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Abstract

The s-color degree Ramsey number of a graph G, denoted R∆(G; s), is min{∆(H) : H
s→ G},

where H
s→ G means that every s-edge-coloring of H contains a monochromatic copy of G. The

closed k-blowup of a graph is obtained by replacing every vertex with a clique of size k and

every edge with a complete bipartite graph where both partite sets have size k; we say that G
is a closed blowup of H if G is the closed k-blowup of H for some k. We prove that there is a

function f such that R∆(G; s) ≤ f(∆(G), s) when G is a closed blowup of a tree.

1 Introduction

When G is a graph, we use V (G) to denote the vertex set of G and E(G) to denote the edge set.
The degree of a vertex u in G is denoted by d(u). Given graphs H and G, we write H

s→ G if every
s-edge-coloring of H contains a monochromatic copy of G. For graphs, Ramsey's Theorem implies
that for every graph G and each positive integer s, there is a graph H such that H

s→ G. When
H

s→ G, we call G the target graph and H a Ramsey host for G.

The main goal of graph-based Ramsey theory is to understand the relation H
s→ G. Typically,

a target graph G is �xed and one seeks a Ramsey host for G that has a desired property or is
extremal with respect to a certain parameter. The Ramsey number of a graph G, denoted R(G; s),
is min{|V (H)| : H s→ G}. Chvátal, Rödl, Szemerédi, and Trotter [4] proved that for each k, there
is a constant ck such that R(G; 2) ≤ ck|V (G)| whenever G has maximum degree at most k. In
other words, the Ramsey numbers of bounded degree graphs grow only linearly with the number
of vertices, in marked contrast to the exponential growth that occurs when the bounded degree
condition is omitted. Several groups generalized this result to multicolored hypergraphs (see [5] and
[6]).

The size Ramsey number of G, denoted R′(G; s), is min{|E(H)| : H s→ G}. Beck [2] proved
that for each s, there exists a constant cs such that R′(Pn; s) ≤ csn, where Pn is the path on n
vertices. Beck asked whether the size Ramsey numbers of bounded degree graphs also grow linearly
in the number of vertices. In addition to paths, Beck's question was answered in the a�rmative for
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trees [9] and cycles [10]. However, Rödl and Szemerédi [15] resolved Beck's question in the negative
by constructing a family of 3-regular graphs whose size Ramsey numbers grow superlinearly.

We consider a variant of Beck's question where we no longer require our Ramsey hosts to have few
edges but we do insist they have bounded degree. The degree Ramsey number, denoted R∆(G; s),
is min{∆(H) : H

s→ G}, where ∆(H) denotes the maximum degree in H. The degree Ramsey
analogue of Beck's question follows naturally.

Question 1. Is R∆(G; s) bounded by a function of ∆(G) and s?

A family of graphs G is R∆-bounded if there is a function f(d, s) such that R∆(G; s) ≤ f(∆(G), s)
for every G ∈ G. Question 1 is then whether or not the family of all graphs is R∆-bounded. Paths [1]
and cycles [10, 11] are R∆-bounded. Extending the Alon et al. argument for paths, Jiang observed
that R∆(T ; s) ≤ 2s(∆(T )− 1) when T is a tree, and this bound is nearly sharp when s and ∆(T )
are large [12]. While we are unable to resolve Question 1, we believe that the family of all graphs
is not R∆-bounded.

Our work was motivated by a concrete problem in the direction of Question 1. For a graph G,
let Gk denote the graph on V (G) where distinct vertices are adjacent if and only if their distance in
G is at most k. Is the family of powers of paths R∆-bounded? Even the special case of determining
whether R∆(P 2

n ; s) is bounded by a function of s is not clear.

In this note, we resolve this problem. In fact, we prove more. The closed k-blowup of G, denoted
G[k], is the graph obtained from G by replacing each vertex in G with a clique of size k and each
edge in G with a complete bipartite graph whose partite sets each have size k. We show that the
family of closed blowups of trees is R∆-bounded. It follows that the family of powers of paths is
R∆-bounded since P k

n is a subgraph of Pdn/ke[k] and ∆(Pdn/ke[k]) < 3
2∆(P k

n ) when n is large in
terms of k.

One interesting test case for Question 1 is the family of grids Pn � Pn, where G � H is the
graph on V (G)× V (H) with (u1, v1)(u2, v2) ∈ E(G � H) if and only if u1 = u2 and v1v2 ∈ E(H)
or v1 = v2 and u1u2 ∈ E(G). It is not known whether the family of grids is R∆-bounded.

In addition to minimizing |V (H)|, |E(H)|, and ∆(H), several researchers have sought Ramsey
hosts H that are extremal with respect chromatic number [3] and clique number [8, 13, 14]. The
former reference also provides exact results on the degree Ramsey numbers of complete graphs and
stars; in particular, R∆(Kn; s) = R(Kn; s)− 1.

