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Abstract. In this paper we consider an extremal problem regarding multigraphs with edge
multiplicity bounded by a positive integer q. Given a family F of q-multigraphs, define ex(n,F )
to be the maximum number of edges (counting multiplicities) that a q-multigraph on n vertices
can have without containing a copy of any F ∈ F (not necessarily induced). It is well known
that τ(F ) = limn→∞ ex(n,F )/

(n
2

)
exists for every family F (finite or infinite). Let T = {τ(F ) :

F is a family of q-multigraphs}. We say the number α, 0 ≤ α < q is a jump for q if there exists a
constant c = c(α, q) such that if α′ ∈ T such that α′ > α then α′ ≥ α+ c. The Erdős-Stone theorem
implies that for q = 1, every α ∈ [0, 1) is a jump. The problem of determining the set of jumps
for q ≥ 2 appears to be much harder. In a sequence of papers by Erdős, Brown, Simonovits and
separately Sidorenko, the authors established that every α is a jump for q = 2 leaving the question
whether the same is true for q ≥ 3 unresolved. A later result of Rödl and Sidorenko in [10] gave a
negative answer establishing that for q ≥ 4 some values of α are not jumps. The problem of whether
or not every α ∈ [0, 3) is a jump for q = 3 has remained open. We give a partial positive result in
this paper proving that every α ∈ [0, 2) is a jump for all q ≥ 3. Additionally, we extend the results
of [10] by showing that, given any rational number r with 0 < r ≤ 1, that (q − r) is not a jump for
any q sufficiently large.
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1. Introduction. For a positive integer q, we consider multigraphs with edge
multiplicities bounded above by q, which we call q-multigraphs for convenience. As
there is a lot of notation which is used frequently throughout the paper, we provide
an Appendix containing a list of the notation for reference. Given a q-multigraph
G = (V,E) and a subset X ⊆ V , we denote the subgraph of G induced by X as
G[X]. We denote by N(u) the neighborhood of u (in G unless otherwise specified).
For two vertices u, v ∈ V , we say that N(u) = N(v) if for each x ∈ V − {u, v} the
multiplicity of the edge {x, u} is the same as the multiplicity of the edge {x, v} (where
the multiplicity of {x, u} is zero if this edge is not present in G).

Given a family of q-multigraphs F , we define the set Forb(F ) to be the family
of all graphs which do not contain a member of F as a subgraph (not necessarily
induced). Let ex(n,F ) be the maximum number of edges (counting multiplicity) of
any q-multigraph G ∈ Forb(F ) with |V (G)| = n. Finally we define the extremal
density of F as

τ(F ) = lim
n→∞

ex(n,F )(
n
2

) .

We want to examine the structure of the set

Tq = {τ(F ) : F is a (possibly infinite) family of q-multigraphs}.

Definition 1.1. We say that the number α ∈ [0, q) is a jump for q if there
exists a constant c = c(α, q) such that given any α′ ∈ Tq with α′ > α, it follows that
α′ ≥ α+ c.
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For q = 1, a simple corollary of the Erdős-Stone theorem, [5], is that every
α ∈ [0, 1) is a jump. Indeed, the set T1 is precisely

T1 =

{
1− 1

k

}∞
k=1

.

For q ≥ 2, obtaining an explicit description of the set Tq of extremal densities
is much harder. A simpler question is to determine whether the sets Tq are well-
ordered. The set Tq being well-ordered is equivalent to α being a jump for q for every
α ∈ [0, q). This is related to the jumping constant conjecture of Erdős that every
density in (0, 1) for k-uniform hypergraphs should enjoy a similar property for every
k, which was disproved by Frankl and Rödl in [6].

Erdős, Brown and Simonovits, in [1, 2], resolved their question for q = 2 in the
affirmative, showing T2 is well-ordered. Sidorenko [11] gave an alternate proof of this
fact which gives a somewhat more explicit description of the set T2. In the negative
direction, Rödl and Sidorenko showed in [10] that this conjecture fails for multigraphs
where q ≥ 4 by constructing a family of sequences of graphs with decreasing extremal
densities.

Two interesting questions remain. What can one say about Tq when q = 3; is
T3 well-ordered? Second, for q ≥ 4, only some α ∈ (0, q) are known to be non-jumps.
Can the jumps and non-jumps be characterized? The main results of this paper give
partial answers to each of these questions.

Regarding the first question, an easy argument, which we give in section 2, shows
that T3 ∩ (0, 32 ) = T2 ∩ (0, 32 ), and more generally Tq ∩ (0, q2 ) = Tq−1 ∩ (0, q2 ). Since
T2 is well-ordered, this implies that T3 ∩ (0, 32 ) is also well-ordered. Consequently
every α ∈ (0, 32 ) is a jump. To extend this to a large interval requires a non-trivial
argument, and our first result exhibits jumps even in the interval [3/2, 2) for q = 3.
That is, we show:

Theorem 1.2. Every number α ∈ [0, 2) is a jump for q = 3.

In order to better understand the struture of T3 ∩ [0, 2), we determine the order
type of this set. Order type is a measure of the structural complexity of a well-ordered
set which we define precisely in Section 4.

For q ≥ 4, the argument of Rödl and Sidorenko shows that α = q − 1, among
some other values of α, is not a jump. We give an alternate proof of this fact, using
spectral graph theory. Our proof allows us to show the following which suggests that
the set of non-jumps gets richer as q increases.

Theorem 1.3. Suppose r ∈ Q with 0 < r ≤ 1. Then there exists an integer
Q = Q(r) such that for any q > Q, q − r is not a jump for q.

The remainder of the paper is organized as follows. In Section 2, we make some
preliminary definitions, and state some results established by Sidorenko in [11] which
we use in the proof of Theorem 1.2. In Section 3 we complete the proof of Theorem 1.2,
which extends ideas of Sidorenko in the case q = 2. In Section 4, we determine the
order type of T3 ∩ [0, 2). We outline the definitions and facts from spectral graph
theory which will be necessary for the proof of Theorem 1.3 in Section 5 and prove
this theorem in Section 6.

