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Abstract

In this paper, we investigate sufficient conditions on the neighbor-
hood of independent vertices which imply that a graph contains k
independent cycles or k independent chorded cycles. This is related
to several results of Corrádi and Hajnal, Justesen, Wang, and Faudree
and Gould on graphs containing k independent cycles, and Finkel on
graphs containing k chorded cycles. In particular, we establish that
if every pair of independent vertices in G have neighborhood union at
least 2k + 1 then G has k independent cycles, as long as |G| > 30k.
This settles a conjecture of, and improves a result due to Faudree and
Gould, who establish that 3k suffices. Additionally, we show that a
graph having neighborhood union of every pair of independent ver-
tices at least 4k + 1 has at least k independent chorded cycles; Finkel
previously established that minimum degree 3k is also a sufficient con-
dition for this.

In 1963, Corrádi and Hajnal [1] verified a conjecture of Erdős by showing
that every graph G on at least 3k vertices with minimum degree 2k contains
k independent cycles. In the nearly fifty years since then, this result has
been generalized in a number of different ways.

In 1989, Justesen [4] showed that the minimum degree condition can be
replaced by a condition on the sum of degrees of non-adjacent vertices. This
was improved to a sharp result by Wang [5] who showed the condition that
the minimum degree was at least 2k could be replaced by the condition that
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the sum of degrees of non-adjacent vertices was at least 4k − 1. Corrádi
and Hajnal’s result was generalized in a different direction by Finkel [3] who
showed a graph on at least 4k vertices with minimum degree at least 3k
contains at least k independent chorded cycles.

In a different direction, J. Faudree and Gould [2] showed that the condi-
tion on minimum degrees in the Corrádi-Hajnal theorem could be replaced
by a condition on the neighborhood of non-adjacent vertices. In particu-
lar they showed that if G is a graph on at least 3k vertices such that the
neighborhood of any two non-adjacent vertices has size at least 3k, then G
contains k independent cycles. This result is sharp in the sense that re-
quiring a neighborhood of size 3k − 1 is insufficient for k = 1, but it was
conjectured it might be possible to replace their condition by one of the form
2k + O(1).

In this paper, we consider both the problem of finding independent cycles
and independent chorded cycles in graphs under conditions on the neigh-
borhood union of pairs of non-adjacent vertices. Before we state the main
theorems, let us briefly introduce some notation. We indicate by N(x) the
set of neighbors of x, and N [x] = N(x) ∪ {x} denotes the closed neighbor-
hood. For a set S ⊆ V , we denote by NS(x) = N(x) ∩ S. For a pair of
non-adjacent vertices x, y we let N(x, y) = N(x)∪N(y), and define NS(x, y)
in the obvious fashion. We define x ∼ y to mean that x is adjacent to y.

We begin by generalizing the result of Finkel as follows:

Theorem 1. Suppose G is a graph on at least 4k vertices, such that any
pair of non-adjacent vertices x, y has |N(x, y)| ≥ 4k + 1. Then there exist
k independent chorded cycles in G.

Theorem 1 is sharp in the sense that it does not hold if the condition
|N(x, y)| ≥ 4k + 1 is replaced by |N(x, y)| ≥ 4k. Here it fails even when
k = 1: consider a collection of t independent K3’s; then the neighborhood
of any two non-adjacent vertices is 4, but there are no chorded cycles. If
one prefers a connected counterexample, one may append a different K3 to
each vertex of a path or cycle.

In addition, we also prove the conjecture of Faudree and Gould [2]:

Theorem 2. If G is a graph on more than 30k vertices, such that any pair
of non-adjacent vertices x, y has |N(x, y)| ≥ 2k + 1, then G contains k
independent cycles.
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This result is also sharp, in the sense that 2k + 1 cannot be relaxed to
2k. Examples when k = 1 include disjoint edges, or trees where all leaves
are adjacent to vertices of degree 2. For k = 2, the wheel graph serves as an
example: non-adjacent vertices have neighborhood union at least four, but
there are no two independent cycles.

It is possible that the constant ’30’ in the theorem can be improved,
possibly even to 4. Indeed, one may slightly improve this constant by being
more careful in a few places in our proof, but it is clear that such improve-
ments will not bring the constant all the way to 4. Such an improvement
seems to require new ideas.

1 The Proof of Theorem 1

Before we delve into the proof, we need a definition and some examples.
Since graphs with minimum degree at least 3 contain a chorded cycle, we
will often be concerned with graphs that contain no subgraph with minimum
degree at least 3. A graph H of order h is called 2-degenerate if it has the
property that there is an ordering of vertices v1, v2, . . . , vh of H such that
each vertex has at most two edges to higher labeled vertices. We call such an
ordering a 2-degenerate ordering. Any graph containing no subgraph with
minimum degree at least 3 is easily seen to be 2-degenerate.

We say that H contains a k-tower if there is a 2-degenerate ordering of
G, say v1, . . . , vh, such that if vi is the first vertex at distance k − 1 from
v1, then for 2 ≤ j ≤ i, each intermediate vertex vj is adjacent to a vertex
v` with ` < j, that is, each vj has an edge to the left in the ordering.
One interpretation of this definition is that there is a 2-degenerate ordering
starting at some vertex v such that a vertex at distance k− 1 from v can be
lowered to degree 2 just by iteratively deleting vertices of degree 2 exposed
by deleting v and its neighbors (and iterative neighbors) while leaving other
vertices of degree 2 in the graph.

