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Abstract

Let n ∈ N, 0 < α, β, γ < 1. Define the random Kronecker graph
K(n, α, γ, β) to be the graph with vertex set Zn

2 , where the probability that
u is adjacent to v is given by pu,v = αu·vγ(1−u)·(1−v)βn−u·v−(1−u)·(1−v).
This model has been shown to obey several useful properties of real-world
networks. We establish the asymptotic size of the giant component in the
random Kronecker graph.

1 Introduction

Suppose n is fixed. Fix probability 0 < α, β, γ < 1. A random Kronecker graph
K(n, α, γ, β) on N = 2n vertices is a graph whose vertex set is the elements of
Zn2 , and the probability that two vertices u and v are adjacent is given by

pu,v = αu·vγ(1−u)·(1−v)βn−u·v−(1−u)·(1−v).

This model was originally proposed by Leskovec et al. in [4] as one that ade-
quately models many real-world network properties. In particular, Kronecker
graphs have a heavy-tailed degree distribution, and follow the densification
power law [4]. Fitting the Kronecker graph model to several real-world graphs
has proven to be very successful, as seen in [3]. However, Leskovec et al. pri-
marily focus on a deterministic version of the model, rather than the stochastic
version studied here. We develop several results regarding the emergence and
size of the giant component in random Kronecker graphs. We note that Mah-
dian and Xu proved the following necessary and sufficient condition for the
emergence of a giant component in the random Kronecker graph in [5]:

Theorem 1. Let G = K(n, α, γ, β) be a random Kronecker graph, with α ≥
β ≥ γ. A necessary and sufficient condition for G to have a giant component
of size Θ(N) a.a.s. is that (α+ β)(β + γ) > 1.
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We will prove the following two theorems. The first generalizes the above
theorem to the case where we do not have α ≥ β ≥ γ and the second establishes
sharp bounds on the asymptotic size of the giant component in K(n, α, γ, β),
when one exists.

Theorem 2. Let G = K(n, α, γ, β) be a random Kronecker graph. A necessary
and sufficient condition for G to have a giant component of size Θ(N) a.a.s. is
that (α+ β)(β + γ) > 1.

Theorem 3. Suppose α, β, γ ∈ (0, 1) with (α + β)(γ + β) > 1 and α ≥ γ. By
Theorem 2, K(n, α, γ, β) has a giant component a. a. s.. Suppose, moreover,
that β + γ < 1. Let X denote the set of vertices of K(n, α, γ, β) that are not in
the giant component. Then a.a.s.

|X| = Θ

((
n

mn

))
where

m =
− log(β + γ)

− log(β + γ) + log(α+ β)

We note that in Theorem 3, the assumption that β + γ < 1 is not very
restrictive; if β + γ ≥ 1 then the graph is connected a.a.s. [5]. Furthermore, in
this instance, the constant m is negative, so one could omit the restriction by
replacing m with the maximum of the stated value or 0.

The remainder of this paper is organized as follows: In section 2, we prove
some basic lemmas needed for the proof of the upper bound in Theorem 3 and
the sufficiency in Theorem 2, as well as derive some essential facts about certain
intersection graphs which are important in the proof. In section 3 we complete
the proof of Theorem 2 and establish the upper bound in Theorem 3. Section
4 is devoted to the lower bound of Theorem 3.

2 Basic Facts

For this section we assume that 0 < α, β, γ < 1 are real numbers satisfying
(α + β)(β + γ) > 1 and α > γ (by symmetry, this last assumption is only for
convenience). The approach to establishing Theorem 3 will be to find a section
of the graph K(n, α, γ, β) with good expansion, and show this is contained in a
giant component. In so doing, we gain structural information about the giant
component itself.

For a vertex v ∈ Zn2 , define the weight of v, denoted w(v), to be the number
of coordinates which are equal to 1, that is, w(v) =

∑n
i=1 vi.
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Let

k =
α+ β

α+ γ + 2β
n,

and let H denote the subgraph of G = K(n, α, γ, β) consisting of vertices of
weight k. For a vertex v ∈ H, we restrict our attention to (potential) edges
which swap precisely

l =
β

α+ γ + 2β
n =

β

α+ β
k

1’s for 0’s (and thus must also swap l 0’s for 1’s).