2. Preliminaries. The basic idea of the proof of Theorem 1.2 is, first, to observe
that we may restrict our attention to the extremal densities obtained by a special
class of ‘globally dense’ graphs. Second, we show that these dense graphs may be
constructed in an appropriate manner from a bounded number of graphs. The fact
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that the number of these blocks is bounded is the essential reason why we may derive
the fact that T3 ∩ [0, 2) is well-ordered.

Let us begin by setting out some notation. Throughout G denotes a q-multigraph.
For a vertex v ∈ V (G) and set S ⊆ V , the neighborhood of v in S, denoted NS(v) is
a multiset consisting of all neighbors of v in S with multiplicity. The t-neighborhood
of v in S, denoted N t

S(v) is the set (not multiset!) of neighbors of G which occur in
N(v) with multiplicity exactly t. In the case, S = V (G), we simply refer to N(v)
and N t(v). As a slight abuse of notation, for any two vertices u and v, we say that
N(u) = N(v) if NV (G)\{u,v}(u) = NV (G)\{u,v}(v) as multisets. That is, we say that
two vertices u and v have the same neighborhood if they have the same neighborhood
(with respect to multiplicities) in V (G) \ {u, v}.

Given two q-multigraphs, H and G with vertex sets {u1, . . . , um} and {v1, . . . , vn}
respectively with m ≤ n, we say that H is a subgraph of G, denoted H ⊆ G if there
is an injective map ϕ : V (H) → V (G) such that if there are r edges between ui and
uj in H, then there are at least r edges between ϕ(ui) and ϕ(uj) in G.

We denote by Kt
k, for t ≤ q, the complete graph where every vertex is joined by

t edges.

2.1. Globally dense graphs. We begin this section with a definition which we
use to express the densities of a q-multigraphs constructed from G.

Definition 2.1. The Lagrangian of a q-multigraph G is defined to be

λ(G) = max{u∗AGu :
∑̀
i=1

ui = 1, ui ≥ 0 ∀i ≤ `}

where u∗ denotes the transpose of the vector u, and AG denotes the adjacency matrix
of G.

Notice that if G and H are q-multigraphs with H ⊂ G then it follows that
λ(H) ≤ λ(G).

For a q-multigraph G, the Lagrangian λ(G) measures the density of the densest
possible blowup of G, where by blowup we mean the following:

Definition 2.2. Let G be a q-multigraph, on {v1, . . . , vn}. The blowup of G by
a vector x ∈ Zn≥0 is defined as the graph constructed by the following procedure:

(i) Replace each vertex vi ∈ Gi with a set of vertices Vi of size xi
(ii) If there are p edges between vi and vj in G, then adjoin every vertex of Vi

with every vertex of Vj by p edges.
(iii) Each of the vertex sets Vi are independent. If vertex vi has p′ loops in G,

then we will join every pair of vertices in Vi p
′ times.

A modified blowup of G is the same, but replacing condition [(iii)] by

(iii’) Each of the vertex sets Vi is a K
(1)
xi .

Observe that, for any q-multigraph G and any vector x ∈ Zn where xi ≥ 1 for all
i, G ⊂ G(x).

Definition 2.3. A q-multigraph G is globally dense if, for any induced subgraph
G′ of G such that G′ 6= G, it follows that λ(G′) < λ(G).

Recall that we defined Tq to be the set of extremal densities of famlilies of q-
multigraphs. We now define several related sets which are useful in the proof of
Theorem 1.2. First we define the following sets.

Mq = {G : G is a globally dense q-multigraph}
Lq = {λ(G) : G ∈Mq}

(2.1)
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Note that since every graph G has a dense induced subgraph G′ with λ(G) = λ(G′),
we may have just as easily defined Lq to to be {λ(G) : G is a q-multigraph}. While
these definitions are equivalent, the fact that we may consider only globally dense
multigraphs is helpful to our proof.

We also define truncated versions of Tq and Lq as follows. For α ≥ 0, we define
T α
q to be T α

q = Tq∩[0, α) and similarly L α
q to be L α

q = Lq∩[0, α). In this notation,

the fact proved shortly after the statement of Theorem 1.2 is that T
q/2
q = T

q/2
q−1 .

A key observation of Brown and Simonovits [3] is the following:
Proposition 2.4. For any α ≥ 0 and q ≥ 1, we have the following
(i) T α

q is well-ordered if and only if L α
q is well-ordered.

(ii) If we denote by L α
q the closure of the set L α

q with regard to its limit points

then L α
q ⊂ T α

q ⊆ L α
q .

Proposition 2.4 immediately makes it clear that Tq ∩ [0, q/2) = Tq−1 ∩ [0, q/2)
for any q ≥ 1. This is because, if a globally dense q-multigraph G contains an edge
of multiplicity q then λ(G) > λ(Kq

2) = q/2 where Kq
2 is the graph consisting of two

vertices joined by an edge of multiplicity q.
In order to better understand the Lagrangian of globally dense multigraphs, we

recall some results of Sidorenko and make a few additional observations which will be
useful in our proof.

In [11], Sidorenko gave the following useful characterization of globally dense
q-multigraphs:

Theorem 2.5 ( [11, Theorem 1] ). A q-multigraph is globally dense if and only
if its adjacency matrix AG satisfies

(a) AG is non-singular, and all components of the vector 1A−1G are positive; and
(b) AG is of negative type, i.e. x∗AGx < 0 holds for any vector x such that

x∗1 = 0 with 1 = (1, 1, . . . , 1) where x∗ denotes the transpose of the real
vector x.

