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Abstract

Brualdi and Hollingsworth conjectured that, for even n, in a proper edge coloring
of Kn using precisely n − 1 colors, the edge set can be partitioned into n

2 spanning
trees which are rainbow (and hence, precisely one edge from each color class is in
each spanning tree). They proved that there always are two edge disjoint rainbow
spanning trees. Kaneko, Kano and Suzuki improved this to three edge disjoint rainbow
spanning trees. Recently, Carraher, Hartke and the author proved a theorem improving
this to ε n

logn rainbow spanning trees, even when more general edge colorings of Kn are
considered. In this paper, we show that if Kn is properly edge colored with n−1 colors,
a positive fraction of the edges can be covered by edge disjoint rainbow spanning trees.
Keywords: Rainbow spanning trees, One-factorizations
AMS classification: Primary: 05C15, Secondary: 05C05, 05C70.

A one-factorization of the complete graph on n vertices, Kn, is a decomposition of the edge
set of Kn into perfect matchings. Such a decomposition, which clearly exists only when n is
even, yields a proper edge coloring of Kn with precisely n−1 colors where each color appears
precisely n

2
times. Given any edge coloring of graph G (not necessarily proper), a spanning

tree T of G is called rainbow if the color every edge of T is distinct. If we take G to be a
properly edge colored Kn, then G clearly contains many rainbow spanning trees. Indeed, the
K1,n−1 based at any vertex is rainbow due to the proper coloring. Brualdi and Hollingsworth,
in [3], conjectured that, in the special case where Kn is colored by a one-factorization, much
more is true. In particular, they conjectured that the edge set of a Kn, where n ≥ 6 and
even, colored by a one-factorization can be partitioned into n

2
edge disjoint rainbow spanning

trees.

In support of their conjecture they proved in [3], using Rado’s matroid theorem, that every
one-factorization coloring of the complete graph contains two edge disjoint rainbow spanning
trees. This was slightly improved by Kaneko, Kano and Suzuki [6] to three edge disjoint
rainbow spanning trees. The approach of Kaneko, Kano and Suzuki from was inductive,
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and led them to conjecture a strengthening of the Brualdi-Hollingsworth conjecture. In
particular, they conjectured that every proper edge coloring (not necessarily arising from a
one-factorization) of Kn can have its edge set partitioned into rainbow spanning trees. This
remained, until recently, the best known result to either conjecture, but recently Carraher,
Hartke, and the author [5] proved that every coloring of Kn (not necessarily proper) where
every color is used as most n

2
times contains ε n

logn
edge disjoint rainbow spanning trees

(for some absolute constant ε > 0). This work also improved earlier results of Akbari and
Alipour which showed that if Kn is edge colored so that no color appears more than n/2
times contains at least two rainbow spanning trees.

In this paper, we show that in the context of the original conjecture of Brualdi and
Hollingsworth we can do significantly better. Indeed, we show that if Kn is colored with
a one-factorization, then a positive fraction of the edge set can be covered by edge disjoint
rainbow spanning trees.

Theorem 1. There exist constants ε, n0 > 0, so that if n > n0 with n even, and G is a Kn

colored by a one-factorization, then G contains at least εn edge disjoint rainbow spanning
trees.

Note that we make no real effort to find an optimal ε that our proof will give – largely
because it is clear that our proof will only work for ε fairly small and it is clear that new
ideas are needed to prove the Brualdi-Hollingsworth conjecture. Also note that the restriction
that n ≥ n0 is not serious – since it is already known that for n ≥ 6 at least three rainbow
spanning trees are already present, the condition n ≥ n0 may be removed (possibly by taking
3/n0 as a new, smaller, ε). None the less, as it is convenient to assume n is large in many
computations we state the theorem for n sufficiently large.

