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Abstract

Order the vertices of a directed random graph v1, . . . , vn; edge (vi, vj) for i < j exists
independently with probability p. This random graph model is related to certain spreading
processes on networks. We consider the component reachable from v1 and prove existence of a
sharp threshold p∗ = log n/n at which this reachable component transitions from o(n) to Ω(n).

1 Introduction

In this note we study a random graph model that captures the dynamics of a particular type of
spreading process. Consider a set of n ordered vertices {v1, . . . , vn} with vertex v1 initially ‘infil-
trated’ (at time step 1). At time steps 2, 3, . . . , n, vertex v1 attempts to independently infiltrate,
with probability p, each of v2, v3 . . . , vn in turn (one per step). Either vi gets infiltrated or im-
munized. If vi is infected, it attempts to infect vi+1, . . . , vn, also each with probability p; vi does
not attempt to infect v1, . . . , vi−1, however, as prior vertices are already either infiltrated or immu-
nized. At time step i, all infiltrated vertices vj with j < i are attempting to infiltrate vi, and vi
gets infiltrated if any one of these attempts succeeds. Intuitively, vi is more likely to get infiltrated
if more vertices are already infiltrated at the time that vi becomes ’succeptible’. One example of
such a contagion process is given in [?].

This spreading process is equivalent to the following random model of an ordered, directed
graph G: order the vertices v1, . . . , vn, and for i < j, the directed edge (vi, vj) exists in G with
probability p (independently). Vertex vi is infected if there is a (directed) path from v1 to vi. The
question we address is, “What is the size of the set of vertices reachable from v1?” (the size of the
infection). We prove the following sharp result.

Theorem 1. Let R be the set of vertices reachable from v1, and suppose p = c logn
n + ξ(n), where

ξ(n) = o( lognn ) and c > 0 is fixed. Then:

1. If c < 1, then |R| = nc+o(1), a.a.s.
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2. If c = 1, then |R| = o(n), a.a.s.

3. If c > 1, then |R| =
(
1− 1

c + o(1)
)
n, a.a.s.

Recall that an event holds a.a.s.(asymptotically almost surely), if it holds with probability
1 − o(1); that is it holds with probability tending to one as n tends to infinity. Note that we do
not explicitly care whether ξ(n) is positive or negative in the results above.

Similar phase transitions are well known for various graph properties in other random graph
models. As shown by Erdős and Rényi in [2], in the G(n,M) model of random graphs, where a
graph is chosen independently from all graphs with M edges, there is a similar emergence of a
component of size Θ(n) around M = n

2 edges. Likewise, a threshold for connectivity was shown for

M = n logn
2 edges. For the more familiar G(n, p) model, where edges are present independenty with

probability p, this translates into a threshold at p = 1
n for a giant component, and at p = logn

n for
connectivity. A much more comprehensive account of results on properties of random graphs can
be found in [1].  Luczak in [4] and more recently  Luczak and Seierstad in [5], studied the emergence
of the giant component in a random directed graphs, in both the directed model where M random
edges are present and in the model where edges are present with probability p. Thresholds for
strong connectivity were established for random directed graphs by Palásti [6] (for random directed
graphs with M edges) and Graham and Pike [3] (for random directed graphs with edge probability
p). We are not aware of any results for ordered directed random graphs where edges connect vertices
of lower index to higher index.

2 A Proof of Theorem 1

Upper bounds: For i > 1, let Ri denote the event that vi is reachable, and let Xi denote the
number of paths to vertex vi in G. If Pi denotes the set of all potential paths from v1 to vi, then
Xi =

∑
x∈Pi

I(x) where I(x) is a {0, 1} indicator random variable indicating whether the path x
exists in G; I(x) = 1 if and only if all edges in the path x are present in G. Then,

P(Ri) = P(Xi ≥ 1) ≤ E[Xi] =
∑
x∈Pi

E[I(x)]

=
i−2∑
`=0

∑
x∈Pi
|x|=`+1

E[I(x)]

=
i−2∑
`=0

(
i− 2

`

)
p`+1 = p(1 + p)i−2 ≤ pepi.

Let X denote the number of reachable vertices (other than v1).

E[X] =

n∑
i=2

P(Ri) ≤
n∑
i=1

pepi = p · e
p(n+1) − 1

ep − 1
.