For our purposes, the most useful aspect of Theorem 2.5 is that it allows us to
show a multigraph G is not globally dense by showing that its adjacency matrix AG is
not of negative type. Note that if a principle submatrix of AG is not of negative type,
neither is AG. As a slight abuse of notation we shall say that G is of negative type
if its adjacency matrix AG is. To summarize, we observed that if G is globally dense
then every induced subgraph of G is of negative type. Now we list a few examples of
graphs that are not of negative type which will be relevant in the next section.

Example 1. The following 3-multigraphs are not of negative type:
(1) The 3-multigraph consisting of two independent vertices is not of negative

type, as the adjacency matrix is the zero matrix. Thus in a globally dense
graph every pair of vertices will be joined by at least one edge.

(2) Sidorenko [11] observed the following family is not of negative type. Let Ea,b,c
(with c(ab− 1) ≥ (2ab+ a+ b)) be the 3-multigraph with three sets of vertices
A,B and C of sizes a, b and c respectively. Every vertex of A is connected
to every vertex in B by at least two edges, and every other pair of vertices is
connected by only a single edge. To observe these graphs are not of negative
type, we take x so that the weight for each vertex in A is c(b+ 1), the weight
of each vertex in B is c(a+ 1) and the weight of each vertex in C is −(a(b+
1) + b(a + 1)). A short calculation shows that, if E is the adjacency matrix
of Ea,b,c, then x∗Ex ≥ 0 as long as c(ab − 1) ≥ (2ab + a + b). If we further
require a = 1 then the previous inequality reduces to c(b− 1) ≥ 3b + 1 which
is satisfied when b ≥ 2, c ≥ 4, and b+ c ≥ 9.
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(3) If G is a q-multigraph on vertex set S ∪ T , where |S| = |T |, such that the
total number of edges completely contained in one of S or T is at least the
number of edges in between them then G is not of negative type. Here we may
verify this by setting x to be 1 on the vertices of S and −1 on the vertices
of T . Of particular use to us are the families D4 and E4 of 3-multigraphs in
the figure below. Each pair of vertices of D4 and E4 are connected by one
more edge than pictured, in order to make the figures simpler. A dashed line
indicates that both the multigraph with and without this edge are in D4 and
E4 respectively. All of these are of this type where |S| = |T | = 2.

D4 E4

2.2. Irreducible Graphs. In this subsection we characterize what it means for
a q-multigraph to be irreducible. In particular we give the following definition.

Definition 2.6. For a q-multigraph, a pair of distinct vertices u, v ∈ V (G) are
called equivalent if,

(1) N(u) = N(v) (recall this is in G \ {u, v}).
(2) u and v are joined by a single edge, v ∈ N1(u).

Further we define any vertex to be equivalent to itself.
Let us call a q-multigraph G irreducible if no pair of distinct vertices in G are

equivalent, otherwise we call G reducible.
We call the maximal irreducible part of G the core of G and denote it by G/∼.

Note that G/∼ is a subgraph of G induced by one vertex from each equivalence
class. Further note that any reducible q-multigraph G is a modified blowup of G/∼.
Indeed, the strategy of the proof of Theorem 1.2 is to show that for globally dense
3-multigraphs G with λ(G) < 2, the size of G/∼ can be bounded in terms of 2−λ(G).
Since G/∼ is a subgraph of G, we have that λ(G/∼) ≤ λ(G). Further if G is a globally
dense, reducible q-multigraph then the inequality is strict.

Example 2.
(1) Recall, K

(t)
k denotes the complete graph of multiplicity t. For any 2 ≤ t ≤ q,

observe K
(t)
k is irreducible. On the other hand, K

(1)
k /∼ is a single vertex.

(2) For q ≥ 2 if G is any q-multigraph, then any nontrivial modified blowup of G
is reducible. In addition, if G is itself irreducible then G(x)/∼ = G for any
non-negative integer valued vector x.

3. Proof of Theorem 1.2. Throughout this section a few particular classes of
graphs will be important in addition to those in Example 1 of the previous section.

For a positive integer a, let K
(1,1,3)
a,a be the bipartite 3-multigraph with a vertices in

each partite set, three edges between each pair of vertices from opposite partite sets
and a single edge between any two vertices of the same partite set. Then the following
can be shown by a direct calculation:

Proposition 3.1. lim
a→∞

λ(K(1,1,3)
a,a ) = 2

Also consider a complete 3-multigraph on k vertices such that there is an edge
of multiplicity two or three between any two vertices, which we will call a graph of
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type K
(2,3)
k . We can find a lower bound on the density of any 3-multigraph G of type

K
(2,3)
k . Since K

(2)
k ⊆ G, it follows that λ(G) ≥ λ(K

(2)
k ) = 2 − 2

k . Therefore for any
α < 2 we may choose k = k(α) large enough so that λ(G) > α.

Therefore for any α ∈ [0, 2), there exists integers a = a(α) and k = k(α) so

that any globally dense 3-multigraph G with λ(G) ≤ α does not contain K
(1,1,3)
a,a or

K
(2,3)
k as a subgraph. We now state the following lemma and show how it implies

Theorem 1.2.
Lemma 3.2. Let G be a globally dense 3-multigraph with λ(G) < 2. Let a =

a(λ(G)) and k = k(λ(G)) be defined as in the previous paragraph. Then

|G/∼| ≤ r(k, (3k + 6)2r(2a,k)),

where r(a, b) denotes the usual Ramsey number.
Proof. [Proof of Theorem 1.2] First note that since the set N∞ = {1, 2, . . . ,∞} is

well-ordered, then so is the set Nr∞ = N∞×· · ·×N∞ under the ordering x ≤ y where
we say x ≤ y if and only if xi ≤ yi for all i ≤ r. This is an important observation to
keep in mind as we proceed.

Recall that T 2
3 is the set of extremal densities in the interval [0, 2) and L 2

3 is

L 2
3 = L3 ∩ [0, 2) = {λ(G) : G is a globally dense 3-multigraph, λ(G) < 2}.