Before we give the proof of Theorem 1, let us give a sketch of the strategy of the proof,
to motivate our approach. A rather natural approach to find edge disjoint rainbow spanning
trees is the following: partition the edge set of the colored graph G into t edge disjoint graphs
G1, G2, . . . , Gt in such a way that each Gi can be guaranteed to have a rainbow spanning
tree. One reasonable way to attempt this is to choose edges to be in Gi at random. The
most naive way to attempt this would be to select each edge to be in Gi independently with
probability 1

t
; thus each graph would have the law of the Erdős-Rényi G(n, 1

t
) random graph.

This is precisely the approach of Carraher, Hartke and the author in [5]. There is a
natural bottleneck to this approach, however. If we are to find rainbow spanning trees in Gi,
then certainly Gi must be connected. As is well known (see [2]), the random graph G(n, p)
is a.a.s.1 disconnected if p < (1− ε) logn

n
. This roadblock was the primary reason why, in [5],

it was only possible to assert the existence of ε n
logn

rainbow spanning trees in graphs where
each color class has size at most n

2
.

In order to find εn edge disjoint spanning trees, this would suggest decomposing the host
G into t = εn rainbow spanning trees. As mentioned above, the graphs G(n, 1

εn
) are not

1Recall that if An is a sequence of events (for instance An may be the event that G ∈ G(n, p) is discon-
nected), we say that An occurs a.a.s. (or asymptotically almost surely) if P(An) = 1− o(1).

2



even connected – indeed, they have roughly an e−1/ε fraction of isolated vertices. Beyond
connectivity, a second requirement to finding rainbow spanning trees is having all n−1 colors
present in each of the t subgraphs. If Gi is distributed as G(n, 1

εn
), however, and since each

color class in G is of size n/2, there are roughly an e−1/(2ε) proportion of colors missing from
each Gi. Both of these serve as obstacles to Gi having a rainbow spanning tree which must
be overcome.

Another reasonable way to choose the subgraphs Gi is to chose each to be a random regu-
lar subgraph of G. Ignoring, for a second, that partitioning Kn into edge disjoint subgraphs
each having the law of a random regular graph seems a nightmarish technical challenge, such
a decomposition would relieve the problem of the Gi having isolated vertices. Robinson and
Wormald [9, 10] show a random d-regular graph, where d ≥ 3 is hamiltonian a.a.s., and
hence is certainly connected. A random d-regular subgraph of G will still have many missing
colors however (again, with high probability and for fixed d), and thus will not contain a
rainbow spanning tree. Alternately, one might choose Gi so that each color appears a fixed
number of times. While this fixes the problem of the Gi not containing all of the colors, each
subgraph will be disconnected a.a.s.

Ultimately, we combine the approaches of partitioning G into random regular graphs
(and hence ensuring connectivety) and random color-regular graphs (and hence ensuring
that each color is present.) We will proceed as follows. We initially randomly partition G
into graphs S1 ·∪ S2 ·∪ · · · ·∪ St ·∪ T , where the Si are color-regular (that is, they contain the
same number of edges of each color) and where the remainder T has certain nice properties.
From T we further extract random expander graphs. (Note that due to the fact that random
regular graphs are somewhat hard to generate, we do not actually partition T into random
regular graphs, but it suffices for our arguments that we partition T into graphs which are
sufficiently good expanders.) We then show that the unions of the color-uniform graphs and
expander graphs have rainbow spanning trees, using a criterion for the existence of a rainbow
spanning tree in a graph due to Schrijver.

The key to finding rainbow spanning trees is the following criteria, first established by
Schrijver in [11] using matroid methods, but later given graph theoretical proofs by Suzuki
[12] and also by Carraher and Hartke [4].

Proposition 1. G has a rainbow spanning tree if and only if for every 2 ≤ t ≤ n and every
partition of G with t parts, at least t − 1 different colors are represented in edges between
partition classes.

Essentially, the color uniform graphs will allow us to guarantee sufficiently many colors
between partitions with many parts and the expander graphs will allow us to guarantee
sufficiently many colors between partitions with few parts, together covering the whole range.