One may consider this definition an analogue of having a path of order
k in a tree starting at a leaf and not containing any vertices of degree
larger than 2. Clearly any 2-degenerate graph H must contain a 1-tower
(this is simply a vertex of degree at most 2), and if H contains a k-tower,
it clearly also contains a (k − 1)-tower. A star is an example of a graph
which only contains a 1-tower, while a path H would be an |H|-tower. Also,
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a 2-degenerate graph H which has a single vertex of degree 2 contains a
(diam(H) + 1)-tower.

Proof of Theorem 1. The proof is by induction on k and let n = |G|. For
k = 1, and any n the result is clear: either δ(G) ≥ 3 and the result holds
by the theorem of Finkel, or there exists a vertex x with |N(x)| ≤ 2. If
x is a vertex of degree ≤ 2, since |N(x, y)| ≥ 5 for all y 6∼ x, note that
NG−N [x](y) ≥ 3. Since δ(G − N [x]) ≥ 3, there must be a chorded cycle in
G−N [x].

We now suppose that the theorem holds for all k′ < k, and show it
holds for k. Let G be a graph satisfying the hypothesis of Theorem 1. If
there exists a chorded 4-cycle C in G, then note that G − C satisfies the
hypothesis of Theorem 1 for k′ = k − 1. Thus, by the inductive hypothesis,
there exists k−1 independent chorded cycles in G−C and, along with C, we
have k independent chorded cycles. Thus we may assume that G contains
no chorded 4-cycles.

Note that G satisfies the conditions for k′ = k−1 (even after removing 4
arbitrary vertices), and hence by the inductive hypothesis there exist k − 1
independent chorded cycles in G: C1, C2, . . . , Ck−1. Let C =

⋃
Ci. We shall

assume that |C| is minimized. Let H = G \ C, and assume that H has the
maximum number of edges (subject to the constraint that |C| is minimized).
If H has a chorded cycle we are done, so we may assume that H does not
contain a chorded cycle and derive a contradiction. We note that |H| ≥ 4.
By the results of Finkel, the fact that H has no chorded cycles implies that H
is 2-degenerate. We shall assume (subject to having the maximum number
of edges) that H has a k-tower for as large a k as possible.

We make a few initial observations about H:

Claim 1. If there is a Ci ∈ C and x ∈ H with |NCi(x)| ≥ 3, then |Ci| ≤ 6.

Proof. Suppose x is adjacent to y1, y2, y3 ∈ Ci. If the distance between yi

and yj on C is greater than 2 for any i, j, then there is a shorter chorded cycle
using x (possibly using the edge to the other yk as the chord.), contradicting
the minimality of |C|. Furthermore, if y1, y2, y3 are a strip of 3 adjacent
vertices in Ci, then they form a chorded 4-cycle with x, and we are done.
The only way, then, that all of the pairwise distances of y1, y2, y3 can be at
most 2 is if |Ci| ≤ 6.

4



Claim 2. If x 6∼ y with |NH(x, y)| ≤ 4 and x, y ∈ H, then there exists a
chorded 6-cycle Ci ∈ C such that, up to relabeling x and y are adjacent to
Ci in one of the following ways (see Figure 1):
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Figure 1

Proof. Note that |NC(x, y)| ≥ 4k+1−4 = 4k−3, so there exists some Ci ∈ C
such that |NCi(x, y)| ≥ 5. Without loss of generality, say,|NCi(x)| ≥ 3, and
hence by Claim 1, |Ci| ≤ 6.

If |Ci| = 5, and |NCi(x)| ≥ 4, then there is a chorded 4-cycle in Ci∪{x}.
Thus |NCi(x)| = 3, and NCi(x, y) = Ci. It is easy to check that however
x and y send edges into Ci, they would create a chorded 4-cycle, therefore
|Ci| = 6.

If the chord in Ci connects two vertices at distance 2 on the cycle, then
however the 3 edges from x are placed in Ci so that the ends have pairwise
distance 2 on the cycle, they admit a shorter chorded cycle. (Recall, these
neighbors must be at distance 2 on the cycle.) If both ends of the chord
are adjacent to x, then there is a chorded 4-cycle. Otherwise there is a
chorded 5-cycle. Therefore the chord bisects the C6 as in the Figure 1.
Then |NCi(x)| = 3, or else there would be a chorded 5 cycle; and since the
edges must be pairwise at distance 2 along the cycle they must lie as in
Figure 1. Then y has at least two neighbors in Ci which are not neighbors
of x, as in Figure 1.

A corollary of Claim 2 is the following swapping lemma, which is key to
our argument.

Lemma 1 (Swapping Lemma). Suppose x, y are non-adjacent vertices in
H with |NH(x, y)| ≤ 4. Then there exists a Ci ∈ C and vertices zx, zy ∈ Ci

such that zx ∼ x, zy ∼ y and both (Ci − {zx}) ∪ {y} and (Ci − {zy}) ∪ {x}
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are chorded cycles. Furthermore, for x′, y′ ∈ V (H), if x′ ∼ x then zx 6∼ x′,
likewise if y′ ∼ y then zy 6∼ y′.

Proof. By Claim 2, we know the adjacencies of x and y to some Ci. It is
easy to verify, by inspection, that a chorded cycle including, say, x may be
routed excluding one of the corner vertices adjacent to y; that corner vertex
will be denoted zy. The lemma easily follows from inspection; a typical case
is as in Figure 2:

x

y

zy

Figure 2

Here the outer cycle of the new chorded cycle is highlighted. The asser-
tion that zx 6∼ x′ follows from the fact that, if it is adjacent, that it would
create a chorded 5-cycle. This is easy to check, details are included as part
of the proof of Lemma 2 below.