By Proposition 2.4, if L 2
3 is well-ordered, then so is T 2

3 . Hence it suffices to show
that L 2

3 is well-ordered. Actually, we prove an equivalent condition, namely that the
sets L α

3 are well-ordered for every α < 2.
Fix α < 2 and let k = k(α) and a = a(α) be constants such that any globally

dense 3-multigraph G with λ(G) ≤ α does not contain K
(1,1,3)
a,a or a subgraph of

type K
(2,3)
k . Therefore Lemma 3.2 implies that for any globally dense graph G with

λ(G) ∈ L α
3 the number of equivalence classes of G is bounded by r(k, (3k+6)2r(k,2a))

where k and a depend only on α. Hence the set of irreducible 3-multigraphs G with
λ(G) ∈ L α

3 is finite. Call this set Iα so that

Iα = {G : λ(G) ∈ L α
3 and G is irreducible}.

Since any 3-multigraph G with λ(G) ∈ L α
3 is globally dense, every pair of vertices

must be joined by at least one edge. Consequently, G is a modified blowup of its
irreducible part G/∼. Moreover, λ(G/∼) ∈ L α

3 since λ(G/∼) ≤ λ(G). Thus we can

partition the set L α
3 into a finite number of sets

⋃
G∈Iα

L α
G where

L α
G = {λ(G(x)) < α : x ∈ N|V (G)|

∞ }.

For a fixed 3-multigraph G ∈ Iα with |V (G)| = r, there is an obvious mapping
from the set Nr∞ to the set of modified blowups of G, (e.g. map x to G(x)). Note
that x ≤ y implies λ(G(x)) ≤ λ(G(y)). Using this fact and the fact that Nr∞ is
well-ordered, it is not difficult to conclude that L α

G is also well-ordered. Indeed, if
there was an infinite decreasing sequence {λ(G(xi))}∞i=1 then the sequence {xi}∞i=1

must also be decreasing. This contradicts the fact that Nr∞ is well-ordered. Thus we
conclude L α

G is well-ordered.
Since L α

3 is the union of finitely many well-ordered sets, L α
G , it follows that L α

3

is well-ordered. Therefore T 2
3 is well-ordered, completing the proof of Theorem 1.2.
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Lemma 3.2 follows almost immediately from

Lemma 3.3. Let G be a 3-multigraph with λ(G) < 2. Further assume that:

(α) If N(u) = N(v), then u ∈ N2(v) ∪N3(v). Every pair of symmetric vertices
(i.e. u, v ∈ V (G) such that N(u) = N(v) in G − {u, v}) is connected by at
least two edges, and

(β) G is of negative type.

Let k = k(λ(G)) and a = a(λ(G)) be as defined above. Then |V (G)| < r(k, (3k +
6)2r(2a,k)), where r(a, b) denotes the usual Ramsey number. We quickly show that
Lemma 3.2 follows from Lemma 3.3.

Proof. [Proof of Lemma 3.2] Let G be a globally dense 3-multigraph with λ(G) <
2. By (b) of Theorem 2.5, G is of negative type, and hence so is G/∼. Since G/∼
is irreducible, it also satisfies condition (α) of Lemma 3.3. Thus, applying Lemma
3.3 to G/∼, Lemma 3.2 follows. For a 3-multigraph, condition (α) of Lemma 3.3 is
equivalent to G being irreducible. Thus Lemma 3.2 follows by first observing that
if a globally dense 3-multigraph G is of negative type, so is G/∼. Likewise G/∼ is
irreducible and hence satisfies the conditions of Lemma 3.3. Thus G/∼ is bounded
by Lemma 3.3 as desired.

We now give the proof of Lemma 3.3, which is the crux of the argument.

Proof. [Proof of Lemma 3.3 ] First note that since G is a 3-multigraph of negative
type, then there are no induced subgraphs isomorphic to our classes from Example 1,
namely E4, D4, or Ea,b,c (with a = 1, b ≥ 4, c ≥ 2, b + c ≥ 9) and moreover any pair
of vertices is joined by at least one edge.

Let S ⊂ V (G) be a maximal clique on edges of multiplicity one. Since G contains

no subgraph of type K
(2,3)
k showing |S| ≤ s would imply that |G| is less than the

Ramsey number r(s, k). The rest of the proof shows that such a bound exists. The
proof follows in two steps: First we find a subset T ⊂ S, with the property that N3(u)
is the same for every u ∈ T and moreover |T | > c(a, k)|S| where c(a, k) is a constant
depending only on a and k. The second stage is to bound |T |. We begin by finding
our subset T .

For v ∈ S we define Siv to be neighborhood of v in S in edge multiplicity i.

For simplicity of notation, we set R = S and for v ∈ R we let Sv = N3
S(v) denote

the 3-neighborhood of v into S For each subset S̃ ⊆ S define R3
S̃

= {v ∈ R : Sv = S̃}.
Note that each vertex in R lies in exactly one RS̃ , namely RSv . Define X by taking
precisely one vertex from each nonempty RS̃ . Thus for each vertex w ∈ R \X there
is a vertex v ∈ X such that Sw = Sv. Moreover, for any pair of vertices u, v ∈ X,
Su 6= Sv. We show that |X| < r(2a, k).

Since G contains no induced copy of D4 it follows that if u, v ∈ X are joined

by a single edge then either Su ⊂ Sv or Sv ⊂ Su. Since X contains no K
(2,3)
k , the

inequality |X| < r(2a, k) will follow if we prove that X contains no K
(1)
2a as well.

Suppose, instead, X does contain an induced K
(1)
2a . Denote the vertices of this

clique {v1, . . . , v2a}. As for any pair vi, vj , either Svi ⊂ Svj or vice-versa, we may
order the vi so that Svi ⊂ Svi+1 for 1 ≤ i ≤ 2a− 1. Since these inclusions are strict,

we have that |S3
vi | ≥ i − 1. But then G contains an induced K

(1,1,3)
a,a on vertex set

N3
S(va+1) ∪ {va+1, . . . , v2a}. This contradicts our assumptions and hence X contains

no K
(1)
2a . Thus |X| < r(2a, k) as claimed.