The remainder of the paper is organized as follows. In Section 1, we will introduce some
preliminaries making the above sketch more precise, and perform the initial partitioning into
the Si and T . In Section 2.2 we will show that we can extract the expanders which we need.
Finally, we will complete the proof in Section 3.
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1 Preliminaries

Throughout the paper, G is an edge colored Kn with color classes C1, . . . , Cn−1 which together
yield a one-factorization of Kn. In particular, this implies that n is even, and each color class
Ci satisfies |Ci| = n

2
. Also throughout C will denote a (large) constant, and t will denote

a integer with Ct < n
4
− 10

√
n. For concreteness and simplicity, we may take t = d n

5C
e.

Finally, we will assume throughout that n, and C are taken to be large enough so that
certain inequalities hold.

In this paper, we will frequently use random permutations as a tool to generate graphs. A
fundamental tool we will use is a version of Talagrand’s inequality established by McDiarmid
in [7] for random variables that are a function of independent random permutations along
with a set of independent random variables. In the form we use it, it states the following:

Proposition 2. Suppose V1, . . . , Vk are sets and let π = (π1, . . . , πk) be a family of indepen-
dent random permutations, so that πi is chosen uniformly at random from the set Sym(Vi)
of all permutations of Vi, and let Ω =

∏
Sym(Vi). Furthermore, let X = (X1, X2, . . . , Xt)

be a finite family of independent random variables so that Xj takes values in Ωj, so that X
takes values in Ω′ =

∏
j Ωj.

Le c and r be positive constants, and suppose the nonnegative real-valued function h :
Ω′ × Ω→ R satisfies the following condition for each (x, σ) ∈ Ω′ × Ω:

• Changing the value of a coordinate xj can change the value of h(x, σ) by at most 2c

• Swapping any two elements in any σi for i = 1, 2, . . . , k can change the value of h(x, σ)
by at most c

• If h(σ) = s, then in order to certify that h(σ) ≥ s, we need to specify at most rs
coordinates of σ. That is, if h(x, σ) ≥ s, there exists a set of rs coordinates of (x, σ)
so that any (x′, σ′) agreeing with (x, σ) on these rs coordinates also has h(x′, σ′) ≥ s.

Then, if Z = h(X, π) and Med(Z) denotes the median of Z we have for each 0 ≤ t ≤ m,

P(|Z −Med(Z)| ≥ −λ) ≤ 4 exp

(
− λ2

32rc2(Med(Z))

)
.

Essentially, Talagrand’s inequality implies that if we have a (not too large) deterministic
bound on the change that occurs when we switch two entries of a permutation we get
tight concentration. A key difference which separates it from martingale methods (such as
the Azuma-Hoeffding inequality) is the dependence in the exponential on the length of the
permutation. When applying Azuma-Hoeffding bounds, if X is the final stage of a martingale
with n steps, the concentration is of the form

P(|X − E[X]| ≥ λ) ≤ exp

(
− λ2

c2n

)
,
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where c denotes a Lipschitz constant (analogous to the c in Talagrand’s inequality). For
a random permutation on n letters, the most natural filtration takes n steps. Meanwhile,
McDiarmid’s version of Talagrand’s inequality yields concentration of the form

P(|X −Med(X)| ≥ λ) ≤ exp

(
− λ2

rc2Med(X)

)
.

In the case where rMed(x) is much smaller than n (as in our application here) Talagrand’s
inequality yields much tighter results.

A slight annoyance of Talagrand’s inequality that this gives concentration around the
median as opposed to the mean. However, in the situations where we will use it, the following
will suffice for our purposes

Proposition 3. Under the conditions of Talagrand’s inequality,

|E[X]−Med(X)| = O(c
√
rE[X]).

For a simple proof, one can consult Molloy and Reed [8].

An advantage to using Talagrand’s inequality over martingale methods is the removal of
the dependence on the length of the permutations. A second advantage is merely that it is
already well setup in terms of the machinery of random permutations used in the proof.

2 Partitioning

We begin the proof of Theorem 1 by finding an appropriate initial partitioning of the edges.
Recall G is a complete graph colored by one-factorizations, and Ci, where 1 ≤ i ≤ n − 1
denote the colors classes.

