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Abstract

We show that any k-uniform hypergraph with n edges contains two edge disjoint subgraphs of size
Ω̃(n2/(k+1)) for k = 4, 5 and 6. This is best possible up to a logarithmic factor due to an upper bound
construction of Erdős, Pach, and Pyber who show there exist k-uniform hypergraphs with n edges and
with no two edge disjoint isomorphic subgraphs with size larger than Õ(n2/(k+1)). Furthermore, our
result extends results Erdős, Pach and Pyber who also established the lower bound for k = 2 (eg. for
graphs), and of Gould and Rödl who established the result for k = 3.

Suppose G is an arbitrary k-uniform hypergraph with n edges. Let ιk(G) denote the size of the largest
pair of edge disjoint isomorphic subgraphs of G. Let

ιk(n) = min
G

|E(G)|=n

ιk(G),

denote the largest size so that every k-uniform hypergraph with n edges contains two edge disjoint subgraphs
of size at least ιk(n). A natural question is to study the size of ιk(n) for different values of k. This was first
undertaken in [2] by Erdős, Pach and Pyber, who attribute the problem to Schönheim, and who proved that
there exists constants Ck and C ′k depending only on k such that

Ckn
2/(2k−1) ≤ ιk(n) ≤ C ′kn2/(k+1) log n

log log n
.

For k = 2, these are roughly of the same order and this result implies that every simple graph with n
edges contains two edge disjoint isomorphic subgraphs of size n2/3. The logarithmic gap was settled very
recently in [5], who showed that ι2(m) = Θ((m logm)2/3). Erdős, Pach, and Pyber also raised the question of
narrowing the gap between the lower and upper bound for hypergraphs. In [4], Gould and Rödl proved that,
up to a logarithmic factor, the upper bound is correct for k = 3 as well. That is, they showed ι3(n) ≥ C

√
n.

The main result of this paper is to establish that the upper bound is correct, again up to logarithmic
factors, for k = 4, 5, and 6. In particular we prove:
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Theorem 1. There exist constants c4, c5 and c6 so that

ι4(n) ≥ c4n2/5,

ι5(n) ≥ c5
n1/3

log n
, and

ι6(n) ≥ c6
n2/7

log35 n
.

Unfortunately as k increases, the problem seems to become harder still and k = 7 has difficulties that are
not present when k = 6. However it still seems likely that upper bound should be essentially correct. The
lower bound argument of Erdős, Pach and Pyber is inductive and in combination with Theorem 1 implies
that

Corollary 1. For all values of k ≥ 7

ιk(n) = Ω̃(n
2

2k−5 ).

However our method allows us to improve the general lower bound of Erdős, Pach and Pyber while
sidestepping the technical issues that prevent us from matching the upper bound in general.

Theorem 2. For all values of k ≥ 7

ιk(n) = Ω̃
(
n

2
2k−log2 k

)
.

Of course, the real challenge is to establish that the upper bound is correct for all values of k. It would
be interesting to show

lim sup
k,n→∞

k
log ιk(n)

log n
= 2.

As a start, it would be interesting to show that instead one may that this is larger than 1 + ε for some ε > 0.

The remainder of the paper is organized as follows. In Section 1, we establish some preliminary lemmas
which hold for all values of k. In Section 2, we establish Theorem 1. In Section 3, we establish Theorem 2.

1 Notation and Preliminaries

Since any k-uniform hypergraph with n edges contains a k-partite subgraph of size at least n
k! we work

throughout with k-uniform, k-partite hypergraphs. G will denote a k-uniform, k-partite hypergraph on
vertex sets V1, . . . , Vk and edge set E. Several times in the paper we make additional assumptions about G,
which we show that we can make if Theorem 1 were not to hold.

Suppose S ⊆ [k] = {1, 2, . . . , k}. For e ∈ E, we let eS = e ∩ (
⋃
i∈S Vi) denote the restriction of e to S.

For S ⊂ [k], an S-tuple is an |S|-tuple of vertices {vi : vi ∈ Vi,∀i ∈ S}. If T is an S-tuple of vertices of G,
we define the neighborhood of T to be

E(T ) = {e ∈ E : T ⊆ e}.

For a set S′ ⊆ [k], and S-tuple T we define the S′-neighborhood to be the multiset

ES
′
(T ) = {eS

′
: e ∈ E(T )},

the restriction of the edges in E(T ) to S′. Again, we emphasize that we view ES
′
(T ) as a multiset, so

|ES′(T )| = |E(T )|.
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Most often we care about the neighborhood of a single vertex and as a slight abuse of notation we define
E(v) to be E({v}). Likewise, we are most often interested in the case where S′ = [i] (= {1, 2, . . . , i}) for some
i ≤ k. Again as a slight abuse of notation, we define Ei(T ) = E[i](T ) and Ei = E[i] to be a neighborhood
or edge set restricted to the first i levels.

In the work that follows, we frequently study the action of permutations on the vertex sets, which induces
an action on the edge set. Throughout, πj = (π1, . . . , πj) will represent a collection of j permutations so
that π` acts on V`. Suppose E1 and E2 are the edge sets of two k-uniform hypergraphs on V1, . . . , Vk and
πS acts on the Vi such that i ∈ S. Then we define

ISπ (E1, E2) = |{(e, f) ∈ E1 × E2 : e 6= f and π(eS) = fS}|.

Note that this differs from simply |πS(ES1 )∩ES2 |; for instance if E2 = E1 and π acts identically on V1, . . . Vk,

then I [k]
π (E1, E2) = 0. When S = [j] we use the notation Ijπ(E,E), and when j = k we suppress j entirely

from the notation, that is we simply use Iπ(E,E).

The relationship between studying the action of permutations on the vertex sets of a hypergraph and the
problem at hand is encapsulated in the following.

Lemma 1. Suppose G = (V,E) is a k-uniform, k-partite hypergraph on V1, . . . , Vk and πk is a permutation
of V1, . . . , Vk. Then G contains two edge disjoint subgraphs of size at least

Iπk(E,E)

3
.

Proof. We construct a directed graph Γπ on vertex set E(G), so that for any two distinct hyperedges
e, f ∈ E(G) we place the directed edge e → f if πk(e) = f . Note that |E(Γπ)| = Iπk(E,E). Since E(Γπ)
is defined by the permutation πk, the in and out degrees of any vertex in Γπk is at most one; that is Γπ
decomposes into directed cycles and paths. We thus may choose a matching from Γπk of size at least

I
πk

(E,E)

3 .
Let M denote this matching; let E1 ⊆ E denote the set of all start vertices of edges in M and E2 ⊆ E
denote the set of all end vertices. Then the hypergraphs (V,E1) and (V,E2) are edge disjoint, becauseM is
a matching, isomorphic since πk(E1) = E2, and of the desired size.

Our goal, then will be to show we can find a permutation which yields Ikπ(E,E) of the proper size. We
begin with an easy case, which follows from a first moment argument.

Lemma 2. Suppose G = (V,E) is a k-uniform, k-partite hypergraph on V1, . . . , Vk with |V1| ≤ · · · ≤ |Vk| ≤
n

2
k+1 . If |E| = Cn for some C > 0, then G contains two edge disjoint isomorphic subgraphs of size at least(

C2

3
− o(1)

)
n2/(k+1).

Proof. Choose π1, . . . , πk to be uniformly random permutations of V1, . . . , Vk respectively. Let πk = (π1, . . . , πk).
For an edge e ∈ E(G), let Xe denote the Bernoulli random variable that is 1 if π(e) = e′ for some
e 6= e′ ∈ E(G). Then

E[Xe] =
Cn− 1

n2k/(k+1)
.

By linearity of expectation,

E[Iπk(E,E)] =
Cn(Cn− 1)

n2k/(k+1)
= (C2 − o(1))n2/(k+1).

There thus exists a πk with Iπk(E,E) at least so large and an application of Lemma 1 completes the
proof.
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Of course for a general k-uniform hypergraph with n edges, it is too much to assume that all partite sets
are smaller than n2/(k+1). Our next observation, however, is that we may assume most of partite sets are so
small.

Lemma 3. Suppose G = (V,E) is a k-uniform, k-partite hypergraph with n edges. Then either:

1. G contains two edge disjoint, isomorphic subgraph of size 1
2n

2/(k+1); or

2. There exists an ` ≥ dk+1
2 e and a set E′ ⊆ E(G) of size at least 1

(3k)`
|E| so that, possibly after reordering

the partite sets,

(a) E′ is supported on sets V ′1 , . . . , V
′
` , V`+1, . . . , Vk with |V ′1 |, . . . , |V ′` | ≤ n2/(k+1); and

(b) There exists a set E′′ ⊆ E′ of size at least |E
′|

3 so that every [`]-tuple T consisting of one vertex
each from V ′1 , . . . , V

′
` has |E′′(T )| ≤ 1.

Proof. We assume that G does not contain two edge disjoint, isomorphic subgraphs of size 1
2n

2/(k+1).
Choose ` ≥ 0 as large as possible so that 2(a) holds. That is, there exist sets V ′1 , . . . , V

′
` , V`+1, . . . , Vk

with |V ′1 |, . . . , |V ′` | ≤ n2/(k+1) and a set E′ ⊆ E with |E′| ≥ 1
(3k)`
|E| supported on these sets. Note that a

priori we may even have ` = 0; but we will show that we satisfy that ` ≥ dk+1
2 e.