2 Construction

A graph is d-regular if every vertex has degree d, and the girth of a graph is the minimum number
of vertices in a cycle. Erd®s and Sachs [7] proved that for every d and g, there is a d-regular graph
with girth g. Alon, Ding, Oporowski, and Vertigan [1] observed that if H has girth at least n and
average degree at least 2s, then H

s→ Pn, where Pn is the path on n vertices. Jiang [11] noted that
their argument extends to the case that the target graph is a tree. We include the short proof for
completeness.
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Lemma 2. If T is a tree with |V (T )| ≥ 3 and H is a graph with average degree at least 2s(∆(T )−1)
and girth at least |V (T )|, then H s→ T .

Proof. Consider an s-edge-coloring of H and let n = |V (H)|. Since H has average degree at least
2s(∆(T )−1), we have |E(H)| ≥ ns(∆(T )−1) and hence some color is used on at least n(∆(T )−1)
edges. Let H0 be a monochromatic subgraph of H with at least ns(∆(T ) − 1) edges. It follows
that H0 contains a subgraph H1 with δ(H1) ≥ ∆(T ). Indeed, if every subgraph of H0 had a
vertex u with d(u) ≤ ∆(T ) − 1, then iteratively deleting vertices of minimum degree would yield
|E(H0)| ≤ (n − 1)(∆(T ) − 1) < n(∆(T ) − 1), a contradiction. Let H1 be a subgraph of H0 with
δ(H1) ≥ ∆(T ). Since H1 has minimum degree at least ∆(T ) and girth at least |V (T )|, a well known
greedy embedding strategy �nds T as a subgraph of H1. Hence H

s→ T .

Hence, for each tree T with at least 3 vertices, Lemma 2 implies that R∆(T ; s) ≤ 2s(∆(T )− 1).
Our main theorem generalizes this bound to the case where the target graph is a closed blowup of
a tree. Let [n] = {1, . . . , n}, and, when S is a set, let

(
S
k

)
be the set of subsets of S of size k. We

will need the well known strengthening of the Erd®s and Sachs result that for every d and g, there
is a bipartite d-regular graph with girth at least g.

Theorem 3. Let k and s be integers with k ≥ 2 and s ≥ 1, and let r = R(K2k; s). If T is a tree

with |V (T )| ≥ 3, then R∆(T [k]; s) ≤ (r − 1)
(
2
(
r

2k

)
(∆(T )− 1)

)( r−1
2k−1).

Proof. Let t =
(
r

2k

)
, t′ =

(
r−1

2k−1

)
, d = 2t(∆(T ) − 1), and let B be a d-regular (X,Y )-bigraph with

girth at least |V (T )|. To construct a Ramsey host for T [k], we �rst use B to construct an r-uniform,
r-partite hypergraph F . The partite sets of F are Z1, . . . , Zr. The vertices in Zj are certain t-tuples

of elements in V (B) ∪ E(B), indexed by
([r]

2k

)
. When w is such a tuple and A ∈

([r]
2k

)
, we use wA

to denote the A-value of w. For each A ∈
([r]

2k

)
, let A− be the k smallest integers in A and A+ be

the k largest integers in A. The partite set Zj consists of all tuples w such that for each coordinate
A, the A-value of w belongs to X, Y , or E(B) according to whether j ∈ A−, j ∈ A+, or j 6∈ A,
respectively. It remains to specify the edges of F .

In the following, we use wj,A to denote the A-value of a vertex wj ∈ Zj . When u ∈ X, v ∈ Y ,
and uv ∈ E(B), we say that the edge uv satis�es the A-coordinate of wj ∈ Zj if

wj,A =


u if j ∈ A−

v if j ∈ A+

uv if j 6∈ A.

Consider w1, . . . , wr with wj ∈ Zj for each j. We let w1 . . . wr ∈ E(F ) if and only if for each

coordinate A ∈
([r]

2k

)
, there is some edge in B that simultaneously satis�es the A-coordinate of each

vertex in {w1, . . . , wr}. We obtain our host graph H from F by replacing each edge in F with an

r-clique in H. Consequently, wi ∈ Zi and wj ∈ Zj are adjacent in H if and only if for each A ∈
([r]

2k

)
,

there is an edge in B that satis�es the A-coordinates of wi and wj .

To motivate our construction, we note that H contains many copies of B[k], the closed k-blowup

of B. For each coordinate A ∈
([r]

2k

)
and each function h :

(([r]
2k

)
− {A}

)
→ E(B), we obtain a copy
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of B[k] in H. The copy of B[k] in H is speci�ed by the function gA,h : V (B)→
(V (H)

k

)
, de�ned as

follows:

gA,h(u) = {w : wA = u and ∀A′ ∈
([r]

2k

)
if A′ 6= A, then h(A′) satis�es the A′-coordinate of w}.

Note that at most one vertex in each partite set is a candidate for inclusion in gA,h(u). Moreover,
the condition wA = u requires that u ∈ X and j ∈ A− or that u ∈ Y and j ∈ A+. Since
|A−| = |A+| = k, always |gA,h(u)| = k. Finally, if uv ∈ E(B) with u ∈ X and v ∈ Y , it follows
from the de�nition of F that gA,h(u) ∪ gA,h(v) is contained in the edge in F where uv satis�es the
A-coordinate and the other coordinates are satis�ed by the corresponding images of h.