Observe that for any u ∈ S, N3
X(u) completely determines N3(u). Therefore

there must exist a subset T ⊂ S of size |S|/2|X| with the property that N3(u) is the
same for every u ∈ T .
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Now that we have defined T , we move to the second part of the proof; bounding
|T | and hence |S|. We hence assume that |T | ≥ 9, as otherwise we have the simple
bound that |S| ≤ 9 · 2|X| ≤ 9 · 2r(2a,k). For each v ∈ R = S and i = 1, 2, 3 we set

T iv = N i
T (v). For any T̃ ⊆ T we define the set R2

T̃
= {v ∈ R : T 2

v = T̃}. Similarly as

before, R2
T̃

partitions R. Next, we define Y by taking precisely one vertex from each

non-empty R2
T̃

as T̃ ranges over all subsets of T . Note that for any pair of vertices

u, v ∈ Y , u 6= v it follows that T 2
u 6= T 2

v , and for any vertex w ∈ R − Y there is a
vertex v ∈ Y such that T 2

w = T 2
v .

Set

Yi = {v ∈ Y | |T 2
v | = i}.

We observe that |Yi| = 0 for i = 2, 3, . . . , |T | − 4. Indeed, if v ∈ Yi with i ∈
{2, 3, . . . , |T | − 4} then the sets A = {v}, B = T 2

v and C = T − T 2
v induce an

Ea,b,c of the type forbidden (i.e. with a = 1, b ≥ 2, c ≥ 4, b+ c ≥ 9) as we shall check.
Note that in our case |A| = 1, |B| ≥ 2, |C| ≥ 4, and |B| + |C| = |T | ≥ 9, so we
only must verify that the proper edges are present. Only single edges are induced on
B ∪ C as B ∪ C = T ⊆ S. From the definition of the set T it follows, as T 2

v 6= ∅,
that T 3

v = ∅. This is because either T 3
v = T or T 3

v = ∅ for all v ∈ R by the definition
of T . In particular this implies that C ⊆ T 1

v . This induced Ea,b,c would contradict
assumption (β) of the lemma, thus |Yi| 6= 0 is possible only for i ≤ 1 or i ≥ |T | − 3.

It is clear from the definition of Y that |Y0| ≤ 1. We further claim that |Y1| ≤ 1.
Indeed, if there are two distinct vertices v, u ∈ Y1 then the set of vertices {u, v}∪T 2

v∪T 2
u

would induce a copy of E4, which is forbidden by assumption (β), unless u ∈ N2(v)∪
N3(v). But then we may set A = {v}, B = {u} ∪ T 2

v and C = T \ (T 2
v ∪ T 2

u). Since
|T | ≥ 9, this is an induced E1,2,7 which is likewise forbidden.

Consider the collection {T 2
v : v ∈ Yt−3 ∪ Yt−2 ∪ Yt−1}. We define Y ′ ⊆ Y to be

the set of v′ so that T 2
v′ is a minimal element of this collection under inclusion. More

formally, we let

Y ′t−2 =
{
v ∈ Y | ∀v′ ∈ Yt−3, T 2

v′ 6⊂ T 2
v

}
Y ′t−1 =

{
v ∈ Y | ∀v′ ∈ Yt−3 ∪ Y ′t−2, T 2

v′ 6⊂ T 2
v

}
Y ′ = Yt−3 ∪ Y ′t−2 ∪ Y ′t−1.

For the remainder of the proof we will focus on the subgraph induced by T and Y ′.
We have shown that every vertex in T except possibly one has a “large” neighborhood
in Y (hence in Y ′). Now we will use this fact to bound |T |.

By definition of Y ′, for any two vertices v, v′ ∈ Y ′, T 2
v 6⊆ T 2

v′ and T 2
v′ 6⊆ T 2

v .
Therefore, for each v, v′ ∈ Y ′, there exists vertices u ∈ T 2

v and u′ ∈ T 2
v′ such that

v ∈ N1(u′) and v′ ∈ N1(u). In order to prevent {u, u′, v, v′} from inducing a copy
of E4, v and v′ must be joined by at least two edges. Thus the vertices of Y ′ form a

graph of type K
(2,3)
|Y ′| , so by assumption |Y ′| ≤ k − 1.

If we take, as slight abuse of notation, T 2
v = T−T 2

v , we have
⋂
v∈Y ′

T 2
v = T \

⋃
v∈Y ′

T 2
v .

On the other hand, by definition of Y ′, we have |T 2
v | ≤ 3, and thus∣∣∣∣∣T \ ⋃

v∈Y ′
T 2
v

∣∣∣∣∣ ≥ |T | − 3|Y ′| ≥ |T | − 3(k − 1).
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Therefore if we can bound

∣∣∣∣∣ ⋂
v∈Y ′

T 2
v

∣∣∣∣∣ then we obtain a bound on |T |.

We claim that in fact

∣∣∣∣∣ ⋂
v∈Y ′

T 2
v

∣∣∣∣∣ ≤ 2. Indeed, assume that T̃ =
⋂
v∈Y ′ T

2
v contains

three or more vertices. First observe that vertices u ∈ T̃ have identical neighborhoods
N i(u)∩(V (G)\Y1), i = 1, 2, 3 in the set V (G)\Y1. Since |Y1| = 1, at most one vertex

of T̃ is by joined by two edges to a vertex of Y1 and thus the remaining two vertices
have the same neighborhoods (with the same multiplicities) in V (G). By assumption
(α) of this lemma, the two symmetric vertices must be connected by at least two
edges, contradicting the fact that the vertices are in S and hence connected by only
a single edge. Thus

2 ≥

∣∣∣∣∣ ⋂
v∈Y ′

T 2
v

∣∣∣∣∣ =

∣∣∣∣∣T\ ⋃
v∈Y ′

T 2
v

∣∣∣∣∣
≥ |T | − 3|Y ′|

≥ |S|
2|X|

− 3(k − 1)