Note that condition 2(b) cannot be satisfied unless ` ≥ dk+1
2 e. Indeed, if ` < k+1

2 , then there are o(n)
[`]-tuples with one vertex from each of V1, . . . , V`. But then any set E′′ of n

3`+1k`
edges from E with the

hypothesized support includes some [`]-tuple T with E′′(T ) > 1.

It remains to show that if 2(b) is not satisfied the maximality of ` is contradicted. Suppose 2(b) does not
hold. Let S = [k] \ [`]. We greedily select pairs of distinct edges {e1, f1}, {e2, f2}, . . . so that e`i = f `i , but

and eSi and fSi do not intersect
⋃i−1
j=1(ej ∪ fj). Note that we do not require that eSi ∩ fSi = ∅. Observe that

this process of selecting edges must halt with some {et, ft} where t ≤ 1
2n

2/(k+1), as E1 = {ej : j ≤ t} and
E2 = {fj : j ≤ t} induce edge disjoint isomorphic subgraphs of size t.

For s = ` + 1, . . . , k, we set Ws =
⋃t
i=1(ei ∪ fi) ∩ Vs. That is, Ws is the set of vertices in Vs that lie in

some eji or f ji . Note that |Ws| ≤ 2t ≤ n2/(k+1). Observe that for every [`]-tuple T of vertices from V ′1 , . . . , V
′
`

at most one edge from E′(T ) does not intersect some Ws, as if two edges avoided all Ws the maximality of

t is contradicted. Since we assume 2(b) is not satisfied, at most |E
′|

3 edges lie in tuples T with |E′(T )| ≤ 1.

Therefore, at least 2|E′|
3 ≥ 2n

3(3k)`
edges lie in E′(T ) for a tuple T with |E′(T )| ≥ 2. For any of these tuples,

at most one avoids intersecting some
⋃k
s=`+1Ws. Therefore n

3(3k)`
edges intersect

⋃k
s=`+1Ws. Since there

are only k − ` such sets, at least
n

3(3k)`
· 1

k − `
≥ n

3(3k)`+1

edges in E′ all intersect the same Ws, which we denote W . Since |W | ≤ n2/(k+1), taking V ′`+1 = W and E′′

to be the set of all edges in E which intersect all of V ′1 , . . . , V
′
`+1 (possibly reordering partite sets) contradicts

the maximality of `, completing the proof of the lemma.

The essential idea of the proof of Theorem 1 is to show that, by permuting randomly on the levels with
|Vi| ≤ n2/(k+1), we can construct permutations on the larger levels so that, in total, enough edges are mapped
to other edges, and then apply Lemma 1. In order to perform this task we require not only many small
levels, as guaranteed by Lemma 3, but we must understand some structural properties of our edge set. The
following lemma allows us to sacrifice a proportion of the edges to guarantee nice structural properties.

Lemma 4. Suppose that G = (V,E) is a k-uniform, k-partite hypergraph on V1, . . . , Vk with Cn edges. Fix
S ⊆ [k] and define α = αS so that

∏
i∈[k]\S |Vi| = αn(k−1)/(k+1). Then either
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1. There exists E′ ⊆ E with |E′| ≥ Cn
2 so that every S-tuple T has |E(T )| ≤ max{α, 1}; or

2. G contains two edge disjoint isomorphic subgraphs of size C
6 n

2/(k+1).

Proof. Suppose that conclusion (1) of the Lemma does not hold. Then there exists a set E′ of at least Cn
2

edges which share their S-tuple eS with more than max{α, 1} other edges. Consider the permutation πk

which fixes the levels Vi where i ∈ S, and acts uniformly on the levels Vj where j ∈ [k] \ S. For any edge
e ∈ E′, let Xe denote the Bernoulli random variable that takes the value 1 if πk(e) = e′ for some e 6= e′ ∈ E′.
We compute that

E[Xe] ≥
max{α, 1}∏
j∈[k]\S |Vj |

≥ α

αn(k−1)/(k+1)
= n−(k−1)/(k+1).

But then

E[Iπk(E,E)] ≥ E[Iπk(E′, E′)] =
∑

E[Xe] ≥
C

2
n2/k+1.

Choosing a πk that obtains this bound, and applying Lemma 1 completes the proof.

An almost immediate corollary of Lemmas 2, 3, and 4 is the following.

Corollary 2. Suppose that G = (V,E) a k-uniform hypergraph on n edges (which is not necessarily k-
partite). Then either

1. G contains a k-partite subhypergraph on vertex set V1, . . . , Vk, with |V1| ≤ · · · ≤ |Vk| and edge set E′

with |E′| ≥ εn, where ε = 1

(3k)k22kk!2k
, so that

(a) There exists an ` with dk+1
2 e ≤ ` < k with |V1| ≤ · · · ≤ |V`| ≤ n2/(k+1), such that any [`]-tuple T

has |E(T )| ≤ 1.

(b) For every S ⊆ [k], if we define α =
(∏

i∈[k]\S |Vi|
)
/n(k−1)/(k+1), then every S-tuple T has

|E(T )| ≤ max{α, 1}.
(c) Every vertex v in V`+1, V`+2, . . . , Vk has |E(v)| ≤ 1

εn
(k−1)/(k+1); or

2. G contains two edge disjoint subhypergraphs of size Kn(k−1)/(k+1) for some constant K > 1
3ε

2.

Proof. Making G k-partite, we lose at most a factor of 1
k! of the edges. Then we apply Lemma 3 and lose

at most a factor of 1
(3k)k

of the edges and guarantee that we satisfy condition (1). Note that Lemma 2

guarantees that ` < k. Iterating Lemma 4 over all subsets of [k] loses us a factor of 1
2 each time, and at

most a factor of 1

22k
of the edges. After these applications, we have either found two disjoint isomorphic

subgraphs satisfying (2), or we have remaining Ẽ ⊆ E with |Ẽ| ≥ 2kε|E| satisfying parts (a) and (b) of (1).
To verify part that there is a set E′ also satisfying (c), observe that if half of the edges of E′ sit in vertices v
in some Vj where j ≥ ` with |E(v)| ≥ n(k−1)/(k+1) then sacrificing a factor of two of the edges, we find a set
that satisfies (a) and (b) with a larger value of ` or it satisfies (2). Iteration of this potentially loses a factor
of 2k, leaving us with a set E′ of εn edges and completes the proof of the corollary.

For the remainder of the paper, we will frequently choose random permutations π and then be interested
in concentration of random variables of the form Iπ(E,E) or Iπ(E(T ), E). These can be thought of as sums
of dependent random variables, where dependency comes both from the structure of G and from the fact that
π is a random permutation. This dependency will cause us some trouble. In order to avoid this trouble we
give, in an Appendix, two concentration inequalities that we make use of in our proofs. In particular, we often
use a variant of Talagrand’s inequality for permutations by McDiarmid [6], which we state as Proposition
1 in the Appendix. We further use a concentration inequality of Chatterjee [1], stated as Proposition 2 in
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the Appendix, which gives a stronger concentration bound when it applies. Most often, we use the following
inequality which follows directly from Talagrand’s inequality.

To this end, let E be the edge set of a k-uniform k-partite hypergraph and S ⊆ [k]. As above let ES

denote the multiset obtained by restricting the edges of E to the vertex sets indexed by S. We call a set
M ⊂ E an S-matching if no two elements of M intersect in the vertex sets indexed by S. Under this
framework,

Lemma 5. Suppose that G = (V,E) is a k-uniform, k-partite hypergraph on V1, . . . , Vk. Suppose M is
an S-matching for some set S, and let πS = (πi : i ∈ S) denote a uniform permutation on the vertex sets
indexed by S. Let X = ISπS (M, E) and ρ denote the maximum multiplicity of any edge in ES. Then

P
(
X ≥ |M| · |E|∏

i∈S |Vi|
+ λ

)
≤ exp

− λ2

64ρ2|S|
(

2 |M|·|E|∏
i∈S |Vi|

+ λ
)
 . (i)

Proof. This is a direct result of Talagrand’s inequality, Proposition 1 from the Appendix, all that is required
are finding parameters c and r for Proposition 1 that are satisfied in this situation. Indeed, if two elements
of a permutation are swapped, then X changes by at most 2 as M is a matching, so we take c = 2ρ. In
order to certify that X ≥ s we need merely to exhibit s edges in M that map to s edges in E. Where these
edges map is determined by a set of |S|s coordinates of π. Thus we need to specify at most |S|s coordinates

of π to verify that X ≥ |S|, so we take r = |S|. It is easy to verify that E[X] = |M|(|E|−1)
N , and the median

is at most twice this by Markov’s inequality. The result then follows immediately from Proposition 1.

The following Lemma is a simple but useful variant of Markov’s inequality:

Lemma 6. Suppose X is a random variable so that 0 ≤ X ≤ n. Then if E[X] > 2,

P
(
X >

E[X]

2

)
≥ 1

n
.