Note that while these parameters may seem quite mysterious, they actually
are quite natural. We say an edge from a vertex v of weight k is of type (l, t) if
it involves switching l 1’s to 0’s, and t 0’s to 1’s. Then the expected number of
neighbors of v of type (l, t) is(

k

l

)(
n− k
t

)
βlαk−lβtγn−k−t.

We first find l and t that maximize this expression in terms of k, and then find
k so that l = t, resulting in the above parameters.

Lemma 1. For a vertex v ∈ H, consider its neighbors of type (l, l). The
expected number of such neighbors of v is(

k

l

)(
n− k
l

)
βlαk−lβlγn−k−l > (1 + o(1))cn.

for some c > 1.

Proof. Recall the entropy bound (see, for example, Thm. 2.6 in [6])(
n

pn

)
>

enH(p)

e
√

2πnp(1− p)
,

where H(p) = −p log p−(1−p) log(1−p). Note that l/k = β
α+β and l/(n−k) =

β
γ+β , so the entropy bound gives us(
k

l

)(
n− k
l

)
βlαk−lβlγn−k−l

>
(α+ β)(β + γ)

2e2πkβ
√
αγ

(
α+ β

β

)l(
α+ β

α

)k−l(
β + γ

β

)l(
β + γ

γ

)n−k−l
βlαk−lβlγn−k−l

=
(α+ β)(β + γ)

2e2πkβ
√
αγ

(α+ β)k(β + γ)n−k

=
1

2e2πkβ
√
αγ

((α+ β)(β + γ))n−k+1(α+ β)2k−n. (1)
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Notice that α > γ and (α+ β)(β + γ) > 1 implies that α+ β > 1 and also that
k > n

2 . Thus (1) is clearly exponential in n as desired. Note that, while it won’t
strictly be necessary, the c we obtain is

c = ((α+ β)(β + α))
α+β

α+γ+2β (α+ β)
α−γ

α+γ+2β > 1.

Lemma 1 implies that the expected degree of each vertex in H is very large
(indeed, exponential in n).

Let G(n, k, l) denote the graph on
(
n
k

)
vertices, where each vertex is a k-

subset of an n-set, and two vertices are adjacent if they intersect in exactly
k − l points. Note that our graph H, restricted to the swaps of type (l, l), is
a percolated version of this graph where edges are taken independently with
probability βlαk−lβlγn−k−l. In order to show that H is a.a.s. connected, we
need to derive some information on G(n, k, l).

Lemma 2. Suppose k and l are as above. Then

diam(G(n, k, l)) = Θ(1).

Proof. It suffices to show that there is a path between two arbitrary vertices v
and v′. For a set X we define the measure

i(X) =
(α+ β)|X|

k
.

and for two vertices we define

i(v,v′) =
(α+ β)|v ∩ v′|

k
.

(where v and v′ are thought of as sets). Note that two vertices are adjacent if
|v ∩ v′| = k − l = α

α+βk, so two vertices are adjacent if i(v,v′) = α. Further

note that i([n]) = α+ γ + 2β.

We prove a series of claims:

Claim 1: If i(v,v′) ≥ α+ β− γ and i(v,v′) ≥ α, then there exists a vertex v′′

such that v ∼ v′′ and v′ ∼ v′′.

Note that here |v ∪ v′| ≤ α+β+γ
α+γ+2βn, in particular there is a set X of size

β
α+γ+2βn = l (that is to say, a set X such that i(X) = β) completely disjoint

from v ∪ v′. Let Y ⊆ v ∩ v′ with |Y | = k − l. Consider v′′ = X ∪ Y . Then
i(v,v′′) = i(v′,v′′) = α, and the proof of Claim 1 is complete.

Claim 2: Suppose i(v,v′) ≤ α. Then there exists a vertex v′′ such that v ∼ v′′

and i(v′′,v′) = i(v,v′) + β.
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Here, let X ⊆ v′ \ v with |X| = l and let Y ⊆ v such that |Y | = k − l and
v ∩ v′ ⊆ Y . Then v′′ = X ∪ Y has the desired property, proving Claim 2.