2.1 Initial Partitioning

Lemma 1. There exists sets S1, S2, . . . , St and T ⊆ E(G), and an orientation σ of the edges
in T which satisfy the following properties:

(i) Si ∩ Sj = ∅ for 1 ≤ i < j ≤ t, and Si ∩ T = ∅ for all 1 ≤ i ≤ t.

(ii) |Si ∩ Cj| = C for all 1 ≤ i ≤ t and 1 ≤ j ≤ n− 1.

(iii) For a set of edges E ′ ⊆ E(G), let V (E ′) denote the support of E ′; that is the set of
vertices in V (G) which have positive degree in the subgraph induced by edges in E ′. For
all 1 ≤ i ≤ t and I ⊆ [n− 1] with |I| ≤ n

100
,∣∣∣∣∣V

(⋃
j∈I

(Si ∩ Cj)

)∣∣∣∣∣ ≥ 2|I|.
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(iv) For a set of edges E ′ ⊆ E(G), let V ′(E ′) denote the set of vertices incident to at least
log(C) edges in E ′. Then for all 1 ≤ i ≤ t and every I ⊆ [n− 1] with |I| ≥ n

100
,∣∣∣∣∣V ′

(⋃
j∈I

(Si ∩ Cj)

)∣∣∣∣∣ ≥
(

1− 2

logC

)
n.

(v) For all S ⊆ V with n
C
≤ |S| ≤ n

2
, and all 1 ≤ i ≤ t,

eSi
(S, S̄) ≥ C|S|

4
.

(vi) degoutT,σ(v) ≥ n
4

for all v ∈ V (G).

We construct the sets Si and T whose existence is promised in Lemma 1 as follows:

For 1 ≤ i ≤ n − 1, πi denotes a uniformly random permutation of the edges of Ci, and
σ denotes a uniformly random orientation of the edges of G. Sets Si,j Si,j are defined as
follows: S1,j consists of the first C elements of πj. S2,j consists of the second C elements,
and so on. Then

Si =
n−1⋃
j=1

Si,j

T = E(G) \ (
⋃

Si).

Finally, we choose σ to be a uniformly chosen orientation of the edges G.

We claim that with positive probability the Si and T , along with the restriction of σ to
the edges in T , satisfy properties (i)− (vi) of Lemma 1, and hence such a partitioning exists.

We begin by showing that assertion (vi) of Lemma 1 is satisfied by T with high probability.

Lemma 2. Consider T and σ generated as described above, and let σT denote the restriction
of σ to the edges in T . Then

degoutT,σ|T (v) ≥ n

4
for all v ∈ V (G).

with probability 1− o(1).

Proof. Recall, all but Ct edges are chosen to be in T , and t = d n
5C
e. Since each edge is equally

likely to be in T , for a fixed edge e ∈ G, the probability that e ∈ T is n/2−Ct
n/2

≥ 3
5
− 2C

n
.

Therefore for any fixed v ∈ G, noting that each edge incident to v is oriented out with
probability 1

2

E[degoutT,σ(v)] ≥ 3

10
(n− 1)− C.
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We will apply Talagrand’s inequality to show concentration. First, note that a transposition
in any πi changes degoutT,σ(v) by at most one. Likewise, the change of an orientation changes

degoutT,σ by at most one so we may take c = 1 in our application. Also note that in order to

certify that degoutT,σ(v) ≥ s, it suffices to exhibit s elements of (π1, π2, . . . , πn−1) corresponding
to those s edges being in T , along with s elements of σ verifying their orientation. Thus we
may take r = 2 in our application. Applying Talagrand’s inequality with c = 1 and r = 2
and λ = 9

√
n log n, we have that

P(| degoutT,σ(v)−Med(X)| ≥ 9
√
n log n) ≤ 4 exp

(
− 81n log n

64Med(X)

)
< 4n−1.2,

where in the last inequality follows simply by bounding Med(X) ≤ n.