Proof. If not,

E[X] ≤ E[X]

2
P
(
X ≤ E[X]

2

)
+ nP

(
X >

E[X]

2

)
≤ E[X]

2

(
1− 1

n

)
+ n · 1

n
<

E[X]

2
+ 1,

a contradiction.

Another tool used extensively in our concentration arguments is the Hajnal-Szemerédi theorem,

Lemma 7 (The Hajnal-Szemerédi Theorem, [3]). Suppose G is a graph on n vertices with maximum degree
∆. Then G can be partitioned into ∆ + 1 independent sets each of size bn/(∆ + 1)c or dn/(∆ + 1)e.

One final required lemma ensures the existence of a large matching in an integrally weighted digraph Γ.
Here, ω(e) denotes the weight of an edge, and ω(S) =

∑
e∈S ω(e) denotes the total weight of edges in S.

Lemma 8. Suppose Γ is a digraph with total weight ω(Γ), unweighted maximum out-degree ∆+(Γ), and
unweighted maximum in-degree ∆−(Γ). Then there exists a weighted matching M in Γ with total weight at
least

ω(M) ≥ ω(Γ)

4∆− 1
,

where ∆ = max{∆+(Γ),∆−(Γ)}.
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Proof. Clearly the statement of the Lemma holds if ω(Γ) = 1, and we proceed by induction on ω(Γ). Let
e = x → y denote an edge so that ω(e) is maximal. Note that deletion of x and y destroys at most
2(∆+(Γ) + ∆−(Γ))− 1 ≤ 4∆− 1 edges (as the edge x→ y is counted twice). Therefore by the maximality
of ω(e) we have ω(Γ) > ω(Γ \ {x, y}) ≥ ω(Γ) − (4∆ − 1)ω(e). Let M denote a maximum weight matching
in Γ, and M′ denote a maximum weight matching in Γ \ {x, y}. Further note that deletion of x and y only
can decrease the maximum in- and out-degrees. By induction,

ω(M) ≥ ω(e) + ω(M′)

≥ ω(e) +
ω(Γ \ {x, y})

4∆− 1

≥ ω(e) +
ω(Γ)− (4∆− 1)ω(e)

4∆− 1

=
ω(Γ)

4∆− 1
.

as desired.

2 The proof of Theorem 1

We are now ready to proceed with the proof of Theorem 1. The cases k = 4, and k = 5 are fairly simple
with the machinery we built up in the previous section. We shall observe that the case k = 6 will require
some additional work. The proof of the cases k = 4 and 5 will make the particular technical difficulties when
k = 6 more clear. We address these difficulties after the proof in the cases of k = 4 and 5. Throughout
the remainder of the paper c1, c2, . . . are taken to be positive constants, large enough so that the associated
statements hold.

For the remainder of the paper, we will thus assume that G satisfies (1) from Corollary 2, namely:

Assumption: G = (
⋃k
i=1 Vi, E) is a k-partite subhypergraph on vertex set V1, . . . , Vk, with |V1| ≤ · · · ≤ |Vk|

and |E| = εn, so that

(a) There exists an ` with dk+1
2 e ≤ ` < k and with |V1| ≤ · · · ≤ |V`| ≤ n2/(k+1), and furthermore any

[`]-tuple of vertices T has |E(T )| ≤ 1.

(b) For every S ⊆ [k], if we define α = αS =
(∏

i∈[k]\S |Vi|
)
/n(k−1)/(k+1), then every S-tuple T has

|E(T )| ≤ max{α, 1}.

(c) Every vertex v in V`+1, V`+2, . . . , Vk has |E(v)| ≤ 1
εn

(k−1)/(k+1).

Remark: One may take ε ≥ 1

(3k)k2k22kk!
.

Proof of Theorem 1, k = 4, 5. When k = 4, since ` ≥ dk+1
2 e, the only possibility is that ` = 3. Therefore

our assumption is that we have a 4-uniform, 4-partite hypergraph with εn edges, and so that |V1| ≤ |V2| ≤
|V3| ≤ n2/5, and |V4| ≥ n2/5. Possibly by adding additional independent points to V1, V2 and V3 we assume
that |V1| = |V2| = |V3| = n2/5 for convenience. Furthermore, for a = 1, 2, 3 we have that any {a, 4}-tuple
T of vertices has E(T ) ≤ n1/5. This follows by Assumption (b), as in this case α = (n2/5)2/n3/5 = n1/5.
This implies that for any v ∈ V4 one has |E(v)| ≤ 3n3/5 since for any v′ ∈ V1 ∪ V2 ∪ V3 we have that
|E({v, v′})| ≤ n1/5. Note that this is stronger than guaranteed by Assumption (c).

Let π3 denote a uniformly random permutation on V1, V2, and V3. Then if X = Iπ3(E,E), we have

E[X] = εn(εn−1)
n6/5 = (ε2 − o(1))n4/5 since for any of the εn edges in E, there are εn− 1 different target edges
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they may map to. On the other hand, if Xv = I3
π3(E(v), E) for v ∈ V4, we have that E[Xv] ≤ 3εn2/5 as each

of the at most 3n3/5 edges in E(v) has εn− 1 different target edges it might map to.

We desire to extend π3 by choosing a permutation π4 of V4 to form π4. For a fixed π4, we have that

Iπ4(E,E) =
∑
u∈V4

Iπ3(E(u), E(π4(u))). (ii)

We wish to find π4 such that Iπ4(E,E) ≥ Cn2/5. Since |V4| is large, a random permutation does not work
in expectation, so we must pick π4 more carefully. To do so we define an auxiliary graph Γπ as follows.

Γπ is a weighted, directed graph on vertex set V (Γπ) = V4. The edge v → u occurs in Γπ with weight
Iπ3(E(v), E(u)). That is, the edge v → u occurs with weight equal to the number of triplets in E3(v) which
map to triplets in E3(u) under π3. Suppose we find a matching M in Γπ with total weight ω. Define π4 so
that π(u) = v if u→ v ∈M, and let π4 act arbitrarily on all other vertices. For such a π4 and the extension
π4 of π3 it yields, we have

Iπ4(E,E) ≥ ω

by construction. Lemma 1 then guarantees two edge disjoint isomorphic subgraphs of size at least ω
3 . It

suffices to find a matching with large weight, with is guaranteed by Lemma 8 so long as we bound the total
weight of our Γπ, and the maximum in- and out- degrees.

Note that the weight all edges of Γπ is X = I3
π3(E,E). If ∆+(Γπ) and ∆−(Γπ) denote the maximum out-

and in- degree of Γπ, respectively, we simply need verify that with positive probability π3 has X ≥ ε2

2 n
4/5,

and ∆+(Γπ) and ∆−(Γπ) are O(n2/5). If we can achieve such, then we are guaranteed a matching by Lemma
8. We define π4 using our matching and apply Lemma 1 to finish.

First we bound ∆+(Γπ). For any vertex v ∈ V4, Assumption (b) implies that any edge in E3(v) intersects
fewer than 3n1/5 others in E3(v). Indeed, for an e ∈ E3(v); once a vertex v′ ∈ e[3] is fixed, along with v we
have E({v, v′}) < n1/5 as noted above. The Hajnal-Szemerédi theorem (Lemma 7) thus implies that E(v)
may be divided into at most 3n1/5 3-matchings M1, . . . ,Mt of size at most n2/5.

Let Yi = I3
π3(Mi, E). For any one of our matchings, |Mi||E|

n6/5 ≤ n1/5. We apply Lemma 5, with parameters

ρ = 1 (by Assumption (a)) and S = [3], so that |S| = 3. Taking λ = c1
√
n1/5 log(n) we have, for n sufficiently

large,

P(Yi ≥ 3n1/5) ≤ P(Yi ≥ 2n1/5 + λ)

≤ exp

(
− (c1

√
n1/5 log n)2

192(2n1/5 + 100
√
n1/5 log n)

)

≤ exp

(
−c

2
1n

1/5 log(n)

500n1/5

)
≤ n−c2 .

We choose c1 large enough to take c2 = 3 (c1 = 100 suffices). Applying the union bound, Yi < 3n1/5 for every
matching with probability at least 1−n−3 as there are only at most 3n1/5 matchings. As Xv =

∑
Yi, we have

that Xv < 9n2/5 with this probability. Note that Xv is the weighted out degree of v, which serves as an upper
bound to the unweighted degree. Taking the union bound over all vertices in V4 implies that Xv ≤ 9n2/5

for every v ∈ V4 with probability at least 1− n−2. On the other hand, observe that π−1 is also a uniformly
chosen permutation and the out-degree in Γπ−1 is the in-degree in Γπ−1 . Therefore, with probability at least
1−n−2, the in-degree of every v ∈ V4 is also bounded by 9n2/5. Combining, max{∆+(Γπ),∆−(Γπ)} < 9n2/5

with probability at least 1− 2n−2.

On the other hand, we would like to say that the total weight, X, is large with reasonably high probability.