Claim 3: Suppose i(v,v′) = α + x, where x > 0. Then there exists a vertex
v′′ such that v ∼ v′′ and i(v′′,v′) = α+ β − x.

Here, let X ⊆ v∩v′ with |X| = k−l. Note that i(v∪v′) = α+x+2(β−x) =
α + 2β − x, so i([n] \ (v ∪ v′)) = γ + x. Let Y ⊆ [n] \ (v ∪ v′) with i(Y ) = x
and Z = v′ \ v, so that i(Z) = β − x. Then v′′ = X ∪ Y ∪ Z has the desired
properties, proving Claim 3.

Claim 4: Suppose i(v,v′) = α + x, with 0 < x < β − γ. Then there exists a
vertex v′′ withv′′ ∼ v and i(v′,v′′) = α+ β − x− 2γ..

Let X ⊆ v ∩ v′ with i(X) = α − γ. Let Y ⊆ v \ v′ with i(Y ) = γ. Let
Z ⊆ v′\v with i(Z) = β−x−γ, and let W = [n]\(v∪v′), so that i(W ) = γ+x.
Let v′′ = X∪Y ∪Z∪W . Note that i(v′′) = α−γ+γ+β−x−γ+γ+x = α+β, and
i(v,v′′) = i(X)+ i(Y ) = α so that v′′ ∼ v. Moreover, i(v′,v′′) = i(X)+ i(Z) =
α+ β − x− 2γ, as desired. Therefore, Claim 4 is proven.

Claim 5: Suppose i(v,v′) = α + x, with 0 < x < β − 2γ. Then there exists a
vertex v′′ with d(v,v′′) = 2 and i(v′,v′′) = α+ x+ 2γ.

Claim 4 implies that there exists a v′′′ ∼ v with i(v′,v′′′) = α+ β− x− 2γ.
By assumption β − x − 2γ > 0, so we can apply Claim 3 using vertices v′ and
v′′′, so there there exists v′′ ∼ v′′′ with i(v′,v′′) = α+x+2γ. Therefore, Claim
5 is established.

From here, the proof is simple. Suppose v,v′ are arbitrary vertices. After at
most dα+β

β e applications of Claim 2, we have a vertex v′′ such that i(v′,v′′) =
α + x for some 0 < x ≤ β. If x = β we are done. Otherwise, either Claim 2
applies, and d(v′,v′′) = 1, or 0 ≤ β − 2γ ≤ x < β − γ, and d(v′,v′′) ≤ 3 by
applying Claim 4 followed by Claim 1 followed by Claim 2, or x < β − 2γ. In
the final case, after at most d β2γ e applications of Claim 5, we must have a vertex

v′′′ with i(v′,v′′′) = α + y for some y satisfying y ≥ β − 2γ, and by our above
arguments d(v′′′,v′) ≤ 3.

In total we have that

diam(G(n, k, l)) ≤
⌈
α+ β

β

⌉
+

⌈
β

2γ

⌉
+ 3 = Θ(1).

It is easy to observe that G(n, k, l) is edge transitive (permutations of [n]
are automorphisms of G(n, k, l) and it is easy to construct a permutation which
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maps one edge to any other.) Recall that the Cheeger constant of a graph H is

hH = min
S⊆H

vol(S)≤vol(H)/2

e(S, S̄)

vol(S)

where here vol(S) =
∑
v∈S

deg(v). Theorem 7.1 in Chung [2] asserts that for a

edge transitive graph Γ with diameter D,

hΓ ≥
1

2D
.

In particular this implies

Lemma 3. For H̃ = G(n, k, l), hH̃ ≥ K for some constant K. In particular,

for a set S ⊆ H̃ with |S| = t ≤ |H̃|/2, we have that

e(S, S̄) ≥ Kvol(S) = Kt

(
k

l

)(
n− k
l

)
.

