denote the number of edges which are incident to
e, equivalently if e = uv then d′(e) = d(u)+d(v)−2. Let B be a uniformly, randomly chosen
ordering of the edges of G, and let κ(G,B) denote the number of connected components in
the forest building process of G with respect to edge ordering B. Theorem 3 can now be
restated as

E(κ(G,B)) =
∑

e∈E(G)

1

d′(e) + 1
.

For graphs where d′(e) is constant this simplifies nicely. For general graphs we can get a
bound on this expression, as done in the following corollary.

Corollary 2. For any graph G with n vertices and m edges, let B be a random ordering of
the edges of G. Then

E(κ(G,B)) ≥ m

E(d′) + 1
.

Let H be a randomly chosen graph n vertices and m edges (i.e., H ∈ G(n,m)). Then

E
(
κ(H,B)

)
≥ mn+m

4m+ n− 3
.

Proof. Using linearity of expectations and an application of Jensen’s inequality we have the
following:

E(κ(G,B)) = E(E(κ(G,B))) = E
( ∑
e∈E(G)

1

d′(e) + 1

)

=
∑

e∈E(G)

E
(

1

d′(e) + 1

)
≥ m

E(d′) + 1
.
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Now consider a graph H ∈ G(n,m). For an edge e = uv there are n − 2 possible edges
incident to u and n− 2 possible edges incident to v. The probability that any one such edge
exists in the graph will be (m−1)/(

(
n
2

)
−1). So we have that E(d′) = 2(n−2)(m−1)/(

(
n
2

)
−1),

putting this in and simplifying gives the result.

We now apply this to the complete graph by noting that if we pause the forest building
process after m edges then this is equivalent to looking at the forest building process on a
graph in G(n,m). By Corollary 2 this indicates that the expected number of edges in the
process is (mn + m)/(4m + n − 3). When m � n then this is approximately n/4, while
on the other hand the final number of expected components is also approximately n/4. We
can conclude that once we have seen a superlinear number of edges that we will typically
have already formed most of the components. (In terms of random graphs, this says that
random graphs with super linear, i.e., ω(n), number of edges have very few, i.e., o(n), isolated
vertices.)

With a bit more work we can determine the exact expression for the expected number of
components in a graph in G(n,m).

Corollary 3. Let G ∈ G(n,m) denote a random graph with n vertices and m edges. Then

E (κ(G,B)) =

(
n
2

)
(2n− 3)

(
1−

((n
2)−m
2n−3

)
( (n

2)
2n−3

) ).
Proof. Consider a fixed edge e. For a random graph in G(n,m), we have that d′(e) is
hypergeometric with the following parameters.

• Population size: N :=
(
n
2

)
− 1.

• Number of edges (“successes”) in population: K := m− 1.

• Number of trials: t := 2(n− 2).

This allows us to conclude

P (d′(e) = d) =

(
K
d

)(
N−K
t−d

)(
N
t

) ,

so we now calculate (starting in the second line ∗̂ = ∗+ 1)

E
(

1

d′(e) + 1

)
=

t∑
d=0

(
1

d+ 1

) (K
d

)(
N−K
t−d

)(
N
t

) =
t∑

d=0

(
1

K + 1

) (K+1
d+1

)(
N−K
t−d

)(
N
t

)
=

1

K̂

t̂∑
d̂=1

(
K̂
d̂

)(
N̂−K̂
t̂−d̂

)(
N̂−1
t̂−1

) =
1

K̂

t̂∑
d̂=1

(
K̂
d̂

)(
N̂−K̂
t̂−d̂

)
t̂

N̂

(
N̂
t̂

)
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=
N̂

t̂K̂

t̂∑
d̂=1

(
K̂
d̂

)(
N̂−K̂
t̂−d̂

)(
N̂
t̂

) =
N̂

t̂K̂

(( t̂∑
d̂=0

(
K̂
d̂

)(
N̂−K̂
t̂−d̂

)(
N̂
t̂

) )
︸ ︷︷ ︸

=1

−
(
N̂−K̂
t̂

)(
N̂
t̂

) )

=
N̂

t̂K̂

(
1−

(
N̂−K̂
t̂

)(
N̂
t̂

) ) =

(
n
2

)
(2n− 3)m

(
1−

((n
2)−m
2n−3

)
( (n

2)
2n−3

) ).
Now, we have that

E(κ(G,B)) =
∑

e∈E(G)