Note that X ≤ εn deterministically. Since E[X] = (ε2 − o(1))n4/5, Lemma 6 implies that X > ε2

2 n
4/5 with

probability at least 1
n . Since 1

n > 1 − (1 − 2n−2), there exists a permutation π3 so that X > ε2

2 n
4/5 and
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max{∆+(Γπ),∆−(Γπ)} < 9n2/5. We then apply Lemma 8 to find a matching in Γπ of total weight Ω(n2/5).
We build from this permutation a matching, and apply Lemma 1 to find our two desired subgraphs.

For k = 5, the largest change is we have two possibilities for `; either ` = 3 or ` = 4.

The proof in the case where ` = 4 is almost identical to the argument above. Again, we take a random
permutation π4 on V1, . . . , V4 and create a graph Γπ on V5 where directed edges v → u are created with
weight equal to I4

π4(E(v), E(u)). In order to apply Lemma 8 and find a large matching in Γπ we wish to
bound the maximum in- and out-degree and the total weight.

To bound the maximum out-degree consider we bound Xv = I4
π4(E(v), E), the out degree of v. Similarly

to before we have E[Xv] < n2/6 = n1/3. Also we have as an application of Assumption (b) that any two
points v′, v′′ along with v define a unique edge. This implies that |E(v)| <

(
4
2

)
n2/3 = 6n2/3. Since any

edge e ∈ E4(v) intersects at most 6n1/3 others, by the Hajnal-Szemerédi theorem E(v) decomposes into
6n1/3 4-matchings M1, . . . ,Mt of size at most n1/3. Here is primary difference between the arguments
for k = 4 and this case of k = 5, which leads to an additional log factor: If we let Yi = I4

π4(Mi, E) we

have that E[Yi] ≤ εn4/3

n4/3 = ε. Since E[Yi] is of constant order, the most we can hope to hold with high
probability (w.h.p.1) is that Yi < log(n), and so the best w.h.p. bound achievable for Xv by this method is
O(n1/3 log(n)). We apply Lemma 5, noting |S| = 4 and ρ = 1. Taking λ = c3 log(n), Lemma 5 implies that
Yi < (c3 +1) log(n) with probability strictly less than n−c4 . We take c3 large enough so that c4 = 3. We take
the union bound over all matchings and vertices for both in- and out- degrees and, with probability strictly
less than 1−2n−2, we have that max{∆+(Γπ),∆−(Γπ)} < (c3 +1)n1/3 log(n). On the other hand, as before,

the total weight in Γπ exceeds ε2

2 n
2/3 with probability larger than 1

n . Thus with positive probability, our
desired matching exists Γπ and an application of Lemma 1 yields isomorphic subgraph.

If ` = 3, there is a slightly different scenario: we take a random permutation π3 on V1, V2 and V3 and

then try to extend onto two large levels. Note that E[I3
π3(E,E)] = εn(εn−1)

n = (ε2−o(1))n. Fix π3 arbitrarily

so that I3
π3(E,E) > ε2

2 n.

As before we define an auxiliary graph Γπ, but now we take the vertex set of Γπ to be the pairs in V4, V5.
If x, x′ ∈ V4 and y, y′ ∈ V5 we have (x, y) → (x′, y′) with multiplicity I3

π3(E({x, y}), E({x′, y′})) ≥ 1. A

matching in this graph is not quite what we want; we want ≈ n1/3 edges in Γπ so that their source and
destination vertices are all distinct. We proceed greedily. Greedily select an edge (x, y)→ (x′, y′) in Γπ with
highest multiplicity, and destroy not only all incident edges, but all edges of Γπ incident to some pair with
any of the vertices x, x′, y, y′. By Assumption (c), we have destroyed at most 4

εn
2/3 total edges of Γπ as at

most 1
εn

2/3 edges are in each of E(x), E(x′), E(y) and E(y′). We can repeat this at least

I3
π3(E,E)

4n2/3/ε
≥ ε3

8
n1/3 = Ω(n1/3)

times. At the end, by constructing π4 and π5 from these mappings and choosing the rest arbitrarily we have
ensured that π5 has Iπ5

(E,E) = Ω(n1/3), and thus Lemma 1 completes the proof.

Remark: Using the Hajnal-Szemerédi theorem to provide matchings in the proof may appear to overkill.
The advantage to using Hajnal-Szemerédi, however, is that it guarantees matchings of the same size. There-
fore all matchings ’act similarly’ when we analyze how they act under our permutation.

Why, then, is the case k = 6 more difficult than the cases when k = 4, 5? There are two primary issues:
There is first the case where ` = 5 and hence there are 5 small partite sets, V1, . . . , V5. Consider permuting
V1, . . . , V5 uniformly and defining a weighted directed graph Γπ on V6 as before. To build a permutation on

1When we colloquially say that a bound holds w.h.p., we mean a that the bound holds with probability 1 − O(n−K) for
some large constant K. We use the term w.h.p. upper bound to refer to an upper bound that holds w.h.p. In all proofs, we
then proceed to make this notion precise in the context of the particular bound in question.
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V6 we look for a large weighted matching in Γπ. In the cases k = 4, 5, we could break the neighborhood E(v)
of a vertex v ∈ Vk into matchings of the same size using Hajnal-Szemerédi and then consider the matchings
independently. As already seen in the k = 5 proof, the number of matchings will continue to get larger. If
the expected size of |π(M) ∩ E| � 1, Lemma 5 only gives a w.h.p. lower bound of Iπ(M, E) < C log n.
If k = 6 and ` = 5, E(v) decomposes into O(n3/7) matchings of size at most n2/7, using Assumption (c)
and the Hajnal-Szemerédi. Mapping matchings individually, we cannot guarantee a maximum degree in Γπ
smaller than O(n3/7 log(n)). However to apply Lemma 8 and find a matching of weight n2/7, we would like
the maximum degree close to n2/7 as well, because the total weight will be close to n4/7.

Second, when ` = 4, one may try to directly copy the proof from the case k = 5, defining a graph Γπ
between pairs in V5 × V6 and defining π5 and π6 by choosing an appropriate ’matching’ of edges from this
graph. The immediate problem with this approach is that when k = 5 a deterministic bound on |E(v)| (and
hence on the number of edges of Γπ destroyed by any choice) is sufficient to ensure that a greedy strategy
succeeds. This deterministic bound is no longer sufficient. We will establish a w.h.p. probabilistic bound on
I4
π(E(v), E) so that we know that our strategy succeeds w.h.p.. But now, the structural knowledge about
E(v) by Assumption (b) is no longer sufficient to complete analysis in the manner we are accustomed to.

How do we handle these issues? Before diving into statement and proofs, which are somewhat more
technical than the proofs so far, let us give a high-level description of what is needed for the case k = 6.
The main new tool used in both ` = 4, 5 is stronger intersection properties of E than those given by Lemma
4. In order to prove this we also define and find a matching in an auxiliary graph Γπ. Previously when we
bounded the degrees in Γπ, we actually bounded the maximum weighted degree even though Lemma 8 only
requires us to bound the unweighted degree. However in the proof of Lemma 9 below, it is critical that we
only need bound the unweighted maximum degree of a vertex in Γπ to find a weighted matching. The second
idea needed to complete the proof when ` = 5 is that in order to define our initial permutation π5 which we
extend, it is helpful to construct it in a semi-random manner. We first choose π4 randomly, but fix it prior
to choosing π5 randomly to find π5. Once π5 is constructed in such a way, we extend again to find π6.

For the remainder of the paper, we assume k = 6, and hence either ` = 4 or ` = 5, so we have either two
or one larger partite sets, respectively.

Our next aim is to find a ‘large’ subhypergraph E′ of an 6-uniform 6-partite hypergraph E satisfying the
property that every quadruple T of points extends to at most one edge of E′.

For some quadruples S ⊆ [6] this already follows from our Assumptions (a), (b), (c).

Indeed if S ∈
(

[6]
4

)
contains the indices of two (when ` = 4) or the only one (when ` = 5) larger partite

sets then

αS =
( ∏
i∈[6]\S

|Vi|
)
/n5/7 ≤ n4/7

n5/7
= n−1/7,

and Assumption (b) implies that any S-tuple T satisfies |E(T )| ≤ max{αS , 1} ≤ 1.

Further if ` = 4 and S = [4] then |E(T )| ≤ 1 by Assumption (a), for every S-tuple T .

Observed that the remaining S ∈
(

[6]
4

)
covered by neither of the above cases are those S so that [6] \ S

contains the index of precisely one larger set. In other words [6]\S = {q, s} where |Vq| > n2/7 and |Vs| ≤ n2/7.
This case is covered by the next lemma.

Lemma 9. Let S ⊆ [6] be a four-element set such that [6]\S = {s, q} where |Vs| ≤ n2/7 and |Vq| > n2/7. Then
for every 6-uniform 6-partite hypergraph G = (V,E) with |E| = cn for some c > 0 satisfying Assumptions
(a), (b), (c) we have that

1. there exists E′ ⊆ E with |E′| ≥ cn
4 log2 n

such that every S-tuple T has |E′(T )| ≤ 1; or

2. G contains two edge disjoint isomorphic subgraphs of size Ω
(
cn2/7

log3 n

)
.
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Proof. We assume that [6] \ S = {q, s} where |Vq| > n2/7 and |Vs| ≤ n2/7.