We now prove the following:

Theorem 4. Let H, as described above, be the subgraph of K(n, α, γ, β) con-
sisting of vertices of weight k and edges of type (l, l). Then H is connected
a.a.s.

Proof. As observed above H is a percolated version of H̃ = G(n, k, l), where
each edge is chosen independently with probability βlαk−lβlγk−l. In order to
establish the theorem, we prove the following claim:

Claim 1: For all sets S ⊆ H with |S| ≤ |H|/2, e(S, S̄) > 0 a.a.s..

By Lemma 3, the number of edges leaving S with |S| = t in H̃ is at least
Kt
(
k
l

)(
n−k
l

)
. Thus

E[e(S, S̄)] ≥ Kt
(
k

l

)(
n− k
l

)
βlαk−lβlγk−l ≥ t ·Θ(cn)

for some constant c > 1, by applying Lemma 1. As e(S, S̄) is binomially dis-
tributed, the Chernoff bounds (see, for example, [1]) imply that

P(e(S, S̄) ≤ 1

2
E[e(S, S̄)]) ≤ exp

(
−1

8
E[e(S, S̄)]

)
≤ exp(−t ·Θ(cn)).

Let A denote the event that some set S has e(S, S̄) = 0. Then by the union
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bound

P(A) ≤
|H|/2∑
t=1

∑
S,|S|=t

P(e(S, S̄) = 0)

≤
|H|/2∑
t=1

((n
k

)
t

)
exp(−t ·Θ(cn))

≤
|H|/2∑
t=1

((
n

k

)
exp(−Θ(cn))

)t

≤
|H|/2∑
t=1

(o(1))t = o(1).

Note that we used the fact that
(
n
k

)
exp(−Θ(cn)) = o(1). This is easily

verified by taking logs: log
(
n
k

)
= o(n log n) while log(exp(Θ(cn))) = Θ(cn).

This completes the proof of Claim 1, and hence of Theorem 4.

3 The Giant Component in K(n, α, γ, β)

In this section we complete the proof of Theorem 2, and establish the upper
bound in Theorem 3.

We first establish the necessity of the condition in Theorem 2 with the fol-
lowing theorem. We note that a similar technique is used in [5], although we
include a proof here for the sake of completeness.

Theorem 5. Suppose G = K(n, α, γ, β), where (α + β)(β + γ) < 1. Then G
contains N − o(N) isolated vertices a.a.s..

Proof. Let ε be such that (α+β)(β+γ) = 1−ε. Let v have weight w ≤ n/2+n2/3.
The expected degree of v is

(α+ β)w(β + γ)n−w ≤ (α+ β)n/2+n2/3

(β + γ)n/2−n
2/3

≤ ((α+ β)(β + γ))n/2
(
α+ β

β + γ

)n2/3

≤ (1− ε) 1
2 logN

(
α+ β

β + γ

)(logN)2/3

= o(1)

Thus, v is isolated a.a.s.. Moreover, the proportion of vertices with weight at

most n/2+n2/3 is at least 1−e−(n/2+n2/3)2/2n = 1−o(1) by the Chernoff bound
[1]. Therefore, there are at least N −o(N) isolated vertices in G a.a.s., and thus
G has no giant component a.a.s..
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We now turn our attention to establishing the sufficiency of the condition
in Theorem 2. For the remainder of this section, we assume K(n, α, γ, β) has
(α + β)(β + γ) > 1, and α ≥ γ, as in Section 2. Also, we set k = α+β

α+γ+2βn as

in Section 2. Given 0 ≤ s ≤ n, let Gs denote the set of vertices of K(n, α, γ, β)
with weight s.

Theorem 6. Suppose s 6= k, with

s ≥
2 log(n)− n log(γ + β)− log

(
(α+β)(γ+β)
2e2πβn

√
αγ

)
log(α+β

β+γ )
. (2)

Then for every v ∈ Gs, a.a.s. there exists r with |r−k| < |s−k| such that there
is a vertex v′ ∈ Gr with v ∼ v′.

The precise bound on s in the statement of Theorem 6 is quite technical,
and falls out from the proof. Note that

s ≥ − log(β + γ)n

− log(β + γ) + log(α+ β)
+ Θ(log n).