As an application of the swapping lemma, we see that (if we do not insist
that the number of edges of H is maximized) we may assume H is connected:
Suppose H is such that it has a minimum number of components, and that
the largest component is as large as possible. If H had two components, say
X1 and X2 where X1 is the largest component, each would have a vertex of
degree at most 2 in H. Suppose x1 ∈ X1 and x2 ∈ X2 are these vertices;
then |NH(x1, x2)| ≤ 4. Applying the swapping lemma says that we may
remove x2 and append a vertex to x1, which would increase the size of
the largest component, a contradiction. Thus H must be connected. In
particular, when the number of edges in H is maximized, we know that
|E(H)| ≥ |H|− 1. Also note that if the number of edges in H is maximized,
and we apply the swapping lemma we know that |NH−{y}(zx)| ≤ |NH(y)|
and similarly for zy and x. The swapping lemma also implies that there are
no isolated vertices in H.

Observe the following: Suppose k is the largest integer such that H has
a k-tower. If k ≤ 2, then G has at least 2 non-adjacent vertices of degree at
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most 2. Indeed, if H has only a single vertex of degree ≤ 2, then it has a
(diam(H) + 1)-tower, and since |H| ≥ 4, diam(H) ≥ 2. If H only has two
vertices of degree ≤ 2, and they are adjacent, the same conclusion holds. H
cannot have just 3 pairwise adjacent vertices of degree ≤ 2: if H had such,
they would form one component of size 3, but |H| ≥ 4, so there must be
another component which must contain a vertex of degree ≤ 2. Furthermore,
if H has only a one-tower, and has only two non-adjacent vertices of degree
≤ 2, then they must both be connected to a vertex of degree at most 4.

The following is the crux of the proof:

Lemma 2. Suppose x, y, z are three vertices in H with x ∼ y, y ∼ z and
x 6∼ z, such that |NC(x, z)|+ |NC(y)| ≥ 6k − 5. Then |C| is not minimized.

Proof. Suppose that |C| is minimized. We shall find a shorter chorded cycle,
and thus a contradiction.

By hypothesis, there exists some chorded cycle C = Ci ∈ C such that
|NC(x, z)| + |NC(y)| ≥ 7. Clearly one of x, y, or z sends at least 3 edges
into C, so by Claim 1, |C| ≤ 6. If any one vertex sends 4 edges into C, it is
clear that there is a shorter chorded cycle. We consider the other scenarios:

If |NC(y)| = 3, then |NC(x, z)| ≥ 4. First, consider |C| = 5. Since there
is only one way to fit 3 edges from a single vertex into a chorded 5-cycle
without creating a shorter chorded cycle, we know the adjacencies from y to
C. If one of x or z (say x) also has degree 3 in C, then it is easily seen that
NC(x) = NC(y). Then there are clearly chorded 4-cycles. Now suppose x
and z both have degree 2 in C. Suppose b1, b2 are the two vertices which lie
on one side of the chord. Both b1, b2 ∈ N(y). One of b1, b2 (say b1) is in the
neighborhood of one of x or z (say x). But then we have a chorded 4-cycle:
x, b1, b2, y with chord {y, b1}.

Thus we may assume |C| = 6. If C is a chorded 6-cycle with a single
vertex a on one side of the chord, and three vertices b1, b2, b3 on the other
(where b1, b3 are at distance 2 from a, and b2 is at distance 3 and b0 and
b4 are the remaining vertices according to this ordering), then if y has two
consecutive neighbors on C or is adjacent to both ends of the chord, a shorter
chorded cycle exists. Then the only possibility is that y ∼ {a, b1, b3}. But
then y, b3, b4, b0, a is a chorded 5-cycle with chord ab4. Thus, C must be the
chorded 6-cycle as in Figure 2. Suppose the vertices of the chord, arranged
in order along the cycle are x1, . . . , x6, and the chord is {x1, x4}. Then
y ∼ {x1, x3, x5}. If x ∼ x1 (or z ∼ x1) then there is a chorded 5-cycle:
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x, x1, x2, x3, y with chord yx1, so x 6∼ x1 and similarly x 6∼ {x3, x5}. But
|NC(x, z)| ≥ 4 so clearly x or z must be adjacent to one of those vertices.
Thus |NC(y)| < 3.

If |NC(y)| = 2, then |NC(x, z)| ≥ 5. As argued in Claim 2, |C| = 6,
and it is of the form described above: vertices x1, . . . , x6 with chord x1x4

where (without loss of generality) x ∼ {x1, x3, x5}. Furthermore, either
z ∼ {x2, x4} or z ∼ {x2, x6}. First consider the case where z ∼ {x2, x4}
(as the other case is similar, but with chord from x to C). Then if y ∼ x1

we have a chorded 5-cycle x, x1, x2, z, y with chord yx1. Likewise y cannot
be adjacent to any vertex in NC(x, z). But |NC(y)| = 2, so this must be
the case. (Here the key property is that chorded cycles are formed using
exactly one edge in C.) Similarly if |NC(y)| = 1, and |NC(x, z)| = 6; the
fact that NC(y) ∈ NC(x, z) as |C| = 6 will force a similar chorded 5-cycle,
using x, y, z and one edge in C, with the edge from y or x to C acting as
the chord.