E
(

1

d′(e) + 1

)
=
∑

e∈E(G)

(
n
2

)
(2n− 3)m

(
1−

((n
2)−m
2n−3

)
( (n

2)
2n−3

) )
and since the particular edge e plays no role in the sum, we conclude

E(κ(G,B)) =

(
n
2

)
(2n− 3)

(
1−

((n
2)−m
2n−3

)
( (n

2)
2n−3

) ).
4 Recurrence relationship

Computing pG(x) by computing the probabilities directly is difficult because there are |E(G)|!
possible orderings to consider. However, we can simplify the process by giving a recurrence
relationship that relates pG(x) to some of the pH(x) where the H are subgraphs of G. The
key is to group the edge orderings by the last edge considered. Note that if the last edge is
incident to a leaf, then it will be included in the graph and otherwise it will not be included
(because both the incident vertices would have occurred earlier).

If we make the convention that pK1(x) = 1, or equivalently that isolated vertices don’t
contribute to the component count (hence the last edge doesn’t effect component count),
then we have the following:

|E(G)|!pG(x) =
∑
k

F (G, k)xk

=
∑

e∈E(G)

(∑
k

F (G− e, k)xk
)

=
∑

e∈E(G)

(
(|E(G)| − 1)!

∑
k

P (G− e, k)xk
)

= (|E(G)| − 1)!
∑

e∈E(G)

pG−e(x).

We can summarize this in the following result which can be used to efficiently compute
pG(x) recursively.
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Theorem 4. Let pK1(x) = 1, pK2(x) = x. Then for the disjoint union of graphs G and H,
denoted G ·∪H we have

pG ·∪H(x) = pG(x)pH(x),

and for any graph G without isolated vertices we have

pG(x) =
1

|E(G)|
∑

e∈E(G)

pG−e(x).

Proof. The only thing that remains is the disjoint union result. For this we note that when
the graph has disjoint components then the edges in one component has no effect in another
component, i.e., the edge revealing process can be run independently of each other. The
result now follows by noting

P (G ·∪H, k) =
∑
`

P (G, `)P (H, k − `).

4.1 Edge-transitive graphs

In one special case of Theorem 4 the recurrence simplifies tremendously at the first stage.
Namely for edge-transitive graphs, i.e., graphs where for any two edges e1 and e2 there is
an automorphism of the graph sending e1 to e2. We note that both complete graphs and
complete bipartite graphs belong to this family.

Corollary 4. Let G be an edge-transitive graph with minimum degree at least 2, and let
H = G− e′ where e′ is some edge of G. Then pG(x) = pH(x).

Proof. Fix e′ ∈ E(G) where G is an edge-transitive graph. Then by Theorem 4 we have

pG(x) =
1

|E(G)|
∑

e∈E(G)

pG−e(x) =
1

|E(G)|
∑

e∈E(G)

pG−e′(x)

=
1

|E(G)|
|E(G)|pH(x) = pH(x),

where the second equality follows by the transitivity of edges, i.e., removal of any edge
produces the same graph.

This can be used to construct pairs of graphs G and H with pG(x) = pH(x) by letting
G be an edge transitive graph and H the graph resulting by deleting one edge from G.
Examples include complete graphs, complete bipartite graphs, cycles and so on.

There are other examples of pairs of connected graphs on the same number of vertices
with the same polynomials, but they seem rare. For example up through nine vertices there
are fifteen such pairs not explained by Corollary 4. Most of these appear erratic, but there is
one construction which explains six of these pairs. Namely let G2k+1 = Kk,k+1 + e where e is
an edge connecting two vertices in the larger part (see Figure 2 for G9). Then for k = 2, 3, 4
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Figure 2: The graphs G9 and K4,5

we have that G2k+1 and Kk,k+1 have the same polynomial, the other three pairs are G2k+1

and Kk,k+1 with some edge removed. (Note that for k = 1 we have that G3 = K3 and
K1,2 = P3 which we know have the same polynomials by Corollary 4.)

Conjecture 1. For k ≥ 1 the graph G2k+1 = Kk,k+1 + e where e is an edge connecting two
vertices in the larger part has the same polynomial as Kk,k+1.