As (α+ β)(β + γ) > 1, we have that

m =
− log(β + γ)

− log(β + γ) + log(α+ β)
<

1

2
. (3)

In particular, Theorem 6 holds for all vertices with weight at least n
2 , and hence

shows the existence of a giant component of size at least N
2 . Thus, Theorem 6

is sufficient to complete the proof of Theorem 2.

If β + γ > 1, then note that all non-negative s satisfy (2), that is, the graph
is connected (this was proven in [5]).

Proof of Theorem 6. Suppose v ∈ Gs. The expected number of neighbors of v
of type (l, t) is (

s

l

)(
n− s
t

)
βlαs−lβtγn−s−t.

Note that this is (roughly) maximized when l = β
β+αs and t = β

β+γ (n − s).
Setting l and t as such, we note that the weight of a neighbor of v obtained in
such a way is

f(s) =
α

β + α
s+

β

β + γ
(n− s).

Note that
k > f(s) > s when s < k.
k < f(s) < s when s > k.

f(s) = s when s = k.
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Therefore, a neighbor of v of type (l, t) has weight r, with |r − k| < |s − k|.
Using the entropy bound again, the expected number of such neighbors is(
s

l

)(
n− s
t

)
βlαs−lβtγn−s−t

>
(α+ β)(γ + β)

2e2πβ
√
s(n− s)αγ

(
α+ β

β

)l(
α+ β

α

)s−l(
β + γ

β

)t(
β + γ

γ

)n−s−t
βlαs−lβtγn−s−t

=
(α+ β)(γ + β)

2e2πβ
√
s(n− s)αγ

(α+ β)s(γ + β)n−s ≥ n2. (4)

The lower bound on s in the statement of the theorem is chosen precisely so
that (4) holds.

The number of neighbors with weight r is binomially distributed, so the
Chernoff bounds imply that for a vertex v the probability that it has no neigh-
bors with weight r is bounded by

P(e(v, Gr) = 0) ≤ 1

2
E[e(v, Gr)]

≤ exp

(
−1

8
E[e(v, Gr)]

)
≤ exp

(
−n

2

8

)
.

Note that there are 2n vertices in K(n, α, γ, β) so by the union bound

P(∃v : E(v, Gr) = 0) ≤ 2n exp

(
−n

2

8

)
= o(1),

completing the proof of the theorem.

As noted above, this completes the proof of Theorem 2. Moreover, this
establishes the upper bound in Theorem 3, as the only vertices not in the giant
component a.a.s. have weight at most mn+ o(n).

4 The Size of the Giant Component

In this section we complete the proof of Theorem 3. In order to derive the precise
result, we must examine the vertices with weight mn+ o(n) more closely.

Again, we consider the set Gs of vertices with weight s. For a vertex v ∈ Gs,
its expected degree is

s∑
l=0

n−s∑
t=0

(
s

l

)(
n− s
t

)
βlαs−lβtγn−s−t − αsγn−s = (α+ β)s(γ + β)n−s − αsγn−s.

(5)
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(The αsγn−s term corresponds to a ‘self loop’ at a vertex).

In the previous section we used the fact that the sum in (5) is roughly
maximized when l = β

α+β s and t = β
γ+β s. In order to establish Theorem 3 we

need a more precise understanding of the summation.

Lemma 4. Let ε > 0 be small enough that (1 + ε) β
β+α < 1. Moreover, suppose

that s = s(n), and there exists r with 0 < r < 1, and s
n → r. Then

s∑
l=(1+ε) β

β+α s

(1−ε) β
β+γ (n−s)∑
t=0

(
s

l

)(
n− s
t

)
βlαs−lβtγn−s−t = o((α+β)s(γ+β)n−s).

Proof. Let

g(l, t) =

(
s

l

)(
n− s
t

)
βlαs−lβtγn−s−t.

Then
g(l + 1, t)

g(l, t)
=
s− l
l + 1

β

α
.