The remainder of the proof of Theorem 2 is to show that by the Swapping
Lemma, Lemma 1, we may ensure that H has vertices x, y, z that satisfy
the conditions of Lemma 2. This leads to a contradiction to the assumption
that H had no chorded cycles, completing the proof. We now consider the
cases:

First suppose that H has no 3-tower. Thus it has two non-adjacent
vertices x and y of degree at most 2. Let us assume that x is at the start of
the highest tower in H (which by assumption is at most a 2-tower). First
let us assume that there is a 2-tower starting at x. We apply the swapping
lemma to exchange y for a y′ ∼ x. Let C′ and H ′ denote the new cycle
system and new copy of H after the swap. Note that |NH′(y′)| ≤ 2 and y′

is adjacent to no neighbors of x as assertions of the swapping lemma. Thus,
there is a 3-tower starting at y′ and by the maximality of the tower height,
this implies that |NH′(y′)| ≤ 1. Now since there is a 3-tower starting at y′

there is a neighbor x′ ∼ x such that x′ 6∼ y′ and |NH′(y′, x′)| ≤ 3 (this is
the vertex which has degree at most 2 after deletion of y′ and x). Now one
of y′ and x′ (say x′) has |NC′(x′)| > 2k − 1 by the neighborhood condition.
Apply the swapping lemma to exchange y′ for a z ∼ x′ (if y′ is the vertex of
high degree, do this in reverse). Then if H ′′ is the resulting leftover vertices
|N ′′

H(z)| ≤ 2, and z 6∼ x and it is easy to see that z, x′, x satisfy the conditions
of Lemma 2 as |NH′′(z, x)| ≤ 4 so |NC′′(z, x)| ≥ 4k + 1 − 4 = 4k − 3 and
|NC′′(x′)| ≥ 2k − 2, where C′′ is the new cycle set after the swaps.
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If there is a 1-tower, but no 2-tower the proof is similar. Again, we use
H ′, H ′′, etc. to denote the set H after swaps, and C′ accordingly. We may
apply the swapping lemma to find y′ ∼ x, there will be a 2-tower starting at
y′ and hence |NH′(y′)| = 1. It is possible that, in fact, a 3-tower now starts
at y′. In this case there is a vertex x′ ∼ x such that |NH′(x′, y′)| ≤ 3 and we
are in the same case as before. If not, then there is a vertex z of degree at
most 2 non-adjacent to y′. We may again apply the swapping lemma to find
a neighbor z′ ∼ y′ with z′ 6∼ x and |NH′′(z′)| ≤ 2. Now, |NH′′(z′, x)| ≤ 4
(as their neighborhoods contain the common vertex y′) and we are again in
the position above: one of z′ or x (say x) has high degree to C′′, we apply
the swapping lemma to find a z′′ ∼ x and end up in a situation where the
hypothesis of Lemma 2 are satisfied.

Thus we may assume that H has a 3-tower. Suppose x is the degree
(at most) 2 vertex first in the ordering defining the tower. Then there is a
vertex y at distance 2 from x with |NH(x, y)| ≤ 4.

First suppose that there exists such a y with |NH(y)| ≤ 3, and let z
denote the center vertex between x and y.

Suppose |NH(y)| ≤ 3. As |NC(x, y)| ≥ 4k − 3, one of x or y has neigh-
borhood in C of size at least 2k−1. If this is x, first consider the case where
there is another vertex of degree at most 2 in H, say w. If so, applying the
swapping lemma to find w′ ∼ x and taking a vertex z′ of degree 3 adjacent
to x gives a set w, x, z′ which satisfies the conditions of Lemma 2. If this
is not x, we consider separately the cases where NH(x) is connected and
disconnected. If NH(x) is connected we see that we can choose z ∼ y with
NH(z) = {x, y, z′}, where z′ and z are the neighbors of x. Then after ap-
plying the swapping lemma to y and x to find y′ ∼ x with |NH(y′)| ≤ 3,
we may assume that |NH−y(z)| = 2. In particular |NH(z, y′)| ≤ 4 (as the
neighborhoods share x) and z, x, y′ satisfy the conditions of Lemma 2. If
NH(x) is not connected, the fact that |NH(y)| ≤ 3 says we may choose y
such that a middle vertex z has |NH−y(z)| ≤ 2. Again, apply the swapping
lemma to find y′ ∼ x with |NH(y′)| ≤ 3 and y′, x, z meeting the conditions of
Lemma 2. If y has the high degree instead, we apply the Swapping Lemma
to remove x and find x′ ∼ y, and x′, y, z will similarly meet the criteria of
Lemma 2.

If |NH(y)| ≥ 4 for all y at distance 2 from x, there is one final case. Here
x is adjacent to two vertices of degree 3, x1, x2, and x1 and x2 are both
adjacent to the same two vertices y1, y2 (one of which must have degree at
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most 4). Let y the vertex of degree 4. Note that |NH(x1, x2)| = 3, so one
of x1, x2 (say x1) has |NC(x1)| ≥ 2k − 1. Apply the switching lemma to
x1 and x2 to find a vertex x′2 ∼ x1 with |NH(x′2)| ≤ 3 and x′2 6∼ x. Then
|NH−x2(x)| = 1, and |NC(x1)| ≥ 2k− 2. Thus |NH(x′2, x)| ≤ 3, and x′2, x1, x
satisfy the conditions of Lemma 2.

In all cases, we have reached a contradiction, hence H must have con-
tained a chorded cycle and we have completed the proof of Theorem 1.

2 The Proof of Theorem 2

Like the proof of Theorem 1, the general strategy will be by induction on k,
for any fixed n = |G|. The case k = 1 is trivial: if G has minimum degree
at least 2, clearly G contains a cycle; otherwise there is a vertex x of degree
1, and G − N [x] has minimum degree ≥ 2 by the neighborhood condition,
and thus contains a cycle.