By Proposition 3 we actually have |Med(X)− E[X]| = O(
√
n). Thus,

| degoutT,σ(v)− E[X]| ≤ | degH1
(v)−Med(X)|+ |Med(X)− E[X]|

≤ | degH1
(v)−Med(X)|+O(

√
n),

for n sufficiently large. Again assuming n is sufficiently large, we have

E[X]− n

4
≥
(

3(n− 1)

10
− C

)
− n

4
> 10

√
n log n.

This yields

P(degoutT,σ(v) <
n

4
) <

4

n1.2
,

and a union bound over vertices completes the proof.

The next two lemmas, which verify that the sets constructed above satisfy properties
(iii) and (iv) of Lemma 1 establish a sort of color expansion in the graphs induced by the
Si. That is, they show that the graphs spanned by a small collection of colors (say ≤ n

100

colors) have many more non-isolated vertices than the number of represented colors. For
very small numbers of colors this is, of course, obvious but for larger number of colors this
requires that each of the color classes is sufficiently spread out. Indeed, this is one of the
locations where we use the fact that the color classes in the original complete graphs are
matchings in a non-trivial way.

For larger number of colors we require more: if we consider the graph induced by a large
collection of colors, then we want to say that not only are many vertices incident to colors
from the color classes but that many vertices are incident to many edges from the color class.
This is one point that actually requires the parameter C to be rather large, and one reason
why this approach won’t find close to n

2
spanning trees: this simply won’t be true if the Si

contain few colors from each color class.

We now show that, with high probability, (iii) of Lemma 1 is satisfied by our partitioning.
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Lemma 3. For all 1 ≤ i ≤ t and I ⊆ [n− 1] with |I| ≤ n
100

,∣∣∣∣∣V
(⋃
j∈I

(Si ∩ Cj)

)∣∣∣∣∣ ≥ 2|I|.

with probability 1− o(1).

Proof. Fix 1 ≤ i ≤ t and I ⊆ [n−1]. As an abuse of notation, let V (I) = V
(⋃

j∈I(Si ∩ Cj)
)

denote the set of vertices which are incident in Si to at least one of the color classes indexed
by I.

Note that if |V (I)| ≤ 2|I|, then there exists a set U ⊆ V (G) of size 2|I| so that all edges
in Cj ∩ Si have both ends in U . Further note that Si,j is equally likely to be any set of C
edges of Cj, and for any U of size 2|I|,

|U ∩ Sj| ≤ |U |/2 = |I|.

As the edges of each color are chosen independently, the probability that there exists such a
set is at most(

n

2|I|

)( (|I|
C

)(
n/2
C

))|I| ≤ ( ne

2|I|

)2|I|
((

2e|I|
n

)C)|I|
= exp

(
2|I| log

(
n

|I|

)
+ 2|I| log

(e
2

)
− C|I| log

(
n

|I|

)
+ C|I| log(2e)

)
≤ exp

(
(2− C)|I| log

(
n

|I|

)
+ (2 + C)|I| log(2e)

)
.

A union bound over all sets of size at most s implies that the the probability that there
exists a such a ‘bad’ I of size at most s is at most

s∑
w=1

(
n

w

)
exp

(
(2− C)w log

(n
w

)
+ (2 + C)w log(2e)

)
≤

s∑
w=1

(ne
w

)w
exp

(
(2− C)w log

(n
w

)
+ (2 + C)w log(2e)

)
≤

s∑
w=1

exp
(

(3− C)w log
(n
w

)
+ (2 + C)w log(2e)

)
≤ s× max

1≤w≤s

{
exp

(
(3− C)w log

(n
w

)
+ (2 + C)w log(2e)

)}
.

Let
f(x) = (3− C)x log(n/x) + (2 + C)x log(2e)

and g(x) = exp(f(x)) denote the function maximized in the preceding display.
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Then
g′′(x) = f ′′(x) exp(f(x)) + (f ′(x))2 exp(f(x)).

For C > 3, observe that f ′′(x) > 0, and hence g′′(x) > 0 as well. This implies that

max
1≤x≤s

g(x) = max{g(1), g(s)} ≤ max{exp(f(1))), exp(f(s))}.