For l ≥ (1 + ε) β
β+αs,

g(l + 1, t)

g(l, t)
=

s− (1 + ε) β
β+αs

(1 + ε) β
β+αs+ 1

· β
α

≤ β + α

α(1 + ε)
− β

α

≤ α− εβ
α(1 + ε)

≤ 1

1 + ε
.

Thus

s∑
l=(1+ε) β

β+α s

g(l, t) ≤
s∑

l=(1+ε) β
β+α s

(1 + ε)l−(1+ε) β
β+α sg

(
(1 + ε)

β

β + α
s, t

)

≤ Cg((1 + ε)
β

β + α
s, t),

where C is obtained by summing the geometric series.

A similar bound on g(l,t−1)
g(l,t) allows us to derive that

s∑
l=(1+ε) β

β+α s

(1−ε) β
β+γ s∑

t=0

g(l, t) ≤ C ′g
(

(1 + ε)
β

β + α
s, (1− ε) β

β + γ
s

)
. (6)
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Note that

(1+ε) β
β+α s∑

(1+ε) β
β+α s−log(s)

(1−ε) β
β+γ (n−s)+log s∑

t=(1−ε) β
β+γ (n−s)

g(l, t) = ω

(
g

(
(1 + ε)

β

β + α
s, (1− ε) β

β + γ

))
.

as the sums are bounded below by a geometric series with ratio greater than
one. Together with equation (6), this completes the proof.

We next use the following lemma in order to establish the lower bound in
Theorem 3.

Lemma 5. Let X and m be as in Theorem 3. Then

|X| = Ω

((
n

mn

))
.

a.a.s.

Proof. Let ` = mn− 1. Then the expected degree of a vertex v with weight ` is

E[deg(v)] = (α+ β)mn−1(β + γ)n−mn+1

=
β + γ

α+ β

(
(α+ β)m(β + γ)1−m)n

=
β + γ

α+ β
=: q < 1

by the definition of m. Take p = P(deg(v) = 0) ≥ 1− q > 0.

Let Y denote the set of isolated vertices with weight `. Then E[|Y |] = p
(
n
`

)
.

We write |Y | =
∑
zv where zv is the indicator that v is isolated. The zv are

not independent, however it is easy to observe that

E[zvzu] = E[zv](E[zu]− P(v ∼ u)) = E[zv]E[zu]− o(E[zv]).

Thus
Cov(zv, zu) = o(E[zv]).

Furthermore,
Var(zv) = p(1− p).

Thus

Var(|Y |2) =
∑
v

Var(zv) +
∑
v

∑
u6=v

Cov(zv, zu)

≤ p(1− p)
(
n

`

)
+ o

(
p

(
n

`

)2
)

= o

((
n

`

)2
)
.
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Since Var(|Y |2) = o(E[|Y |2]), Chebyshev’s inequality (see, for example, [1])
implies that for any c > 0,

P
(∣∣∣∣|Y | − p(n`

)∣∣∣∣ ≥ c(n`
))
≤
o
((
n
`

)2)
c2
(
n
`

)2 = o(1).

Therefore, a.a.s. we have that |Y | = p
(
n
`

)
+ o

((
n
`

))
, and thus |X| ≥ c

(
n
`

)
≥

c′
(
n
mn

)
a.a.s., establishing the result.

Using Lemma 5, we can derive from Theorem 6 that(
n

mn

)
� |X| �

(
n

mn+ C log(n)

)
for some absolute constant C, but these differ by a factor polynomial in n
(and hence by a poly-logarithmic factor in N .) Here, the � symbol is in the
traditional number theoretic sense, that is, f(x)� g(x) if f(x) = O(g(x)).

Proof of Theorem 3. By Lemma 5, it suffices to show that |X| = O(
(
n
mn

)
) a.a.s.

Let f be as in the proof of Theorem 6.

Suppose s = mn+O(log(n)). Choose ε > 0 and small enough that

α− εβ
β + α

s+
β − εγ
β + α

(n− s) > (m+ ε)n;

such exists by our observation on f(s).

Note that, by Theorem 6, for n sufficiently large, if s′ ≥ (m + ε)n, then all
vertices in Gs′ are in the giant component a.a.s. Thus, a vertex in Gs which is
not in the giant component has no edges into Gs′ for s′ ≥ (m+ ε)n.