For p = c logn
n + ξ(n) with c < 1,

ep(n+1) − 1 = exp (c log n+ o(log n))− 1 = nc+o(1),
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and

p

(ep − 1)
=

( ∞∑
k=1

pk−1

k!

)−1
= 1 +O(p).

Thus,
E[X] ≤ nc+o(1).

Applying Markov’s inequality yields that P(X > log(n)E[X]) = o(1), so X ≤ log(n)E[X] = nc+o(1),
a.a.s.

Now consider c > 1. Let

ξ′(n) :=
3

c
max

{
n

log log n
,
n2ξ(n)

c log n

}
t :=

n

c
− ξ′(n)

Note that by our choice of ξ′(n), and the fact that ξ(n) = o( lognn ), that ξ′(n) = o(n). Then,

P(Rt) ≤ pept = p exp

((
c
log n

n
+ ξ(n)

)(n
c
− ξ′(n)

))
= p exp

(
log(n) +

nξ(n)

c
− c(log n)ξ′(n)

n
− ξ(n)ξ′(n)

)
≤ (1 + o(1))c exp

(
log log(n) +

nξ(n)

c
− c(log n)ξ′(n)

n

)
= o(1)

Here, the last inequality comes from the fact that, by our choice of ξ′(n),

c(log(n))ξ′(n)

n
− log log(n)− nξ(n)

c
≥ 1

3
ξ′(n).

Since pepi is increasing in i, the expected number of reachable vertices vi with i ≤ t is at most
tP(Rt) = o(n). Applying Markov’s inequality, |R ∩ {v1, . . . , vt}| = o(n) a.a.s. Thus,

|R| ≤ n− t+ |R ∩ {v1, . . . , vt}| =
(
1− 1

c + o(1)
)
n a.a.s.

For p = logn
n + ξ(n) with ξ(n) = o

(
logn
n

)
, we will write ξ(n) = ω(n) lognn , where ω(n)→ 0. Let

t = n ·
(

1− ω(n)− 1
log logn

)
. Then,

P(Rt) ≤ pe−pt = exp
[
(1 + ω(n))

(
1− ω(n)− 1

log logn

)
log n+ log

(
(1 + ω(n)) lognn

)]
= exp

[
−ω(n)2 log n− (1 + ω(n))

log n

log log n
+ log log n+ log(1 + ω(n))

]
= o(1),

Thus the expected value of |R ∩ {v1, . . . , vt}| is o(n) and by Markov’s inequality, this is also true
a.a.s. Now, since n− t is also o(n), we have that R = o(n) a.a.s.
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To prove the lower bounds, we require a simple lemma similar to Dirichlet’s theorem. Let d(i)
denote the number of divisors of i and let dt(i) denote the number of divisors of i that are at most t.
Dirichlet’s Theorem states that

k∑
i=1

d(i) = k log k + (2γ − 1)k +O(
√
k),

where γ is Euler’s constant. For our purposes, we need a refinement of this result, summing dt(i).

Lemma 1.
k∑
i=1

dt(i) = k log min(t, k) +O(k).

Proof. For t > k the result follows from Dirichlet’s theorem as we may replace dt(i) with d(i) in
the summation. For t ≤ k,

k∑
i=1

dt(i) = k +

⌊
k

2

⌋
+

⌊
k

3

⌋
+ · · ·+

⌊
k

t

⌋
≤ kHt,

where Ht is the t-th harmonic number.

Lower bounds: For exposition, assume that we construct our graph on countably many vertices
and that we then restrict our attention to the first n vertices. Let Xi denote the index of the i-th
reachable vertex (that is not v1). If Xi > n then |R| ≤ i. Set X0 = 1, and for i ≥ 1, Xi −Xi−1 is
geometrically distributed with parameter 1− (1− p)i. Fix t, and consider E[Xt]:

E[Xt] =
t∑

k=1

E[Xk −Xk−1] =
t∑

k=1

1

1− (1− p)k
.

Each term is an infinite geometric series, and so

E[Xt] =
t∑

k=1

∞∑
j=0

(1− p)kj .