If more than half of the edges on E are incident to vertices x ∈ Vq with |E(x)| > n4/7 we take V ′q be the

set of these vertices. Note that |V ′q | < cn3/7. Consider a permutation π that uniformly permutes V ′q and Vs
while fixing the other levels. Then

E[I{s,q}π (E,E)] ≥ |E|
4n5/7

.

There exists such a permutation with Is,qπ (E,E) matching its expectation, and applying Lemma 1 to this
permutation gives us condition (2) of the lemma. Thus, by discarding at most half the edges we assume that
|E(v)| < n4/7 for any v ∈ Vq.

For x ∈ Vq and y ∈ Vs, let dx,y = |E({x, y})|. There exists a natural number p and a collection P of pairs
{x, y} where x ∈ Vq and y ∈ Vs such that

(α) p ≤ dx,y ≤ 2p for all {x, y} ∈ P;

(β)
∑
{x,y}∈P dx,y ≥

|E|
2 logn .

Here the factor of two in (β) comes from the facts that half of the edges in E may already have been
discarded. Define

E1 =
⋃

{x,y}∈P

E({x, y}),

so that for every pair x ∈ Vq and y ∈ Vs either p ≤ |E1({x, y})| ≤ 2p or |E1({x, y})| = 0.

We further define dy = |E1(y)| for every y ∈ Vs. There exists a natural number a so that if we define

V ′s = {y : a ≤ dy ≤ 2a},

we have that ∑
y∈V ′s

dy ≥
|E|

2 log2 n
.

We take E2 =
⋃
y∈V ′s

E1(y). For every S-tuple T such that |E2(T )| is odd we select (arbitrarily) one edge

eT ∈ E2(T ). Let
E3 = {eT : |E(T )| is odd.}.

If |E3| ≥ |E|
4 log2 n

, then E3 satisfies condition (1) of the Lemma.

Otherwise we define
E∗ = E2 \ E3.

Then |E∗| ≥ |E|
4 log2 n

and the hypergraph induced by E∗ enjoys the following properties:

(i) for all pairs x ∈ Vq and y ∈ V ′s we have that |E∗({x, y})| ≤ 2p;

(ii) for each y ∈ V ′s there are at most 2a
p vertices x ∈ Vq with |E∗({x, y})| > 0;

(iii) for each x ∈ Vq there are at most n4/7

p vertices y ∈ V ′s with |E∗({x, y})| > 0.

Indeed the first condition follows from the definition of E1 because |E∗({x, y})| ≤ dx,y ≤ 2p. The second one
follows from the definition of E2 and the fact that p ≤ dx,y and the third one analogously follows because
|E(x)| ≤ n4/7 for every x ∈ Vq.
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Since |E∗(T )| is even for every S-tuple T , we pair off the edges in E∗(T ). That is we partition E∗(T )
into pairs (e, e′) which we call partners. Choosing these partners is slightly artificial, but gives a specified
’target’ to every edge e. This will be useful for us for the rest of the argument.

Let π be a uniformly random permutation on V ′s . Define a weighted, directed graph Γπ on Vq so that
the weight of an edge x 7→ x′ in Γπ for x, x′ ∈ Vq is

|{(e, e′) ∈ E∗(x) : (e, e′) are partners, and e′ = (e \ {x, y}) ∪ {x′, π(y)}}|.

Since each edge has exactly one partner, the expected total weight the edges of Γπ is (letting ω(Γπ)
denote this weight)

E[ω(Γπ)] =
|E∗|
|V ′s |

.

Note that we gave each edge a partner partly to make sure that this weight was easy to compute, and partly
to make understanding the degrees in Γπ clearer later.

Our goal now is to show that there is a matching in Γπ with total weight cn2/7

320 log2 n
with positive probability.

We then extend the matching to a permutation of Vq (similarly as in cases k = 4, 5), apply π to V ′s and fix
level Vi with i ∈ S. This yields a permutation π6, and an application of Lemma 1 yields condition 2 of the
lemma.

In order to find such a matching we apply Lemma 8. Thus we must give an upper bound on the maximum
(unweighted) in- and out-degree and a lower bound on the total weight. We give two different bounds on
the total weight depending on p, our bound on |E∗({x, y})|. If p is large, we have a deterministic bound on
the unweighted maximum degree, and if p is small we have a probabilistic bound. We begin with the case
where p is large.

Since E[ω(Γπ)] = |E∗|
|V ′s |

we can select a permutation π with ω(Γπ) ≥ |E
∗|

|V ′s |
. By (iii), for any vertex x ∈ Vq

there are at most n4/7

p vertices y ∈ V ′s such that |E∗({x, y})| > 0. If x → x′ is an edge of Γπ then there

exist y ∈ V ′s and e ∈ E∗({x, y}) such that (e \ {x, y} ∪ {x′, π(y)}) ∈ E∗. By (ii), regardless of π(y), this can
happen for at most 2a

p ≤
2n
|V ′s |p

vertices x′. In total we have a deterministic bound on the out-degree (and

likewise in-degree) of

∆+(Γπ) ≤
(n4/7

p

)( 2n

|V ′s |p
)
≤ 2n11/7

|V ′s |p2
.

If

p2 ≥ cn13/7

4 log2 n|E∗|
, (iii)

then Lemma 8 guarantees a matching of size

|E∗|
|V ′s |(4∆(Γπ)− 1)

≥
( |E∗|
|V ′s |

)( |V ′s |p2

8n11/7

)
≥ |E∗|cn13/7

32 log2 n|E∗|n11/7
=

cn2/7

32 log2 n
.

Applying Lemma 1, we then obtain condition 2 of the lemma.

Note that
cn13/7

4 log2 n|E∗|
≤ cn13/7

|E|
= n6/7,

so (iii) is satisfied so long as p ≥ n3/7. Therefore we can assume that p ≤ n3/7.

Under the condition that p ≤ n3/7 we would like to establish a w.h.p. upper bound on ∆+(Γπ) and
∆−(Γπ). Fix a vertex x ∈ Vq, and define the random variable Zx to be the (unweighted) out-degree of x in
Γπ.
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For each x ∈ Vq and y, y′ ∈ V ′s we set

axy,y′ = |{x′ ∈ Vq : ∃e ∈ E∗({x, y}) with (e, e \ {x, y} ∪ {x′, y′}) partners}|.

Then let Z∗x =
∑
y a

x
y,π(y). We claim that Z∗x is an upper bound for Zx and a lower bound for the weighted

degree of x in Γπ. Indeed, Z∗x undercounts the weighted degree as axy,y′ counts only the number of x′ such
that for some e ∈ E∗({x, y}) we have that (e, e \ {x, y} ∪ {x′, y′}) are partners. The weighted degree, on
the other hand, counts the multiplicity of such edges. On the other hand, if (e, e \ {x, y} ∪ {x′, π(y)}) and
(e′, e′ \ {x, y′} ∪ {x′, π(y′)}) are both partners for different y, y′, then Zx counts both occurrences. Thus, Z∗x
overcounts the unweighted degree.

The expected weighted degree of x is at most n4/7

|V ′s |
, and hence

E[Zx] ≤ E[Z∗x] ≤ n4/7

|V ′s |
.

Since each of the (at most) 2p edges in E∗(x, y) have a unique partner, axy,y′ ≤ 2p ≤ 2n3/7. Recalling

|V ′s | ≤ n2/7, we apply Chatterjee’s inequality (Proposition 2 in the Appendix) with λ = c5
n5/7 logn
|V ′s |

> E[Z∗x]

and ρ = 2n3/7 and to Z∗x to see that

P(Zx ≥ (c5 + 1)
n5/7 log n

|V ′s |
) ≤ P(Z∗x ≥ E[Z∗x] + λ)

≤ exp
(
− λ2

4ρE[Z∗x] + 2ρλ

)
≤ exp

(
− λ

6ρ

)
≤ exp

(
− c5n

5/7 log n

12n3/7|V ′s |
)

≤ exp
(
− c6 log n

)
= n−c6 .

We choose c5 large enough so that c6 = 3. Applying the union bound, we have that Zx < (c5 + 1)n
5/7

|V ′s |
log n

simultaneously for every x ∈ Vq with probability at least 1− n−2. Likewise, we have an identical bound on
the (unweighted) in-degree of every x ∈ Vq. On the other hand, applying Lemma 6, if ω(Γπ) denotes the

total weight in Γπ we have P(ω(Γπ) > |E∗|
2|V ′s |

) > 1
n . Therefore a permutation π exists so that simultaneously

ω(Γπ) > |E∗|
2|V ′s |

and

max{∆−(Γπ),∆+(Γπ)} < (c5 + 1)
n5/7

|V ′s |
log n.

Recalling |E∗| > |E|
4 log2 n

and applying Lemma 8 yields a matching of weight Ω
( |E|n2/7

log3 n

)
.

As before we define a new permutation π6 by extending our matching to πq on Vq, applying π on V ′s and
fixing Vi where i 6= s, q. Applying Lemma 1 then yields two edge disjoint isomorphic subgraphs satisfying
condition (2) of Lemma. Thus assuming no E′ satisfying condition (1) exists, then condition (2) holds.