This yields the inequality |S| ≤ (3k − 1)2|X|. We previously showed that |X| <
r(2a, k) hence it follows that |S| ≤ (3k − 1)2r(2a,k). On the other hand, we only have
this bound under the assumption that |T | ≥ 9 and hence it is only guaranteed if
|S| ≥ 9 · 2r(2a,k). Combining,

|S| ≤ max{(3k − 1), 9}2r(2a,k) ≤ (3k + 6)2r(2a,k).

completing the result.
Now we are ready to prove Lemma 3.2 which states that the number of equivalence

classes of any globally dense 3-multigraph G with λ(G) < 2 has fewer than r(k, (3k+
6)2r(k,2a)) equivalence classes. In order to obtain the proof, we will carefully choose
a subgraph of G with order equal to the number of equivalence classes in G which
satisfies assumptions (α) and (β) of Lemma 3.3.

Proof. [Proof of Lemma 3.2] Since G is globally dense, it is of negative type.
Suppose that there are two vertices, u and v which are symmetric, joined by a single
edge and at least one of the two vertices has a loop, say u. In this case, if G′ is the
multigraph obtained by removing v, one can easily observe thatG is a modified blowup
of G′. Therefore it follows that λ(G) ≤ λ(G′) which contradicts the assumption that
G is globally dense. Hence vertices of G1 and G are identical. Since G is of negative
type, so is G1.

Let G2 = G1/∼ be the irreducible part of G1. The number of vertices of G2 is
equal to the number of equivalence classes of G. Futher, since G2 is irreducible, then
any pair of symmetric vertices must be joined by at least two edges. G1 is of negative
type which implies that G2 ⊆ G1 is of negative type as well. Since conditions (α) and
(β) of Lemma 3.3 are met, we can now apply this lemma to obtain the desired result.

4. Order type of L 2
3 and T 2

3 . In the previous section, we showed that the
sets L 2

3 and T 2
3 are well-ordered. This immediately raises the question, what is its

order type, where by order type we mean the following.
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Definition 4.1. Given a well-ordered set S, the order type of S, denoted ord(S),
is the class of well-ordered sets for which there is an order preserving isomorphism
between any two elements of the class.

Every well-ordered set is order-equivalent to exactly one ordinal number. The
ordinal numbers are taken to be the canonical representatives of their classes, and
so the order type of a well-ordered set is usually identified with the corresponding
ordinal. For example, the order type of the natural numbers is ω. There are un-
countably many countably infinite ordinals, namely ω, ω + 1, ω + 2, . . . , ω · 2, ω · 2 +
1, . . . ω2, . . . , ω3, . . . , ωω, . . . , ωω

ω

, . . .. Here addition and multiplication are not com-
mutative. In particular 1+ω is ω rather than ω+1 which is the smallest ordinal larger
than ω. Likewise, 2 · ω is ω while ω · 2 is the ordinal type of two infinite increasing
sequences in which the limit point of one is strictly smaller than the limit point of the
other.

Notice that sup(L 2
3 ) = 2 which is not in the closure L 2

3 by the definition of
the set (specifically the fact that L 2

3 ∈ [0, 2)). This along with Proposition 2.4 (ii)
immediately yields the following.

Fact 1. ord(T 2
3 ) = ord(L 2

3 )

Therefore we simply need to compute ord(L 2
3 ). Here we determine that ord(L 2

3 ) =
ωω. We prove this by bounding ord(L 2

3 ) from both sides by ωω. The above then yields
that ord(T 2

3 ) as well.

We first give a proof of the lower bound. Observe that, for the complete 2-
multigraph on n vertices with all edges of multiplicity two K2

n, the set

LK2
n

= {λ(K2
n(x)) : x ∈ Zn≥0}

is contained in L 2
3 . We show that ord(LK2

n
) ≥ ωn. Since LK2

n
⊆ L 2

3 for all n ≥ 1,
this gives that ord(L 2

3 ) ≥ ωn for all n ≥ 1, whence ord(L 2
3 ) ≥ ωω.

Finally, we give a proof of the upper bound. This proof is based on the fact that,
for a fixed dense q-multigraph G on n vertices the order on {λ(G(x)) : x ∈ Nn} is
a linear extension of Nn where we use the usual partial ordering of Nn. This follows
from a more general result which is due to deJongh and Parikh [4].

Proposition 4.2 ([4]). Let φ : Nn → R be a function for which φ(x) ≤ φ(y)
whenever x < y. Then

(1) {φ(x) : x ∈ Nn} is a well-ordered set, and
(2) ord{φ(x) : x ∈ Nn} ≤ ωn.

We show that Proposition 4.2 implies in particular that ord(LG) ≤ ωn for all
dense G on n vertices. Lemma 3.2 implies, for any α < 2, that the total number of
globally dense, irreducible graphs G with λ(G) < α is finite. But for an arbitrary
3-multigraph H with λ(H) < α, there is a globally dense induced subgraph H ′ with
λ(H ′) = λ(H). Further H ′ is a modified blowup of an irreducible graph G and
λ(G) ≤ λ(H ′) < α. Therefore,

ord(L α
3 ) ≤

∑
G∈Jα

{ωr : |V (G)| ≤ r} < ωω

Finally since, L 2
3 =

⋃
α<2 L α

3 , we arrive at ord(L 2
3 ) ≤ ωω.

It should be noted that, the family {K2
n}n is a family of 2-multigraphs, and as

such, it can be quickly observed that the set L2 has ordinal number ωω as well.

Given a vector x = (x1, . . . , xn) with possibly some infinite coordinates, we define
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a sequence {ym}m as

(ym)i =

{
xi if xi <∞,
m if xi =∞.

and define

λ(G(x)) = lim
n→∞

λ(G(yn))

It is easy to observe that whenever x has all finite components and x < y then
λ(G(x)) ≤ λ(G(y)) because G(x) is an induced subgraph of G(y).