We say that a sequence v1, . . . , vk is a non-branching path of order k in
G, if vi ∼ vi+1, 1 ≤ i ≤ k − 1, and |N(vi)| ≤ 2 for all i ≤ k.

Suppose G is a graph satisfying the hypothesis of Theorem 2 for some
k, and that the theorem has been proved for k − 1. The hypothesis of
the theorem are satisfied for k − 1, so G contains k − 1 independent cycles
C1, . . . , Ck−1. Let C =

⋃k−1
i=1 Ci and assume that |C| is minimized. Let

H = G − C. We assume H has a minimum number of components. If H
contains a cycle, then we have exhibited k disjoint cycles and are done, so we
may assume H is a forest. We prove the following swapping lemma, similar
to Lemma 1: Here, H ′ is the graph induced by (H − {xi}) ∪ z.

Lemma 3. Suppose x1, x2, and x3 are vertices in H which are pairwise
non-adjacent and |NH(xi)| ≤ 1. Then there exist i, j ∈ {1, 2, 3} with i 6= j,
Ck ⊆ C and z ∈ Ck, such that (Ck − {z}) ∪ {xi} is a cycle and z ∼ xj.
Furthermore |NH′(z)| = 1.

Remark: There is one key difference between this lemma and Lemma 1. In
Lemma 1 we are able to choose whether to append the new vertex to x or
append the new vertex to y. Here, we have no choice: the lemma guarantees
that we can swap some xi for some z adjacent to some xj , but we cannot
guarantee (say) that we can add x1 to a cycle and swap it out for a z ∼ x2.
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To prove Lemma 3 we make the following observation, which follows
immediately from the minimality of |C|:

Claim 3. Suppose x ∈ H has |NCi(x)| ≥ 2, then |Ci| ≤ 4. Furthermore, if
|NCi(x)| = 3, then |Ci| = 3.

Proof of Lemma 3. Note that

|NC(x1, x2)|+ |NC(x1, x3)|+ |NC(x2, x3)| ≥ 3(2k − 1)

so there exists a cycle Ci such that

|NCi(x1, x2)|+ |NCi(x1, x3)|+ |NCi(x2, x3)| ≥ 7. (1)

In particular, for some pair xa, xb (say x1 and x2) we have |NCi(x1, x2)| ≥
3. Thus |Ci| ≤ 4 by Claim 3. At least one of x1 and x2 have degree at least
2 into Ci, say x1. If |NCi(x1)| = 2, then we will set xa = x1 and xb = x2 and
one can easily check that the conditions of the lemma are satisfied, since
x2 must have a neighbor in Ci that is not amongst the neighbors of x1. If
|NCi(x1)| = 3, then |Ci| = 3. In this case, note that one of x2 or x3 must
have a neighbor in Ci, otherwise (1) will not hold; if this is x3, say, let
xa = x1,and xb = x3. The other cases follow analogously.

Note that Lemma 3 implies the following:

Claim 4. H has at most 2 isolated vertices.

Proof. Otherwise, applying the swapping lemma (Lemma 3) to these vertices
would reduce the number of components.

The key observation is the following:

Lemma 4. Without loss of generality, we may assume that H contains
either two disjoint non-branching paths of order at least 4, one of which
starts at a leaf or a single non-branching path of order 8, which need not
contain a leaf.

Proof. For the purposes of this, we assume that H has no isolated vertices;
even after removing the isolated vertices, we decrease the order of H by at
most 2 by Claim 4. We assume that H cannot have a non-branching path
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of order 8 starting at a leaf, subject to the conditions imposed on H. Under
one additional assumption on H, we show that it must have an internal (to
H) non-branching path of the desired order.

Let ` denote the number of leaves in H which are not in path components
and p denote the number of components in H which are paths. Suppose H is
such (subject to our condition on |C| and that the number of components in
H are minimized) that ` + p is minimized. Let L consist of the set of leaves
in H, with one leaf selected from each path component. Note |L| = ` + p.
Note that there is a non-branching path of some order starting at each leaf.
Let v = (v1, v2, . . . , vn) be the vector where vi is the number of leaves in L
which are connected to a maximal non-branching path of order exactly i.
Note, by assumption vi = 0 for i ≥ 8. We define the weight of v to be:

wt(v) =
n∑

i=1

vi(1− 2−i).

Suppose that H is such that (subject to its other conditions) wt(v) is mini-
mized. We claim that vi ≤ 2 for all i. If vi ≥ 3, then applying the swapping
lemma to the three vertices ending paths of order i would result in a new
H ′ = (H − {xi}) ∪ {z} and C′ where wt(v′) < wt(v). If

∑
i≥4 vi ≥ 2, we

are done. If
∑

i≥4 vi = 1, then there are at most 7 leaves, and
∑

i ivi ≤ 19.
Otherwise, there are at most 6 leaves and

∑
i ivi ≤ 12.

We also need the following lemma, whose proof we give after we complete
the proof of Lemma 4.

Lemma 5. Under the assumption that H does not contain two disjoint non-
branching paths of order at least four, one of which starts at a leaf, we may
assume that |H| ≥ 40.

Let J denote the set of vertices in H of degree at least 3 (in H), and let
j = |J |. Let c denote the number of components of H. The vertices of J
divide the |H| − j vertices of H − J into

c +
∑
v∈J

(|N(v)| − 1) = c + j +
∑
v∈J

(|N(v)| − 2) = j + `− c

segments which are non-branching paths, some of which may be empty if
there are adjacent vertices in J .