Note that, in the case ` = 4 there are 8 sets S that are not already covered by Assumption (a) and (b),
and if ` = 5 there are 5 such sets. After applying Lemma 9 repeatedly, we add the following assumption to
Assumptions (a-c) above:

Assumption: G is a 6-partite, 6-uniform graphs with |E| = ε′n, satisfying Assumptions (a-c) above and so
that additionally
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(d) For every set S ∈
(

[6]
4

)
, every S-tuple T has |E(T )| ≤ 1.

Remark: One can take ε′ = ε
48 log16 n

.

We are now ready to proceed with the proof of Theorem 1 in the case where k = 6.

Proof of Theorem 1, k=6. We begin with the slightly easier case when ` = 4. In this case there are two large
partite sets, V5 and V6. Let π4 denote a uniformly random permutation of V1, . . . , V4. We wish to extend
to permutations on V5 and V6. We would like to act as in the k = 5, ` = 3 case, by repeatedly selecting
pairs {u, v} and {u′, v′} so that I4

π4(E({u, v}), E4({u′, v′})) > 0, then removing all edges incident to each of
u, u′, v, and v′. Before we were able to proceed greedily, using our deterministic bounds on E(u), E(u′), E(v)
and E(v′). However in this case,

E[I4
π4(E,E)] =

|E|(|E| − 1)

n8/7
= (ε′2 − o(1))n2−8/7 = (ε′2 − o(1))n6/7,

while, Assumption (c) guarantees only that we have |E(v)| ≤ 1
εn

5/7. Thus such a greedy approach will only

provide two subgraphs of size Õ(n1/7). In order to do better we replace the deterministic upper bound on
these neighborhoods with a probabilistic one that holds with high probability. To accomplish this, we break
the neighborhood of a vertex v ∈ V5 ∪ V6 into matchings using Assumption (d).

Fix v ∈ V5 ∪ V6. Let Xv = I4
π4(E(v), E) denote the number of edges in E4(v) which are mapped by π4

to an edge in E4. If ∆ = maxv∈V5∪V6
Xv, our greedy strategy really loses at most ∆ edges each time as

opposed to n5/7. The key point is that many of the edges in E4(v) do not map to edges in E4, so we do not
lose by deleting them. We have

E[Xv] ≤
|E(v)||E|
n8/7

≤ ε′

ε
n4/7,

and so we need to show Xv is not too much larger than its expectation. Assumption (d) implies that
any edge e ∈ E(v) intersects less than 12n4/7 other edges in E(v). This follows, as after fixing v and a
vertex x ∈ e, choosing any two additional vertices uniquely defines an edge. Our concentration is at this
point standard: using the Hajnal-Szemerédi theorem E(v) can be partitioned into at most 12n4/7 matchings
M1, . . . ,Mt each of size at most 1

12εn
1/7. As in the case where k = 5, and ` = 4, we now apply Lemma

5 with λ = c7 log(n), and apply the union bound to say that Xv < c8n
4/7 log(n) for every v ∈ V5 ∪ V6.

Choosing c7 large enough, this occurs with probability greater than 1− n−2. Applying Lemma 6 we have

I4
π4(E,E) >

1

2
(ε′2 − o(1))n6/7

with probability greater than 1
n . With positive probability, there is a π4 satisfying both. Now our strategy

above works: Fix such a π4 and greedily choose pairs {x, y} and {x′, y′} so that π4 maps an edge in E4({x, y})
to an edge in E4({x′, y′}) and delete all edges containing both. At each step at most c8n

4/7 log(n) edges out
of the 1

2 (ε′2 − o(1))n6/7 are deleted. This can be repeated 1
2c8 log(n) (ε′2 − o(1))n2/7 times. As in the proof

in the k = 5 case, these pairs define π5 and π6 and hence π6 with Iπ6(E,E) > 1
2c8 log(n) (ε′2 − o(1))n2/7.

Applying Lemma 1 exhibits two edge disjoint isomorphic subgraphs. Note, since ε′ = Ω(log−16(n)), these
subgraphs are of size Ω(log−33(n)n2/7).

The final challenge is the case where ` = 5. We choose a permutation π5 on V1, . . . , V5 and define an
auxiliary graph Γπ on V6 as before. If we proceed completely at random, Γπ will have expected weight
O(n4/7). To guarantee a large matching, the maximum (unweighted) degree in Γπ must be of the order n2/7.
As noted in the discussion after the proof of Theorem 1 in the k = 4, 5 case, breaking E(v) for v ∈ V6 into
matchings as before requires O(n3/7) matchings. This is not enough to prove a w.h.p. maximum degree of
n2/7.
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Instead, we proceed in two steps. First we take a random permutation π4 on V1, . . . , V4. Then we will
extend it to a permutation π5 on V1, . . . , V5. For technical reasons we require that |E(x)| is not too large for
all vertices x ∈ V5. Note, there exists V ′5 ⊆ V5 with

∀x ∈ V ′5 : |E(x)| ≤ 2n

|V ′5 |
(iv)

and
∑
x∈V ′5

|E(x)| ≥ |E|
logn . Replace V5 with such a set. This may destroy the fact that V5 is the second

largest set, but this shall not bother us. Therefore from here on, we assume that vertices in x ∈ V5 satisfy
|E(x)| ≤ 2n

|V ′5 |
, and there are ε′′n edges, where ε′′ = Ω(log−17(n)).

To make the argument clear, we define π4 to be a uniformly random permutation on V1, . . . , V4 and π5

to be a uniformly random permutation on V5 and take π5 = (π4, π5). This, of course, is just another way
of saying π5 is uniform on V1, . . . , V5. We will condition on π4, however, and want this to be clear. Let
Ω denote the set of all permutations on V1, . . . , V5 and F = 2Ω. Then the probability space from whence
π5 comes is the uniform distribution on Ω, and F is the associated σ-field. Let σ(π4) ⊂ F be the σ-field
generated by π4. For v ∈ V6 and u, u′ ∈ V5, we define the random variables

Xv = I5
π5(E(v), E)

Yv = E[Xv|σ(π4)]

Xv
u,u′ = I4

π4(E4({v, u}), E4(u′))

X = I5
π5(E,E) =

∑
v

Xv

Y = E[X|σ(π4)]

Claim: There exists a π4 and positive constants c9, c10 which satisfy the following conditions for all v ∈ V6

and u, u′ ∈ V5:

(i) Y ≥ 1
2E[X]

(ii) Xv
u,u′ ≤ c9n2/7 log(n).

(iii) Yv ≤ c10
n4/7 logn
|V5|

Assuming the claim, we now proceed to complete the proof of Theorem 1. Then we will return to the
proof of the claim.

For the remainder of the proof we fix π4 satisfying the conclusions of the claim. Consider a uniform
permutation π5 on V5. Let π = (π4, π5) with our particular choice for π4 fixed. Thus π denotes a permutation
where the only randomness is in π5. We denote π5 a truly uniform permutation on V1, . . . , V5. We define Γπ
to be an auxiliary graph on V6, where edges v → v′ are present with weight I5

π(E(v), E(v′)). By our choice
of π4, the expected weight in Γπ is the random variable Y defined above (which depended only on π4). The
random variables Yv defined above are the expected weighted degree of a vertex in Γπ.

We desire a large weighted matching in Γπ. In order to apply Lemma 8 to find a matching with large
weight, we must upper bound the maximum degree in Γπ, and lower bound the total weight.

Fix a vertex v ∈ V6. Let Zv = I5
π(E(v), E) denote the weighted out-degree of v ∈ Γπ, which serves as a

bound on the unweighted degree. Note that by the definition of Yv above,

E[Zv] = Yv ≤ c9
n4/7 log n

|V5|
.
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Further note that we may write Zv =
∑
Xv
u,π5(u), so Zv is in a form where Chatterjee’s inequality applies.

For vertices u, u′ in V5, we set au,u′ = Xv
u,u′ . Letting ρ = Xv

u,u′ < c10n
2/7 log(n) by Claim (iii), we apply

Chatterjee’s inequality. Set λ = c11
n4/7 logn
|V5| and ρ to be our bound from Claim (iii). If c11 > c9, we obtain

P
(
Zv ≥ 2c11

n4/7 log n

|V5|

)
≤ exp

− (c11
n4/7 logn
|V5| )2

6 · (c10n2/7 log(n)) · (c11
n4/7 logn
|V5| .)


≤ exp

(
−c12

n2/7 log(n)

|V5|

)
≤ n−c12 .

Choosing c11 to be sufficiently large with respect to c10 and c9, we may take c12 = 3. With such a choice, we

apply the union bound to guarantee that all vertices satisfy Zv ≤ 2 · c11
n4/7 logn
|V5| , with probability at least

1−n−2. Likewise they enjoy an identical upper bound on the in-degree, so with probability at least 1−2n−2

max{∆+(Γπ5),∆−(Γπ5)} < 2 · c11
n4/7 log n

|V5|
.