Consider a vertex v in Gs. We say that an edge from v is good if it involves
no more than (1+ε) β

β+αs swaps from 1 to 0 and no fewer than (1−ε) β
β+γ (n−s)

swaps from 0 to 1. (Note that when we say an edge uv incident to v is good,
we are assuming the swaps are from v to u. In this way, an edge may be good
when considered from v but not from u). Let Y be the set of vertices with no
incident good edges. It is easy to check that if v has an incident good edge,
then it is connected to a Gs′ with s′ ≥ (m+ ε)n, so every vertex not in Y is in
the giant component, hence |Y | ≥ |X|.

Let zv denote the number of good edges incident to v. By Lemma 4

E[zv] = (1 + o(1))(α+ β)s(γ + β)n−s.
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Since zv is the sum of independent indicator functions, we can write:

P(zv = 0) =
∏

v′:e(v,v′) good

(1− P(v ∼ v′))

≤ exp

− ∑
v′:e(v,v′) good

P(v ∼ v′)

 = exp(−E[zv]).

Thus, for n sufficiently large,

P(v ∈ Y ) = P(zv = 0) ≤ exp

(
−1

2
(α+ β)s(γ + β)n−s

)
.

By Theorem 6, there exists a C such that if s > mn + C log(n), then all
vertices in Gs are in the giant component a.a.s.. Thus

|X| ≤
mn+C log(n)∑

s=0

|Y ∩Gs|.

Choose t to be the least integer such that

exp

(
−1

2

α− γ
β + γ

(
α+ β

β + γ

)t)
1−m
m

<
1

2
.

Define:

g(k) = exp

(
−1

2
(α+ β)mn+t+k(γ + β)n−mn−t−k

)(
n

mn+ t+ k

)
.

We have chosen t so that for k ≥ 0,

g(k + 1)

g(k)
<

1

2
.

Consider

E

mn+C log(n)∑
s=mn+t

|Y ∩Gs|

 ≤
C log(n)−t∑

k=0

g(k)

≤
C log(n)−t∑

k=0

2−kg(0)

≤ 2g(0).
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As
∑
|Y ∩Gs| can be written as the sum of independent indicator functions, it

is tightly concentrated by the Chernoff bounds and hence a.a.s.

mn+C log(n)∑
s=mn+t

|Y ∩Gs| ≤ (1 + o(1))2g(0) = Θ

((
n

mn+ t

))
= O

((
n

mn

))
.

Note that

mn+t∑
s=0

|Y ∩Gs| ≤
mn+t∑
s=0

(
n

s

)
= Θ

((
n

mn+ t

))
= Θ

((
n

mn

))
.

Thus

|X| ≤
mn+C logn∑

s=0

|Y ∩Gs| = Θ

((
n

mn

))
+O

((
n

mn

))
= Θ

((
n

mn

))
,

a.a.s., completing the proof.

5 Conclusions and Open Questions

In this paper, we investigated the critical threshold for the giant component in
the random graph model as studied by Mahdian and Xu [5]. There are several
interesting related questions still open. In particular, it would be of interest to
study the emergence of the giant component where α, β, and γ are allowed the
vary with n, and (α+ β)(β + γ) = 1 + o(1). The general machinery we build in
this paper should be useful for such a study.

In fact, in certain regimes we can see that there is a giant component when
(α+ β)(β + γ) = 1− o(1). Under the condition that

((α+ β)(β + α))
α+β

α+γ+2β (α+ β)
α−γ

α+γ+2β > 1

the proof of Theorem 4 will still hold; this can hold even if (α+ β)(β + γ) < 1.
So long as

− log(β + γ)

− log(β + γ) + log(α+ β)
=

1

2
−O

(
1√
n

)
,

one may observe that Theorem 6 will still imply the existence of a giant com-
ponent.

It would be of interest to identify the precise conditions under which a giant
component exists, in particular, in the regime where (α+ β)(β + γ) = 1 + o(1)
and the graph is sparse; in the case studied here the average degree is polynomial
in N .
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