With this in mind, notice that since, for some integer a > 0 the graph K2
1 (a) is a

simple clique, then

LK2
1

=

{
1− 1

k
: k ≥ 0

}
which clearly has order type ω. Using this as our base case, we will show by induction
the following.

Claim 1. For every integer n ≥ 1,

ord(LK2
n
) = ωn.

Proof. We show this by induction on n. For n = 1, the claim is easy and we
demonstrated the set LK2

1
above. Assume then that

ord(LK2
n−1

) = ωn−1

and consider the case for K2
n. We may consider λ(·) as a linear extension of Nn which

maps each x ∈ Nn to λ(K2
n(x)). Then it follows from Proposition 4.2 that LK2

n
≤ ωn.

Thus we only need to show the upper bound.
For each fixed integer b ≥ 0,

ord{λ(K2
n(y, b)) : y ∈ Zn−1≥0 } ≥ ω

n−1.

This follows from the fact that the map f : λ(K2
n(y, b)) 7→ λ(K2

n−1(y)) is surjective
and ord(LK2

n−1
) ≥ ωn−1 by our inductive hypothesis. Further λ(K2

n(∞, . . . ,∞, b)) is

the limit point of type ωn−1 of this set. Therefore, for any ε > 0 the set

{λ(K2
n(y, b)) : y ∈ Nn−1} ∩ (λ(K2

n(∞, . . . ,∞, b))− ε, λ(K2
n(∞, . . . ,∞, b)))

has ordinal type ωn−1. Since this holds for every b ≥ 0, then we generate a sequence
of limit points {λ(K2

n(∞, . . . ,∞, b))}b. Finally observe that

λ(K2
n(∞, . . . ,∞, b)) = lim

k→∞
λ(K2

n(k, . . . , k, b))

= lim
k→∞

λ(K(n−1)k+b ∪Kk,...,k,b)

< lim
k→∞

λ(K(n−1)k+b) + lim
k→∞

λ(Kk,...,k,b)

= 1 + (1− 1

n
) = 2− 1

n
= λ(K2

n(∞, . . . ,∞))
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where the strict inequality above holds because λ(K(n−1)k+b) and λ(Kk,...,k,b) are
acheived at different vectors.

The above implies that the set {λ(K2
n(∞, . . . ,∞, b))}b contains a monotone in-

creasing sequence whose limit is λ(K2
n(∞, . . . ,∞)). Thus, since each of the points

λ(K2
n(∞, . . . ,∞, b)) is a limit point of type ωn−1 then it follows immediately that

ord(LK2
n
) ≥ ωn,

and taken with the lower bound, we get ord(LK2
n
) = ωn as desired.

As noted in the introduction, this immediately implies that ord(L 2
3 ) ≥ ωω. To

show the lower bound, we use the following lemma which is implied by Proposition
4.2.

Claim 2. For any globally dense graph G on n vertices,

ord{λ(G(x)) : x ∈ Nn} ≤ ωn

Proof. For a fixed globally dense graph G, the map λG : Nn → R defined by
x 7→ λ(G(x)) is easily seen to satisfy the condition that λ(G(x)) ≤ λ(G(y)) whenever
x < y. Indeed, since G(x) ⊂ G(y) under these conditions, it holds. Applying Lemma
4.2 to the map λG then immediately yields the result.

Applying Claim 2 to graphs G with |V (G)| < r as described in the introduction,
yields ord(L 2

3 ) ≤ ωω.

5. Spectral Prerequisites. Let A denote adjacency matrix of a d-regular sim-
ple graph G. Then A has eigenvalues

d = λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −d

Note that if G is connected then λ1 < λ0. For simplicity we will say that λ is an
eigenvalue of the graph G when λ is an eigenvalue of its adjacency matrix.

A has orthonormal eigenvectors φ0, . . . , φn−1 associated with λ0, . . . , λn−1, where
φ0 = 1√

n
1 with 1 = (1, 1, . . . , 1).

For a graph G, let |λ| denote the second largest eigenvalue of G. A Ramanujan
graph is a graph where |λ| < 2

√
d− 1. Given any prime integer p and any k ≥ 1,

d-regular Ramanujan graphs are known to exist with d = pk + 1. In particular, the
following is a special case of a Theorem 5.13 of Morgenstern [9].

Proposition 5.1. For every even integer d, there exist 5-regular Ramanujan
graphs on 4d(4d + 1)(4d − 1) vertices.

Constructions of d-regular Ramanujan graphs are not known for all values of d.
The following result of Friedman [7], however, implies that random d-regular graphs
are close to Ramanujan with high probability.

Proposition 5.2. For any fixed ε > 0 and d ≥ 3, a random d-regular graph on
n has |λ| < 2

√
d− 1 + ε with probality 1− o(1).

For d > 5, this implies that, so long as n is sufficiently large, there exist d-regular
graphs with |λ| ≤ d− 1 since 2

√
d− 1 < d− 1.

We also need the following well known facts, see eg. [8]:
Example 3. The adjacency matrix of the following special classes of graphs have

eigenvalues as follows:
1. The complete graph Kn has eigenvalues λ0 = n− 1 and λi = −1 for 1 ≤ i ≤

n− 1.
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2. For a ≥ 1 and n with a|n, the complete multipartite graph Ka(n/a) with a
parts of size n/a has (a− 1)na as an eigenvalue with multiplicity 1, −na as an
eigenvalue with multiplicity a− 1 and zero as an eigenvalue with multiplicity
a(na − 1).

�

6. Proof of Theorem 1.3. Recall that α is a jump for q if and only if there
does not exist a sequence of graphs {Gn}∞n=1 with

α < λ(Gn) = α+ o(1).

Throughout this section, we use the following notation. G = G1 ∪G2 means that
the multigraph G is the disjoint union on G1 and G2. That is, the multiplicity of the
edge xy in G = G1 ∪G2 is the sum of the the multiplicity of xy in G1 and xy in G2.