4.2 Paths

Generally speaking for a given graph if we delete one or several edges we will have many
different graphs that arise. For one simple family however we will stay in the same family,
namely paths. Let Pn denote the path on n vertices and let fn(x) = pPn+1(x) under the
convention of Theorem 4, i.e., f0(x) = 1, f1(x) = x, and so on.

The following result on generating functions for paths is similar to the one proved by
Chung and Graham [5].

Theorem 5. Let Q(t) =
∑

n≥0 fn(x)tn. Then

Q(t) =
√

1− x tan

(
t
√

1− x+ arctan

(
1√

1− x

))
.

Proof. By Theorem 4 we have for n ≥ 2

nfn(x) = f0(x)fn−1(x) + f1(x)fn−2(x) + · · ·+ fn−1(x)f0(x).

In terms of the generating function Q(t) the left hand side corresponds to the coefficients
of Q′(t) and the right hand side corresponds to the coefficients of (Q(t))2 and then we only
need to correct for the constant term. In particular we have

Q′(t) =
(
Q(t)

)2
+ (1− x) with Q(0) = 1.

This is a differential equation and it can be readily verified that the solution to this differential
equation is the function

Q(t) =
√

1− x tan

(
t
√

1− x+ arctan

(
1√

1− x

))
.
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4.3 One component

The probability that the graph will have one component at the end of the process is the
coefficient of x in the polynomial pG(x). We can use the recurrence from Theorem 4 for
this special case. The key observation to make is that if e is a large bridge, namely an edge
whose removal leaves two components with at least one edge in each component, then the
coefficient of x in pG−e(x) is 0 (i.e., we cannot have one component). On the other hand if
we are not a large bridge then having e occur last will have no impact on whether the final
process will have a single component. So if we let B(G) be the set of large bridges we have

P (G, 1) =
1

|E(G)|
∑

e∈E(G)\B(G)

P (G− e, 1).

For stars it is easy to see that P (K1,s, 1) = 1, but for most graphs we would expect that
the probability of having one component is extremely small. As an example for the cycle Cn
the probability of one component is n2n−1/n! which is super-exponentially small in n.

This behavior though is in some sense an outlier and we establish exponential bounds
for having a single component for a large family of graphs (including almost all “random”
graphs). To begin we will need the notion of the Cheeger constant.

Definition 1. The Cheeger constant of a graph G, denoted Φ(G), is

Φ(G) = min
X⊆V (G)

vol(X)≤ 1
2
vol(V )

|E(X, V \X)|
vol(X)

,

where E(X, Y ) is the set of edges joining X and Y and vol(X) =
∑

v∈X d(v).

The Cheeger constant is a way to measure how well the graph expands, and in partic-
ular the larger the Cheeger constant the better the graph is at expanding (for a thorough
treatment of the Cheeger constant see [4]). In particular if the Cheeger constant is bounded
away from zero then it should behave randomly. This allows us to establish the following
result.

Theorem 6. Fix ε > 0. Then there exist real numbers c = c(ε) > 0 and ĉ < 1, so that if G
is a d-regular graph with Φ(G) ≥ ε, then

cn < P (G, 1) < ĉn.

We remark here that the exponential upper bound does not use connectivity in any
essential way, but the lower bound is sensitive to connectivity. Indeed, one can construct
d-regular graphs which have super exponentially small probabilities of having one component
by taking a necklace of graphs which have two vertices of degree d − 1 and the remaining
vertices of degree d (such graphs have low connectivity). On the other hand there is no
construction of a large regular graph which has high probability of having one component.
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Proof. We randomly generate an ordering of the edges, e1, e2, . . . , end/2. Let 1 = t1 < t2 <
t3 < · · · denote the times in which a new vertex is seen by an edge. It suffices to estimate
the probability that eti is incident to a vertex already present. Let Ai denote this event.
Then we want to bound

P(
⋂
i

Ai) =
n−1∏
i=1

P(Ai|
⋂
j<i

Aj),

and so it suffices to estimate
P(Ai|

⋂
j<i

Aj).

To lower bound this, consider any set when the ti-th edge was added. At this point, the
first ti − 1 edges are incident to a collection of i (connected) vertices. We break into two
cases depending on whether i ≤ n/2 or i > n/2.