Let m = |E(B)|. Since each edge in F is determined by selecting for each A ∈
([r]

2k

)
an edge in B

to satisfy the A-coordinate, we have that |E(F )| = mt. It remains to show that ∆(H) ≤ (r − 1)dt
′

and that H
s→ T [k]. We claim that F is dt

′
-regular. Consider a vertex wj ∈ Zj . Indeed, if wj

belongs to an edge e ∈ E(F ), then each coordinate is satis�ed by some edge in B. If j 6∈ A, then
wj,A ∈ E(B) and the A-value of all other vertices is forced. If j ∈ A and wj,A = u, then the A-value
of all other vertices is determined by selecting an edge in B to satisfy the A-coordinate, which must
be incident to u. Since u is incident to d edges in B and t′ of the coordinates in

([r]
2k

)
contain j, the

claim follows. Moreover, since F is r-uniform, replacing each edge in F with a clique increases the
degree at each vertex by at most a factor of r − 1, and therefore ∆(H) ≤ (r − 1)dt

′
.

Finally, we show that H
s→ T [k]. Consider an s-edge-coloring of H and let e be an edge in

F . Since e becomes an r-clique in H and r = R(K2k; s), there is a monochromatic 2k-clique

contained in e. For each e ∈ E(F ), choose Se ∈
([r]

2k

)
so that {w ∈ e : w ∈ Zj for some j ∈ Se}

is a monochromatic 2k-clique in H. Hence, there exists a coordinate A ∈
([r]

2k

)
such that at least

mt/t edges e ∈ E(F ) have Se = A; in the following, �x such a coordinate A. The signature of

an edge e ∈ E(F ) with Se = A is the function h :
(([r]

2k

)
−A

)
→ E(B) that records, for every

other coordinate A′ besides A, the edge in B that satis�es A′. Since there are mt−1 signatures,
some signature is common to at least mt

t ·
1

mt−1 edges in F . Fix such a signature h. Let F ′ be the
subhypergraph of F consisting of all edges e ∈ E(F ) such that Se = A and the signature of e is h.
Note that F ′ has at least m/t edges.

We use F ′ to obtain a subgraph B? of B. For each edge e in F ′, let e? be the edge in B that
satis�es the A-coordinate. Note that the map e 7→ e? is injective since the signature of each edge
in F ′ is h. Let B? be the subgraph of B with edge set {e? : e ∈ E(F ′)}. We associate each vertex
u in B with the k-clique gA,h(u) in H. Note that each edge in B? corresponds to a monochromatic
2k-clique in H. Since B is d-regular with m edges and B? has at least m/t edges, it follows that
the average degree of B? is at least d/t. Since d/t = 2(∆(T )− 1), an application of Lemma 2 with
s = 1 implies that T is a subgraph of B?. The copy of T in B? maps via gA,h to a copy of T [k] in
H in which each 2k-clique corresponding to an edge in T is monochromatic. Since k ≥ 2 and T is
connected, it follows that the copy of T [k] is monochromatic.

We make no attempt to optimize the bound in Theorem 3. Note that the argument of Theorem 3
also applies in the hypergraph setting. The complete q-uniform n-vertex hypergraph is denoted by

K
(q)
n . Let k and q be integers with k ≥ q, let s be a positive integer, and let r = R(K

(q)
2k ; s). Let

G be the q-uniform k-blowup of a tree T on at least 3 vertices obtained by replacing each vertex u
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in T with a set Su of k vertices and replacing each edge uv in T with a copy of K
(q)
2k on Su ∪ Sv.

Repeating the construction above (except that each edge of F is replaced with a copy of K
(q)
r ) yields

a q-uniform hypergraph H with H
s→ G and ∆(H) ≤

(
r−1
q−1

) (
2
(
r

2k

)
(∆(T )− 1)

)( r−1
2k−1).

Theorem 3 constructs a Ramsey host for the closed k-blowup of a tree T using a Ramsey host
for T . It is natural to ask whether such a construction is possible in general. Is it true that the
family of closed blowups of F is R∆-bounded whenever F is R∆-bounded? The analogous statement
for open blowups, where vertices are replaced with independent sets and edges are replaced with
complete bipartite graphs, holds [11].

It is also of interest to �nd larger R∆-bounded graph families. For example, is the family of
planar graphs R∆-bounded? Since the grids Pn � Pn are planar, this question seems challenging.
However, Theorem 3 implies that the family of outerplanar graphs is R∆-bounded. Indeed, if G
is a 2-connected outerplanar graph with maximum degree d, then for every edge uv on the outer
cycle of G, we have that G is a subgraph of a closed (2d)-blowup of a rooted tree T in which each
vertex has at most 2d − 3 children and the root of T expands to contain the image of u, v, and
their neighbors. This is proved by induction on |V (G)|; the neighbors of u and v divide G− u− v
into (d(u) − 2) + (d(v) − 2) + 1 pieces which may be treated inductively. The claim then follows
from the fact that every outerplanar graph with maximum degree d is a subgraph of a 2-connected
outerplanar graph with maximum degree at most d+ 2.
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