For example, under this notation K
(2)
k = Kk ∪Kk. A property of particular interest

is the following: If G,G1 and G2 are multigraphs so that G = G1∪G2 and A, A1 and
A2 are their corresponding adjacency matrices then for any x ∈ Rn,

x∗Ax = x∗A1x + x∗A2x. (6.1)

We will use this in the proof of Theorem 1.3 by constructing a q-multigraph as a union
of simple graphs and using (6.1) to analyze λ(G).

Proof. [Proof of Theorem 1.3] Let r ∈ Q be given. We want to show that there
exists an integer Q such that q−r is not a jump for any q ≥ Q. Let m to be the smallest
integer such that r can be written as the sum of m unit fractions. Furthermore, let

r =

m∑
j=1

1

aj
,

where aj ∈ N and a1 ≤ a2 ≤ · · · ≤ am. Fix Q = m+ 4. We will show that q − r
is not a jump for any q ≥ Q.

Let n be an integer such that ai|n for all 1 ≤ i ≤ m, and for which a d =
(q −m + 1)-regular graph on n/a1 vertices with second largest eigenvalue less than
(d− 1) exists. Note that there are infinitely many values of n for which such graphs
exist. When q − m = 4, 5-regular Ramanujan graphs have this property, whose
existence is guaranteed by Proposition 5.1. When q−m > 4, sufficiently large random
regular graphs satisfy this property with high probability, by Proposition 5.2. We will
define a q-multigraph Gn in terms of auxiliary graphs Hi, for i = 1, . . . ,m and R
which we describe below.

We begin by defining Hi = Kai(n/ai), the complete ai-partite graph where all
parts are of size n/ai. We also let R denote the graph consisting of a1 disjoint copies
of the (q −m+ 1) regular graph on n/a1 vertices whose existence we asserted above.

We then write Gn = K
(q−m)
n ∪ (

⋃m
i=1Hi)∪R. We require that the disjoint graphs

in R align with the empty partite sets in H1, but the placement of Hi for i = 2, . . . ,m
is arbitrary. Alternately, if Ai, K and B denotes the adjacency matrix of Hi, Kn and
R respectively, then A = (q −m)K +

∑
Ai +B is the adjacency matrix of Gn. Note

that any edge in Gn has multiplicity at most q.
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We now wish to compute λ(G). Note that for any vector x where
∑
xi = 1,

x∗Ax = x∗((q −m)K +

m∑
i=1

Ai +B)x

= (q −m)x∗Kx +

m∑
i=1

x∗Aix + x∗Bx. (6.2)

We have

(q −m)x∗Kx = (q −m)
(
(

n∑
i=1

xi)
2 −

n∑
i=1

x2i
)

= (q −m)− (q −m)

n∑
i=1

x2i .

Since the Hi are (ai−1)
ai

n regular, we have that 1/
√
n is the principal eigenvector of

each Ai. Since x∗1 =
∑
xi = 1 and all other eigenvalues of Ai are non-positive (c.f.

Example 2 above), we have that

x∗Aix ≤
1

n
1∗Ai1 = 1− 1

ai
. (6.3)

Finally, note that B has eigenvalue (q − m + 1) with multiplicity a1, and all other
eigenvalues are at most q − m in absolute value. We take a set of orthonormal
eigenvectors of B, φ1, . . . , φn such that φ1, . . . , φa1 are normalized indicator vectors
for the a1 disjoint copies of the graph inside R. In other words, if Xi is the vertex set
one of the a1 copies of the graph within R, we have that φi = 1√

n/ai
1Xi . We write

x =

n−1∑
i=0

αiφi,

where we note that α1, . . . , αa1 are bounded by
√
a1/n.

Further note that
n−1∑
i=0

α2
i =

n∑
i=1

x2i ,

and

x∗Bx =

n−1∑
i=0

α2
iλi. (6.4)

Due to the fact that λ1 = λ1 = · · · = λa1−1 = q − m + 1 with corresponding α′is
bounded by

√
a1/n, and also recalling q −m ≥ λa1 ≥ · · · ≥ λm−1, we infer that

n−1∑
i=0

α2
i (λi − (q −m)) ≤ a21

n
(6.5)

Combining (6.2), (6.3), (6.4) and (6.5), we have that

(6.2) ≤ (q −m)− (q −m)

n∑
i=1

x2i +

m∑
j=1

(1− 1

aj
) +

n−1∑
i=0

α2
iλi

= (q −m) + (m− r) +

n−1∑
i=0

α2
i (λi − (q −m))

≤ q − r +
a21
n
.
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Thus λ(Gn) ≤ q − r +
a21
n . On the other hand, taking x = 1/n shows that λ(Gn) ≥

q − r + 1
n . Thus, λ(Gn) = q − r + o(1), which shows that q − r is not a jump.

Remark: Theorem 1.3 shows that for any rational r ∈ (0, 1], eventually q − r
will become a non-jump. An interesting open question is to find the dependence (if
any!) on r. It is known that if r = p

q in lowest terms, that there is a unit fraction

decomposition in O(
√

log q) terms, see [12]. Of course it is possible that there are no
jumps, even for q ≥ 4.

Appendix. Notation.
Here we list some of the notation used throughout the paper for convenience.

Tq = {τ(F ) : F is a (possibly infinite) family of q-multigraphs}

λ(G) = max{u∗AGu :
∑̀
i=1

ui = 1, ui ≥ 0 ∀i ≤ `}

Mq = {G : G is a q-multigraph}
Lq = {λ(G) : G ∈Mq}
L α
q = Lq ∩ [0, α) T α

q = Tq ∩ [0, α)

Iα = {G : λ(G) ∈ L α
3 and G is irreducible}

L α
G = {λ(G(x)) < α : x ∈ N|V (G)|

∞ }
Kq
n is a clique on n vertices with edges of multiplicity q.
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