Evaluating both ends, we observe that:

g(1) = O(n3−C)

and
g
( n

100

)
= exp

([
(2− C) log(100) + (2 + C) log(2e)

] n

100

)
= exp(−Ω(n)),

so long as C is sufficiently large. In particular, for s = n
100

and C large enough

s× max
1≤w≤s

{
exp

(
(3− C)w log

(n
w

)
+ (2 + C)w log(2e)

)}
= O(n−2).

Since this serves as a bound for the probability that some set I violating the conclusion of
the lemma for a single Si, combining this with a union bound over 1 ≤ i ≤ t completes the
proof.

Lemma 4. For a set of edges E ′ ⊆ E(G), let V ′(E ′) denote the set of vertices incident to
at least log(C) edges in E ′. Then for all 1 ≤ i ≤ t and I ⊆ [n− 1] with |I| ≥ n

100
,∣∣∣∣∣V ′

(⋃
j∈T

(Si ∩ Cj)

)∣∣∣∣∣ ≥
(

1− 2

logC

)
n.

Proof. While we require that any set of at least n
100

colors has this property, we actually
show that all collections of n√

C
colors already have the desired property. Naturally this is

sufficient so long as we choose C ≥ 10, 000.

Fix a set I of size n√
C

, and fix an 1 ≤ i ≤ t. For v ∈ V (G) let Xv denote the zero/one

valued indicator random variable of whether v has at least log(C) incident colors in Si, and
let Yv denote the number of colors incident to v.

Since all colors incident to v are distinct, note that Yv is the sum of independent indicator
variables. For a given edge, the probability that it is in Si is 2C

n
, since C edges are chosen

from each color class. Thus the expected number of colors incident to Ci in W is 2
√
C.

Since, for a given vertex, the number of incident colors is the sum of independent indicators,
the Chernoff bounds yield that

P(Xv = 0) = P(Yv ≤ logC) ≤ P(Yv ≤ E[Yv]/2) ≤ e−
√
C/8.
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Therefore, if X =
∑

vXv,

E[X] =
∑
v

E[Xv] ≥ (1− e−
√
C/8)n.

Now we wish to apply Talagrand’s inequality. Note that a single transposition of a permu-
tation can affect at most two vertices and hence c = 2 in our application of Talagrand’s
inequality. Likewise, to verify that a vertex has Xv = 1, we must merely show that log(C)
edges incident to V that are present in T . Thus we may take r = logC. Note that by
Proposition 3 that

|Med(X)− E[X]| = O(
√

log(C)E[X]) = O(
√
n log(C)).

Therefore for C large enough,

P
(
X ≤ (1− 2

log(C)
)n

)
≤ P

(
X ≤ Med(X)− n

log(C)

)
,

and we can take λ = n
logC

in our application. Applying Talagrand’s inequality with these
parameters, we see that

P
(
X ≤ (1− 2

log(C)
)n

)
≤ 4 exp

(
−(n/ log(C))2

128 log(C)n

)
≤ 4 exp

(
− n

128 log3(C)

)
.

Taking a union bound over all sets of size n√
C

, and over 1 ≤ i ≤ t yields that the conclusion
of the lemma fails to hold with probability at most

n ·
(

n

n/
√
C

)
·
(

4 exp

(
− n

128 log3C

))
≤ 4n

(√
eC
)n/√C

exp

(
− n

128 log3C

)
≤ 4n exp

(
n log(e

√
C)√

C
− n

128 log3C

)
= exp(−Ω(n)),

for C sufficiently large.

Finally, we verify that the sets selected satisfy property (v) of the lemma.

Lemma 5. Fix 1 ≤ i ≤ t. For all S ⊆ V with n
C
≤ |S| ≤ n

2
, eSi

(S, S̄) ≥ C|S|
4

.

Proof. Fix 1 ≤ i ≤ t, and S ⊆ V with |S| = s. Note that each edge is in Si with probability
2C
n

, so

E[eSi
(S, S̄)] =

2Cs(n− s)
n

≥ Cs

n
.
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For concentration note that we may take c = t = 1 in the hypothesis of Talagrand’s inequal-
ity. Applying Talagrand’s inequality with λ = Med(X)/2 gives

P(X ≤ Med(X)− λ) ≤ 4 exp

(
−Med(X)

128

)
.