The expected weight of Γπ is Y , and Y ≥ 1
2E[X] by Claim (i). By Lemma 6, with probability at least 1

n ,
the total weight is at least half of its expected weight. Recalling that |E| = Ω

(
n

log17(n)

)
(as we lost a factor

of log(n) after assumption (d) by normalizing degrees in V5) this is at least,

1

2
Y ≥ 1

4
E[X] = E[I5

π5(E,E)] =
1

4

|E|(|E| − 1)

n8/7|V5|
= Ω

(
log−34(n)

n6/7

|V5|

)
.

(Again, for clarity, π5 denotes a uniformly randomly chosen permutation of V1, . . . , V5 while π is the permu-
tation where π4 is a fixed permutation and π5 is chosen at random.)

Hence there exists a π5 which extends π4 to give the proper maximum degree and total weight to Γπ and
we proceed as before, applying Lemma 8 to find a matching of size Ω(log−35(n)n2/7) in Γπ and applying
Lemma 1 to complete the result. This completes the proof of the theorem.

It remains to prove the Claim. For convenience, we recall that π5 is a uniformly random permutation of
V1, . . . , V5, where π4 denotes the permutation on the first 4 levels. We defined the following set of random
variables. Also recall the assumption that for each vertex u ∈ V5, we have |E(u)| < 2n

|V5| .

Xv = I5
π5(E(v), E)

Yv = E[Xv|σ(π4)]

Xv
u,u′ = Iπ4(E4({v, u}), E4(u′)).

X = I5
π5(E,E) =

∑
v

Xv

Y = E[X|σ(π4)]

Recall we wish to show there exists a π4 and constants c9 and c10 which satisfy the following conditions for
all v ∈ V6 and u, u′ ∈ V5:

Y ≥ 1

2
E[X] (v)

Xv
u,u′ ≤ c9n2/7 log(n) (vi)

Yv ≤ c10
n4/7 log n

|V5|
(vii)

16



Proof of Claim. We begin with the Xv
u,u′ . Fix v ∈ V6 and u, u′ ∈ V5.

We begin by noting that by Assumption (b),

E4({v, u}) ≤
∏4
i=1 |Vi|
n5/7

.

Recall after normalizing V5 in the proof, by equation (iv), we have |E4(u′)| ≤ 2n
|V5| . We proceed by breaking

into matchings as before. Any edge e ∈ E4({v, u}) intersects fewer than 12n2/7 other edges. This also
follows from assumption (b): we already are considering E4({v, u}), thus fixing two vertices, and selecting
another vertex uniquely defines (at most) one edge. As we have done before, we apply the Hajnal-Szemerédi

theorem to break up E4({v, x}) into at most 12n2/7 matchings each of size at most
(∏4

i=1 |Vi|
)
/n. We now

apply Lemma 5. Recall that we are interested in I4
π4(E4({v, u}), E4(u′)). By Assumption (a), the maximum

multiplicity of an edge in E4(u′) is one, which corresponds to ρ in our application. Fix a matching Mi, let
Xi = I4

π4(Mi, E
4(u)). Then

E[Xi] =
|Mi||E4(u′)|∏4

i=1 |Vi|
≤

(
∏4
i=1 |Vi|/n) · (2n/|V5|)∏4

i=1 |Vi|
=

2

|V5|
≤ 1.

Setting parameters λ = c13 log(n) and ρ = 1, and finally noting E[Xi] ≤ λ we have,

P (Xi ≥ (c13 + 1) log n) ≤ P (Xi ≥ E[Xi] + λ)

≤ exp

(
− λ2

256(2E[X] + λ)

)
≤ exp

(
− λ

1000

)
≤ n−c14 .

Choose c13 large enough so that c14 = 3. For instance, c13 = 104 suffices. Taking a union bound over all
matchings, we have that

Xv
u,u′ ≤

∑
i

Xi ≤ 12c13n
2/7 log(n),

with probability at least 1− n−2. Taking c9 = 12c13 finishes the proof of (ii).

Now we show that there exists a c10 so that Yv < c10
n4/7 logn
|V5| with high probability. Note that Yv can be

explicitly written in terms of π4. The key observation is that by Assumption (d), every [4]-tuple extends to
at most one edge. Thus for e ∈ E(v) and e′ ∈ E4, if π4(e4) = e′, in order for π5(e5) ∩ E5 to be non empty,
there is a unique target for the fifth element of e. Thus,

Yv =
1

|V5|
I4
π4(E(v), E).

Consequently, in order to show concentration of Yv it suffices to show concentration of Y ∗v = I4
π4(E(v), E).

As before, any edge in E4(v) intersects fewer than 12n4/7 other edges. Applying Hajnal-Szemerédi, we
decompose E(v) into at most 12n4/7 matchings, M1, . . . ,Mt. Assumption (c) asserts |E4(v)| ≤ 1

εn
5/7, so

these matchings are of size at most 1
12εn

1/7. Write Y ∗v =
∑
i I4
π4(Mi, E). Then

E[I4
π4(Mi, E)] =

|Mi||E|
n8/7

≤ 1.

We apply Lemma 5 as above to each matching, with λ = c14 log(n), ρ = 1, and |S| = 4 to show that with
probability at least 1− n−c15 all vertices v ∈ V6 satisfy

Y ∗v ≤ 2c14n
4/7 log n
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and hence

Yv ≤ 24c14
n4/7 log n

|V5|
.

Selecting c14 large enough ensures that we may take c15 = 2, and we take c10 = 24c14.

Finally note E[Y ] = E[X] and as Y ≤ n, Lemma 6 implies that Y ≥ E[X]
2 with probability at least 1

n .

Since all Xu,u′

v < c9n
2/7 log(n) with probability 1 − n−2, all Yv < c10

n4/7 logn
|V5| with probability 1 − n−2

and Y ≥ E[X]
2 with proability at least 1

n , there is a π4 which simultaneously satisfies (v), (vi) and (vii)
completing the proof of the claim.

3 The proof of Theorem 2

In this section we use our general technique to improve the lower bound of Erdős, Pach and Pyber for k ≥ 7.
In order to establish

ιk(n) ≥ Ckn2/(2k−1),

they proceeded inductively as follows. Suppose G is a k-uniform hypergraph, with maximum degree ∆ and
we have already established a lower bound on ιk−1(n). Then by considering the k − 1 uniform hypergraph
on ∆ edges which is the the neighborhood of a vertex of maximum degree, G contains two edge disjoint
isomorphic subgraphs of size ιk−1(∆). On the other hand, G contains a matching of size n

k∆ , and hence two
edge disjoint isomorphic subgraphs of size n

2k∆ . Minimizing the maximum of these quantities over ∆ and

using their result for ι2(n) as a base case gives their result. Starting with ι6(n) gives ιk(n) = Ω̃(n2/(2k−5)),
a very mild improvement.

We now give a slightly more sophisticated argument based on our ideas which gives a slightly better
bound. To recall, we wish to prove

Theorem 2. For all values of k ≥ 7

ιk(n) = Ω̃
(
n

2
2k−log2 k

)
.

Proof of Theorem 2. Assume that εk > 0, and we wish to find a sufficient condition so that ιk(n) = Ω̃(nεk).
At the end we will take εk = 2

2−log2k , but it is more convenient now to work with generic εk. A simple
modification to the proof of Lemma 3 gives:

Lemma 10. Suppose G = (V,E) is a k-uniform, k-partite hypergraph with n edges. Then either:

1. G contains two edge disjoint, isomorphic subgraph of size 1
2n

εk ; or

2. There exists an ` ≥ d 1
εk
e and a set E′ ⊆ E(G) of size at least 1

(3k)`
|E| so that

(a) E′ is supported on sets V ′1 , . . . , V
′
` , V`+1, . . . , Vk with |V ′1 |, . . . , |V ′` | ≤ nεk ; and

(b) There exists a set E′′ ⊆ E′ of size at least |E
′|

3 so that every [`]-tuple T consisting of one vertex
each from V ′1 , . . . , V

′
` has |E′′(T )| ≤ 1.

We thus assume that G is a k-uniform hypergraph on vertex sets

|V1| = |V2| = · · · = |V`| = nεk < |V`+1| ≤ · · · ≤ |Vk|,
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for some ` ≥ d 1
εk
e. Further, we have |E| = n and every [`]-tuple extends uniquely (i.e. for any [`]-tuple T,

|E(T )| ≤ 1). By losing a factor of at most logk−`(n) edges, we may assume

|E(v)| ≤ 2n

|Vi|
for i = `+ 1, `+ 2, . . . , k and all v ∈ Vi. (viii)

This leaves Ω̃(n) edges.

For j = `+ 1, `+ 2, . . . , k, we define αj so that |Vj | = nαj . Note then that α`+1 ≤ α`+2 ≤ · · · ≤ αk.

Observe first that if 2−`εk−
∑k
j=`+1 αj ≥ εk, then for a random permutation πk that permutes all levels

uniformly at random we have
E[Iπk(E,E)] = Ω̃(nεk).