Of these j + ` − c segments, ` + p of them are attached to vertices
in L and these account for at most

∑
i ivi vertices. Thus, the remaining
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≥ |H| − 2 − j −
∑

i ivi vertices are split into j + ` − c − (` + p) segments.
If

∑
i≥4 vi = 1, so that ` ≤ 7 and

∑
i ivi ≤ 19, then there must be a non-

branching path of order at least:⌈
|H| − 2− j − 19

j − c− p

⌉
≥

⌈
|H| − 2− (`− 2)− 19

(`− 2)− c− p

⌉
≥

⌈
40− 26

4

⌉
= 4

since |H| ≥ 40. Thus there is a non-branching path of order 4 in the interior
of the forest, and along with one adjacent to a leaf we have the two desired
paths of order 4.

If
∑

i≥4 vi = 0, so that ` ≤ 6 and
∑

i ivi ≤ 12, we have a non-branching
path of order at least:⌈

|H| − 2− j − 12
j − c− p

⌉
≥

⌈
|H| − 2− (`− 2)− 12

(`− 2)− c− p

⌉
≥

⌈
40− 18

3

⌉
= 8,

as desired.

Before we prove Lemma 5 we need one additional claim concerning cycles
with edges between them. We define the graphs G(a, b, c, d) to be the disjoint
union of two cycles C1 and C2 of order a and b respectively, with two vertices
v1 and v2 at distance d lying on cycle Cc specified. The vertex v1 is connected
to all of the other cycle, while v2 is connected to a single vertex of the other
cycle. (Note that for all choices of v1, v2 and the neighbor of v2, the resulting
graphs are isomorphic).

Lemma 6. Suppose C1 and C2 are two cycles with |C1| + |C2| ≥ 7, and
e(C1, C2) edges between them. If |e(C1, C2)| ≥ 9, then either C1 ∪ C2 ∪
e(C1, C2) ⊆ G(|C1|, |C2|, c, d) for some parameters c and d, or there exist
two shorter disjoint cycles.

Note that 9 here is sharp: there exist configurations of C1 and C2 with 8
edges between them that admit no two shorter disjoint cycles, and are not
contained in a G(|C1|, |C2|, c, d).

Proof. Suppose |e(C1, C2)| = 9, and let v be a vertex with the largest number
of edges into the other cycle. Without loss of generality, v ∈ C1 and we let
dv denote the number of vertices in C2 incident to v. We show dv ≥ 8. Note
that this proves the lemma: if |e(C1, C2)| > 9, we consider groups of 9 edges
at a time and it is clear that the vertex v of highest degree must be the same
for all groups of edges.

13



We fix some order on C2. For vertices, x, y in C2, with x ≤ y (with re-
spect to the order) we let (x, y) and [x, y] denote the open or closed intervals
of vertices from x to y. If y ≤ x, then [x, y] is the complement of (y, x) and
similarly for (x, y). Half open intervals, e.g. (x, y], are defined accordingly.

Suppose |e(v, C2)| = 7. Let x1 < x2 < · · · < x7 ∈ C2 denote the
neighbors of v in order around the cycle. Then there are two other edges
from C1 to C2, which hit vertices a1 ≤ a2 in C2 (where a1 may be the same
as a2). Either there are three xi within [a1, a2] or there are three xi on
the outside of [a1, a2]. In either case, one can build two shorter cycles which
avoids (at least) one of the three vertices to the inside (or outside) of [a1, a2].

If |e(v, C2)| = 6, let x1 < · · · < x6 denote the vertices adjacent to v.
Note that if C1 \ v has 2 neighbors in (x2, x6) then shorter cycles can be
constructed avoiding x2. Otherwise C1 \ v has 2 neighbors in [x6, x2] and
shorter cycles can be constructed avoiding x3.

If |e(v, C2)| = 5, let x1 < · · · < x5 denote the vertices adjacent to v. If
[x5, x1) contains 2 neighbors of C1 \v then shorter cycles can be constructed
avoiding x2. Similarly if there are two vertices in any of the intervals [x1, x3),
or [x3, x5). But one of these must contain two elements.

If |e(v, C2)| = 4, let x1 < · · · < x4 denote the vertices adjacent to v.
Either one of [x4, x1), [x1, x2), [x2, x3), or [x3, x4) contains two edges from
C1 \v, allowing a shorter cycle in any case or each has exactly one edge from
C1 \ v, which also allows a shorter cycle.

If |e(v, C2)| = 3, let x1 < · · · < x3 denote the vertices adjacent to v.
If one of (x1, x2), (x2, x3) or (x3, x1) contains two edges from C1 \ v, then
G admits a shorter disjoint cycle. Now either one of x1, x2, or x3 has two
edges from C1 \ v or there is exactly one edge from C1 \ v into each of
x1, x2, x3, (x1, x2), (x2, x3), and (x3, x1). In the second case, each set must
be non-empty, and it is easy to see that there are shorter disjoint cycles If
x1 (say) has two edges from C1 \ v, then there are shorter disjoint cycles
unless (x3, x1) and (x1, x2) are empty. This forces x2 (say) to have two edges
from C1 \ v, forcing (x2, x3) to be empty, and thus x3 must also have two
edges from C1 \ v. (Note that no xi may have 3 edges from C1 \ v, this
would contradict the fact that v has maximum degree to the other cycle.)
The same argument applied in reverse (now taking one of the xi’s to be the
vertex of degree 3, and looking at edges into C2) implies that either we have
two shorter cycles or, in fact, we must two triangles with a K3,3 connecting
them. This contradicts |C1|+ |C2| ≥ 7.
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If |e(v, C2)| = 2, let x1 < x2 denote the neighbors of v. If (x1, x2) or
(x2, x1) have three edges from C1 \ v then there are shorter disjoint cycles.
Thus one of x1 or x2 has at least 2 neighbors from C1 \ v. This contradicts
the fact that v has the maximum degree.