As this series is absolutely summable (as E[Xt] is clearly finite), Fubini’s theorem allows us to
rearrange terms in the summation to get

E[Xt] = t+
t∑

k=1

∞∑
j=1

(1− p)kj = t+
∞∑
i=1

dt(i)(1− p)i.

because the term (1−p)i appears in the original summation (where i = kj) once for every divisor i
has that is at most t. We now use summation by parts to manipulate the second term:

∞∑
i=1

dt(i)(1− p)i = p

∞∑
i=1

(1− p)i−1
(

i∑
`=1

dt(`)

)

= p

∞∑
i=1

(1− p)i−1(i log(min{t, i}) +O(i))

≤ p(log t+O(1))

∞∑
i=1

i(1− p)i−1.
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Since
∑∞

i=1 i(1− p)i−1 = 1/p2, we have that

E[Xt] = t+
log t

p
+O

(
1

p

)
. (1)

Furthermore, since Xk+1 −Xk and Xk −Xk−1 are independent,

Var(Xt) =
t∑

k=1

p

(1− (1− p)k)2

≤

√√√√( t∑
k=1

p2

(1− (1− p)k)3

)(
t∑

k=1

1

(1− (1− p)k)

)

≤
√
t

p
E[Xt]. (2)

Here, the first inequality follows from an application of Cauchy-Schwarz, and the second from
p2

(1−(1−p)k)3 ≤
p2

p3
= 1

p .

Now, suppose that p = c lognn + ξ(n) for c < 1, and set t = nc exp(−n|ξ(n)| − log log(n)). Then,
from (1),

E[Xt] ≤ nc exp(−n|ξ(n)|) +
c log n− 2n|ξ(n)| − log log n

n−1(c log n+ nξ(n))
+O

(
log n

n

)
(3)

≤ nc exp(−n|ξ(n)|) + n− n2|ξ(n)| − log log n

(c log n+ nξ(n))
+O

(
log n

n

)
(4)

= n

(
1− n|ξ(n)|+ log log(n)

(c log n+ nξ(n))
+ o

(
n|ξ(n)|+ log log n

log n

))
. (5)

For n sufficiently large, E[Xt] ≤ n
(

1− n|ξ(n)|+log logn
2c logn

)
. Meanwhile, from (2),

Var(Xt) ≤ (1 + o(1))

√
nc

log n
· (1 + o(1))

n

c log n
· E[Xt] =

n
1
2
(1+c)

log n

√
E[Xt]

c
= O

(
n3/2

log n

)
,

because E[Xt] = O(n) and c < 1. Chebyshev’s inequality asserts that

P
[
|Xt − E[Xt]| ≥

n2|ξ(n)|+ n log logn

2c log n

]
≤ 4c2 log2 n ·Var(Xt)

(n2|ξ(n)|+ n(log log n))2
= o(1).

Thus, P
[
Xt ≤ E[Xt] + n log logn

2c logn

]
= 1− o(1). Using (5),

P
[
Xt ≤ n

(
1− log logn

2c log n
+ o

(
log log n

c log n

))]
= 1− o(1),

i.e., Xt < n a.a.s. Since Xt < n implies |R| ≥ t, we have that |R| > nc exp(−n|ξ(n)|− log log(n)) =
nc+o(1) a.a.s.

For c > 1, take t = n log logn
logn . Then, using (1),

E[Xt] ≤
n

c
+ o(n).
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Again, by (2) and because E[Xt] = O(n), Var(Xt) = O(n3/2
√

log log n/ log n) = o(n3/2). Chebyschev’s
inequality asserts that

P
[
|Xt − E[Xt]| ≥ n3/4

]
≤ o(n3/2)

n3/2
= o(1).

Hence,

P
[
Xt ≤ E[Xt] + n3/4

]
= 1− o(1). (6)

So, Xt ≤ n
c + o(n) a.a.s. We now consider the vertices indexed higher than Xt and show that

essentially all of them are reachable. Let Y be the vertices with index higher than Xt which are
not adjacent to one of the first t reachable vertices in v1, . . . , vXt . Then

E[|Y |] =
n∑

j=Xt+1

(1− p)t = (n−Xt)(1− p)t ≤ ne−pt =
n

logc+o(1) n
= o(n).

Applying Markov’s inequality, |Y | = o(n) with probability 1−o(1). Since the set of vertices indexed
above Xt that is not reachable is a subset of Y , |R| ≥ t+ (n−Xt)− |Y |. Since |Y |, t are o(n) and
Xt = n

c + o(n), we have that |R| ≥ n(1− 1
c + o(1)) with probability 1− o(1), as desired.
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