Selecting a permutation beating the expectation and applying Lemma 1, we have our desired subgraphs.
Thus we may assume that

2− `εk −
k∑

j=`+1

αj < εk. (ix)

Secondly consider j = `, `+1, . . . , k−1. Then for a permutation πj randomly permuting levels V1, . . . , Vj
we have

E[Ijπj (E,E)] = Ω̃
(
n2−`εk−

∑j
i=`+1 αi

)
. (x)

Suppose

αj+1 ≥ (`+ 1)εk +

j∑
i=`+1

αi − 1, (xi)

and fix a permutation πj matching the expectation (x). In this case we prove that the permutation πj can
be extended to a permutation π so that Iπ(E,E) = Ω̃(nεk). Let S = [k] \ [j]. Select a pair of S-tuples T
and T ′ so that Ijπj (E(T ), E(T ′)) ≥ 1 (that is, there is an extension of T mapped by πj to an extension of
T ′). Then delete all other edges incident to T and T ′ and choose π to map T to T ′. We greedily repeat this
process as long as possible. Deleting all edges at each step ensures that π remains well defined. For a fixed
m ∈ {j + 1, j + 2, . . . , k}, deleting all edges intersecting T and T ′ at this level causes a deletion of at most

2
2n

|Vi|
= 4n1−αm ≤ 4n1−αj+1 ≤ 4n2−(`+1)εk−

∑j
i=`+1 αi

edges, by the maximum degree condition (viii) of vertices in Vj+1. Here the extra factor of two compared with

(viii) comes from deleting edges incident to both T and T ′. Each selection deletes O(n2−(`+1)εk−
∑j
i=`+1 αi)

edges, and as we chose πj beating its expectation, Ijπj (E,E) = Ω̃
(
n2−`εk−

∑j
i=`+1 αi

)
. Therefore the greedy

process continues for

Ω̃(n2−`εk−
∑j
i=`+1 αi)

O(n2−(`+1)εk−
∑j
i=`+1 αi)

= Ω̃(nεk)

steps. Each step increases Iπ(E,E) by at least one, therefore this greedy process yields a π with Iπ(E,E) =
Ω̃(nεk). Applying Lemma 1 yields desired isomorphic subgraphs.

As we have ruled out (xi), the remaining case is that for every j = `, `+ 1, . . . , k − 1 we have that

αj+1 < (`+ 1)εk +

j∑
i=`+1

αi − 1.

By induction, we prove that
αj+1 < 2j−`((`+ 1)εk − 1) (xii)
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for j ≤ k − 1. If j = `, then
∑`
i=`+1 αj is empty so,

α`+1 < (`+ 1)εk +
∑̀
i=`+1

αj − 1 = 2j−`((`+ 1)εk − 1),

so the (xii) holds for j = `. Assuming that the (xii) holds for all ` ≤ i < j, then

αj+1 < (`+ 1)εk +

j∑
i=`+1

αi − 1

< (`+ 1)εk − 1 +

j∑
i=`+1

2i−`−1((`+ 1)εk − 1)

= ((`+ 1)εk − 1)

(
1 +

j−`−1∑
i=0

2i

)
= 2j−`((`+ 1)εk − 1),

completing the induction.

Note that
k∑

i=`+1

αi ≤
k∑

i=`+1

2i−`−1((`+ 1)εk − 1) ≤ 2k−`((`+ 1)εk − 1),

so

2− (`+ 1)εk <

k∑
i=`+1

αi < 2k−`((`+ 1)εk − 1),

where the lower bound comes from (ix) and the upper bound from our induction. Subtracting the left hand
side from the right hand side yields

(2(k−`) + 1)(`+ 1)εk − 2k−` − 2 > 0. (xiii)

Recall that ` ≥ 1
εk

by Lemma 10. It thus suffices to show that εk = 2
2k−log2 k

yields a contradiction of

(xiii) for all k ≥ ` ≥ 1
εk

if k ≥ 7. This contradiction yields the proof of Theorem 2.

An easy calculus problem reveals that the LHS of (xiii) is an increasing function for k ≥ 7, and for

` ≥ 1
εk

= k − log2 k
2 . Thus it suffices to show that

(2
log2 k

2 + 1)(
2

2k − log2 k
+ 1)− 2

log2 k
2 − 2 < 0.

But this is

(
√
k + 1)(

2

2k − log2 k
+ 1)−

√
k − 2 =

2
√
k

2k − log2 k
− 1.

This is a decreasing function of k, and negative for k = 7. This completes the proof.

4 Appendix: Concentration Inequalities

In order to establish Theorem 1 we need, several times, to show that random variables are concentrated
on their mean. The difficulty in this is that although the random variables we are interested in are sums
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of other random variables they are not independent. This arises as we deal with random variables that
are functions of random permutations. Additionally, we have to show concentration of random variables
X =

∑
Xi where E[X] is small compared to the number of terms in the summation. This makes applying

martingale inequalities, such as Azuma-Hoeffding inequality difficult.

We have two primary tools. First is a version of Talagrand’s inequality established by McDiarmid in [6]
for random variables that are a function of independent random permutations. In the form we use it, it
states the following:

Proposition 1. Suppose V1, . . . , Vk are sets and let π = (π1, . . . , πk) be a family of independent random
permutations, so that πi is chosen uniformly at random from the set Sym(Vi) of all permutations of Vi. Let c

and r be positive constants, and suppose the nonnegative real-valued function h :
∏k
i=1 Sym(Vi)→ R satisfies

the following condition for each σ = (σ1, . . . , σk) ∈ Ω:

• Swapping any two elements in any σi for i = 1, 2, . . . , k can change the value of h(σ) by at most c

• If h(σ) = s, then in order to certify that h(σ) ≥ s, we need to specify at most rs coordinates of σ. That
is, if h(σ) ≥ s, there exists a set of rs coordinates of σ so that any permutation σ′ agreeing with σ on
these rs coordinates also has h(σ′) ≥ s.

Then, if Z = h(π) and m denotes the median of Z we have for each λ ≥ 0,

P(Z ≥ Med(X) + λ) ≤ 2 exp

(
− λ2

16rc2(Med(X) + λ)

)
.

Essentially, this result implies that if we have a (not too large) deterministic bound on the change that
occurs when we switch two entries of a permutation we get tight concentration. A slight annoyance is that
this gives concentration around the median as opposed to the mean. In most cases where Talagrand is
applied, c is small and the median and mean are close together. For our applications, the fact that the
median is at most twice the expectation (by Markov’s inequality) will suffice.

Sometimes, however, Talagrand’s inequality does not suffice for us because c is too large. If there is only
one random permutation involved, we are able to do somewhat better by applying a result of Chatterjee.
For a particular example of where this is necessary, consider the proof of the final claim. The following is a
direct consequence of the proof of Proposition 1.1 and of Theorem 1.5 in [1]

Proposition 2. Let {aij}1≤i,j≤n be a collection of numbers in [0, ρ]. Let X =
∑n
i=1 aiπ(i), where π is a

uniformly randomly chosen element of Sym(n). Then

P(X ≥ E[X] + λ) ≤ exp

(
− λ2

4ρE[X] + 2ρλ

)
(xiv)

In our applications, we will have that λ > E[X] and hence we will often use Chatterjee’s inequality in
the following form:

Corollary 3. Let {aij}1≤i,j≤n be a collection of numbers in [0, ρ]. Let X =
∑n
i=1 aiπ(i), where π is a

uniformly randomly chosen element of Sn. Then for λ > E[X]

P(X ≥ E[X] + λ) ≤ exp

(
− λ

6ρ

)
(xv)

Remark 1: In [1], Proposition 1.1 gives a derivation of P(|X − E[X]| ≥ λ), which introduces a factor of
2. Since we only need the upper tail, we can avoid this factor. Chatterjee also considers the case where
aiπ(i) ∈ [0, 1] as opposed to [0, c]; dividing by c yields our result.
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Remark 2: Suppose ai,j only took the values 0, 1, 2, . . . , C, and X =
∑
ai,π(i). Then one can apply

Talagrand’s Inequality, Proposition 1, with r = 1 and c = C, to show that

P(X ≥ Med(X) + λ) ≤ 2 exp

(
− λ2

16C2(Med(X) + λ)

)
.

On the other hand, Chatterjee’s inequality gives a bound like

P(X ≥ E[X] + λ) ≤ exp

(
− λ2

4CE[X] + Cλ

)
.

Note the dependence in the exponent of C2 versus C. For C a small constant, this hardly matters but for
C large (as in our applications) this can matter quite a bit. A similar phenomenon can be observed when
X =

∑
aiXi where Xi are independent 0/1 valued random variables and ai ∈ {1, 2, 3, . . . , C}. Then the

standard version of Talagrand’s inequality gives

P(X ≥ Med(X) + λ) ≤ 2 exp

(
− λ2

4C2(Med(X) + λ)

)
,

while an appropriate version of the Chernoff bounds gives

P(X ≥ E[X] + λ) ≤ exp

(
− λ2

2E[X2] + Cλ/3

)
≤ exp

(
− λ2

2CE[X] + Cλ/3

)
.

Thus Chatterjee’s inequality gives us something more in line with the Chernoff bounds when it applies.
Unfortunately as we often have to concentrate functions of several permutations, the dependence structure
becomes more complicated and hence Talagrand’s inequality becomes more applicable.
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