If |e(v, C2)| = 1, suppose v1, v2 ∈ C1 are as close together as possible such
that v1, v2 have neighbors in C2, and let x1 < x2 denote their neighbors.
One of (x1, x2) or (x2, x1) must have at least 3 neighbors in C1 \ {v1, v2}
and thus there are shorter cycles.

Therefore |e(v, C2)| ≥ 8 as desired.

Proof of Lemma 5. Suppose |H| < 40. Then the average size of a cycle in
C is at least 30k−40

k−1 ≥ 20 (since k > 1). Let C be a cycle in C of maximum
order. Then C has no chords, due to the minimality of |C|. Order the
vertices in C, and denote them v0, . . . , vm. Let R = C̄ = G − C. We may
assume that, without loss of generality at most two (adjacent) vertices in
C have |NR(v)| < k − 1, and if these exist, we will assume that they are
(possibly only one of) v1, v2. Pair off vertices {{v4i, v4i+2}, {v4i+1, v4i+3} :
i = 0, 1, . . . , bm/4c − 1} as long as it is possible to form both pairs. Let
U denote the set of vertices not paired off; there are m + 1 (mod 4) such
vertices. Then for any of these pairs (u, v), |NC(u, v)| = 3. Now consider
that:∑
i≤bm/4c−1

(|NR(v4i, v4i+2)|+|NR(v4i+1, v4i+3)|)+
∑
v∈U

|NR(v)| ≥ (m+1)(k−1).

Note that |e(C,H)| < 20 since if any two vertices at distance at most 9
in H have neighbors in C, then there is a shorter cycle. Here we use the
fact that H is minimized with respect to wt(v) and the condition on the
non-branching paths within H. Note that this is already a contradiction
if k = 2. Thus there exists some cycle C ′ ∈ C, with at least m + 2 edges
between C and C ′.

Lemma 6, along with the neighborhood condition, implies that |C ′| = |C|
and that a vertex in C must be adjacent to every vertex in C ′, with one
additional edge between the two. The fact that the high degree vertex is
in C comes from the neighborhood condition, and the fact that |C ′| = |C|
comes from the fact that there is a vertex in C with degree m + 1 into C ′,
and C is a maximum order cycle.

We now repeat the argument: Let v be the vertex in C of high degree
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to C ′. We pair off vertices of C starting at the successor of v, and also pair
off the vertices of C ′ to get that there must be at least (2m + 1)(k − 1)− 1
edges leaving C ∪ C ′ \ v; in particular there must be third cycle C ′′ such
that there are at least 2m + 1 edges between C and C ′ and C ′′. Applying
Lemma 6 again implies |C ′′| = |C ′| = |C| and that there is a v′ 6= v ∈ C and
a v′′ ∈ C ′ each of which are adjacent to at least |C ′′| − 1 vertices in |C ′′|.
But then it is clear that we can find three shorter cycles, contradicting our
assumptions on |C|. (Here, if k = 3 the number of edges between C ∪C ′ and
H already contradict the fact that |C| is minimized.)

We are now ready to complete the proof of Theorem 2. By Lemma 4, we
may assume that H contains either two disjoint non-branching paths of order
4, or one non-branching path of order 8. First consider the case where H con-
tains two disjoint non-branching paths P1, P2 of order 4 (one of which con-
tains a leaf). Let P1 = {x1, x2, x3, x4} and P2 = {y1, y2, y3, y4}, and consider
the pairs of non-adjacent vertices S = {(x1, x3), (x2, x4), (y1, y3), (y2, y4)}.
Then ∑

(u,v)∈S

|NC(u, v)| ≥ 4 · (2k − 2) + 1 = 8(k − 1) + 1.

Therefore, there exists a C = Ci such that
∑

(u,v)∈S |NC(u, v)| ≥ 9. This
implies, by Claim 3 that some vertex in one of the Pis has two neighbors on
C, so |C| ≤ 4.

First, assume that |C| = 4. Without loss of generality, assume that

|NC(x1, x3)|+ |NC(x2, x4)| ≥ |NC(y1, y3)|+ |NC(y2, y4)|.

If |NC(x1, x3)|+ |NC(x2, x4)| ≥ 7, then one pair, say x1 and x3 is adjacent to
all four vertices on C. Then we reach a contradiction to the minimization of
|C| as either a triangle is already formed, or x2 or x4 must be adjacent to some
vertex on the cycle, creating a triangle. If |NC(x1, x3)| + |NC(x2, x4)| = 6,
then there are two vertices on C which are adjacent to two vertices in P1,
and these vertices must come from different classes, i.e. one from {x1, x3}
and one from {x2, x4}, and either both other vertices in C are adjacent to
one other vertex on P1, or one vertex is adjacent to two vertices on P1.
Suppose first two vertices on C are adjacent to two vertices of P1, and the
others are adjacent to one vertex. Then the two vertices of C which are
adjacent to two vertices of P1 must be adjacent to the two end vertices of P1

(to avoid a triangle since they must come from different classes) and must be
antipodal. Label the vertices of C to be (in order) c1, . . . c4. Then without
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loss of generality x1 and x4 are adjacent to c1 and c3. We are done unless
both c2 and c4 are adjacent to one of x2 or x3. In this case, we must use
P2. We know that |NC(y1, y3)| + |NC(y2, y4)| ≥ 3. Therefore either some
vertex in C is adjacent to two vertices of P2 (in which case it is easy to find
disjoint cycles), or three different vertices of C are adjacent to P2. It is easy
to see here that however they are adjacent we are done, though we note that
2 edges does not suffice here: if P2 were just adjacent to c1 and c3 we could
not find the shorter disjoint cycles. This is the only one of these cases where
we use the ninth edge, and hence requires care when we consider the case
where we have a single path of length 8 below.