Case 1: i ≤ n
2

Let X denote the vertices incident to the first ti − 1 edges. We are interested in the
probability that the next chosen edge lies in E(X, V \X) given that it either joins a vertex
in X to a vertex in V \X or has both incident vertices in V \X. We have vol(V \X) = (n−i)d,
and the number of edges induced in V \X is 1

2

(
(n−i)d−|E(X, V \X)|

)
. Thus the probability

we are interested in is

|E(X, V \X)|
1
2

(
(n− i)d− |E(X, V \X)|

)
+ |E(X, V \X)|

=
2|E(X, V \X)|

(n− i)d+ |E(X, V \X)|
. (5)

This is an increasing function of |E(X, V \X)| and by Cheeger’s inequality |E(X, V \X)| ≥
diΦ. Also, trivially, |E(X, V \X)| < di.

Thus
2i

n
=

2di

(n− i)d+ id
> (5) ≥ 2diΦ

(n− i)d+ diΦ
=

2iΦ

n+ (Φ− 1)i
.

Case 2: i > n
2

This can be bounded similarly, getting a bound of

1 > P(Ai|
⋂
j<i

Aj) >
2diΦ

id+ Φid
=

2Φ

1 + Φ
.

Thus a total lower bound on the probability is given by( n/2∏
i=1

2Φi

n+ (Φ− 1)i

)( n∏
i=n/2+1

2Φ

1 + Φ

)

=

(
2Φ2

1 + Φ

)n/2
(n/2)!2n/2

nn/2

n/2∏
i=1

(
1

1 + (Φ− 1)i/n

)

>

(
2Φ2

1 + Φ

)n/2
(n/2)!2n/2

nn/2
exp

(
(1− Φ)

n/2∑
i=1

i

n

)
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= (1 + o(1))
√
πn

(
2Φ2

1 + Φ

)n/2
e−n/2 exp

(
(1− Φ)

n

4

)
which is of the desired form. For the upper bound we have

n/2∏
i=1

2i

n
=

(n/2)!2n/2

nn/2
= (1 + o(1))

√
πne−n/2

which is also of the desired form.

As a corollary of this, we observe that almost all d-regular graphs on n vertices have this
property. Indeed, Bollobás [1] showed that for fixed d, the Cheeger constant of a random
d-regular graph has Φ(G) ≥ (1− η(d))/2 with probability 1− o(1), where η(d) is a number
satisfying 24/d < (1− η)1−η(1 + η)1+η. This, combined with the proof of Theorem 6 gives an
exponential lower bound on P (G, 1).

For graphs where d is not constant, random d-regular graphs are harder to deal with
directly. In particular, a direct analogue of Bollobás’s result for d = d(n) for some growing
function of n is unknown. However, an analogue to understand Φ(G) for such graphs is given
to us by using graph spectra. Building on earlier work of Friedman, Kahn and Szemerédi [6],
Broder, Frieze, Suen and Upfal [2] showed that if d = o(n1/2), and G is a random d-regular
graph, then the second adjacency eigenvalue of G is λ = O(

√
d). Combining this with the

Cheeger inequality (see, e.g., Chung [4])

1

2
Φ2 <

d− λ
d
≤ 2Φ,

one observes that for random d-regular graphs where d = d(n) is growing but o(n1/2), then
Φ(G) ≥ 1

2
− o(1), and applying the results of the above theorem again yields an exponential

bound.

5 Concluding remarks

We have considered a forest building process on simple graphs without isolated vertices and
have given the probability of ending up with k trees for complete graphs, complete bipartite
graphs, or one of these graphs with a single edge deleted. For completeness, we give pG(x)
for all graphs on at most five vertices not covered in the preceding results in the Appendix
as well as all trees up through seven vertices.

There are still many things that are not known about the forest building process. For
example: Which graph operations work well with the polynomials? What are some fami-
lies where pG(x) can be explicitly computed? Do the numbers P (G, k) form a log-concave
sequence for all graphs G? (This last question has been confirmed for all graphs through 9
vertices.) Do there exist two trees, S and T , on n vertices with pS(x) = pT (x)? (Through

13



n = 19 the answer is no; requiring that they be on the same number of vertices is important
because all stars have the same polynomial.)

We hope to see some of these questions, and more, addressed in future work.
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by the grant NSF DMS 1500662.
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Appendix – pG(x) for small graphs
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Figure 3: pG(x) for some small graphs
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Figure 4: pG(x) for trees through seven vertices
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