If |NC(x1, x3)| + |NC(x2, x4)| = 5, then some vertex z in C is adjacent
to two vertices of P1, and these must be the end vertices. If P2 is adjacent
to two vertices that are not z, then we have two disjoint cycles. If this
doesn’t occur, z occurs in the neighborhood of 2 vertices in P2 (again, the
end vertices) as in total P2 sends three edges to C. But then P1 has two
edges that don’t go to z, leading to two disjoint cycles (one involving P1 and
vertices on C − {z} and one involving P2 and {z}. We also will handle the
case where |NC(x1, x3)| + |NC(x2, x4)| = 4, which arises in the case where
there is a non-branching path of order 8. If |NC(x1, x3)|+ |NC(x2, x4)| = 4,
then either some vertex is adjacent to two vertices of P1 or two vertices of P2

which leads to the exact case above, or all vertices are adjacent to exactly
one vertex in both P1 and P2. In either case, there are two disjoint cycles
and we are done.

If |C| = 3, then note |NC(x1, x3)| + |NC(x2, x4)| ≤ 6 (again, we assume
that P1 has the larger of the neighborhoods). If this is at least 5, two
vertices on C must be adjacent to two vertices of P1, and the other vertex
on C must be adjacent to (at least) one vertex on P1. If P2 sends three edges
into C, we are clearly done. Either two hit some vertex, and we have a cycle
involving P1 and the vertices not hit by P2, or all three are hit and we have
an analogous situation using one of the vertices that P2 hits twice. If P2 only
sends 2 edges into C, then all three of the vertices of C must be hit twice by
P1 and, again, we have two disjoint cycles. If |NC(x1, x3)|+|NC(x2, x4)| = 4,
then some vertex z of C must be adjacent to two vertices in P1. Two of
the edges from P2 must be incident to vertices different than z, and thus we
have two disjoint cycles as desired. Again, this last case cannot occur unless
we are in the non-branching path of order 8 case.

Thus we may assume we are in the case where there is a single non-
branching path of order 8; let P = {x1, . . . , x8}. We can think of P =
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P1 ∪ P2, where P1 and P2 are the first and last four vertices of P respec-
tively. The same argument as above guarantees that there is a C such that∑

(u,v)∈S |NC(u, v)| ≥ 8. This is where we lose something: having a leaf
in our path gave us one extra edge. Note that before we used that extra
edge to claim that |C| ≤ 4, but did not use the extra edge to produce the
two disjoint cycles, we showed their existence even when the (sum of the)
neighborhoods of both P1 and P2 was of size 4. Note either every vertex
has |NC(xi)| = 1 with NC(xi) 6= NC(xi+2), or |C| ≤ 4. If |C| ≤ 4, then we
can apply the above arguments, noting that we have already handled the
additional cases which occur except for one noted.

The last case with |C| ≤ 4 is when |C| = 4, and we have C = {c1, c2, c3, c4}
and P1 = {x1, x2, x3, x4} where x1 and x4 are adjacent to both c1 and c3

with either x2 or x3 adjacent to both c2 and c4. Then there must be at least
two edges between P2 and C; if there are three then the argument above
shows there exist two disjoint cycles. The only case that the above argument
does not cover is if the neighbors of P2 are c1 and c3. But even in this case
we are done as P1 and P2 are adjacent: we take the cycle involving x1, c1, c2,
the neighbor of c2 on P1 (either x2 or x3) and the segment of P1 connecting
this vertex and x1 and also the cycle involving x4, c3, the neighbor of c3 in
P2 and the path between x4 and this vertex.

If every vertex has degree 1, consider that x1 and x3 have two distinct
neighbors on C. If NC(x2) ∈ {NC(x1), NC(x3)}, then we have a triangle,
and hence |C| = 3 ≤ 4 and we are already done. Now assume NC(x2) 6∈
{NC(x1), NC(x3)}. Order the vertices along the cycle so that NC(x1) <
NC(x2) < NC(x3). Then if NC(x4) 6∈ [NC(x1), NC(x2)] we are done, so we
may assume that NC(x4) is in this interval.

Now consider the neighbors of xi for i ≥ 5. If NC(xi) 6∈ [NC(x1), NC(x2)]
we are done as above. In fact, if NC(xi) ∈ (NC(x1), NC(x2)) we are also
done: we may use x4, xi and the portions on the path and cycle con-
necting them for one cycle, using the portion of the cycle contained in
[NC(x1), NC(x2))]. Then one of NC(x1) or NC(x2) will not be used in that
cycle; we will use that vertex, along with NC(x3) the portion connecting
them in the cycle not containing (NC(x1), NC(x2)) along with their neigh-
bors on the path and the portion of the path connecting them. Thus all
vertices xi for i ≥ 5 must have their neighbors be either x1 or x2. But then
one of these vertices will have two neighbors xi with i ≥ 5. This easily
admits two disjoint cycles.
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