Applying Proposition 3, we have that

P(X ≤ Cs

4
) ≤ P(X ≤ E[X]/4) ≤ P(X ≤ Med(X)− λ) ≤ 4 exp

(
−E[X]

256

)
= 4 exp

(
− C

128
s(n− s)

)
≤ 4 exp

(
− C

256
s

)
.

A union bound over sets of size s ≤ n
2

and over 1 ≤ i ≤ t yields that the probability that
the conclusion of the lemma fails to hold is at most

4n

n/2∑
s=n/C

(
n

s

)
exp

(
− C

256
s

)
≤ 4n2 max

n/C≤s≤n/2
exp

(
s log(n/s)− C

256
s

)
(1)

Note that for s ≥ n/C,

s log(n/s)− C

256
s ≤ s

(
log(C)− C

256

)
.

Thus, so long as C is chosen large enough so that C
256

> log(C), the quantity of (1) is of the
form exp(−Ω(n)) and this completes the proof of the Lemma.

Lemma 1 follows immediately from the preceeding Lemmas.

Proof of Lemma 1. Note that condition (i) and (ii) of Lemma 1 is automatically satisfied
by the Si and T as generated above. Since Lemmas 2-5 show that conditions (iii)-(vi) of
Lemma 1 are satisfied by our random Si, T , and σ a.a.s., for n sufficiently large there exists
sets Si and T , and σ satisfying all conditions of Lemma 1.

For the remainder of the proof we fix S1, S2, . . . , St along with T and σ enjoying the
properties guaranteed by Lemma 1.

2.2 Expander graphs from T

While the Si have many properties that are helpful for finding rainbow spanning trees,
they are lacking one crucial thing: they are not connected. In this section, we extract
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from the remainder set T graphs with expansion properties that, when combined with the
Si, will contain rainbow spanning trees. Recall from Lemma 1 (vi), that each vertex has
degoutT,σ(v) > n

4
> tC. For each vertex v, choose (arbitrarily) a set of n

4
out-edges of v,

denoting these sets Tv.

The random expanders Ti are extracted as follows: For each vertex v, independently and
uniformly permute Tv, choose the first C elements to be in T1, the next C to be in T2, and
so on.

The key expansion property satisfied by the Ti is the following:

Lemma 6. For a set S, let cdegi(S) denote the number of colors represented in eTi(S, S̄).
Then for all sets S with 1 ≤ |S| ≤ n/75 and for all Ti, 1 ≤ i ≤ t we have that cdegi(S) ≥ 2|S|.

Proof. Fix a Ti and a set S with |S| = s. Fix a vertex v ∈ S, and a set of r colors. Let us
denote by C the edges in those r chosen colors. The probability that the only edges between
S and S̄ are from the r chosen colors is at most(|C∩Tv |+|eTv (v,S)|

C

)(
n/4
C

) ≤
(
r+s
C

)(
n/4
C

) ≤ (4e(r + s)

n

)C
,

since all sets of C neighbors of v from the n/4 in Tv are equally likely to be those in Ti.

Thus for a fixed set S, by independence of the out-neighbors of each vertex v ∈ S

P(cdegi(S) ≤ r) ≤
(
n

r

)(
e(r + s)4

n

)Cs
.

Taking a union bound over set S up to size n
75

and taking r = 2s gives (for a fixed i)

P(∃S : cdegi(S) ≤ 2s) ≤
n/75∑
|S|=1

(
n

s

)(
n

2s

)(
12es

n

)Cs

≤
n/75∑
|S|=1

(en
s

)s (en
2s

)2s(12es

n

)Cs

≤
n/75∑
|S|=1

exp
(
s log(n/s) + s+ 2s log(n/s)

+ 2s log(e/2)− Cs log(n/s) + Cs log(12e)
)

≤
n/75∑
|S|=1

exp
(
(3− C)s log(n/s) + (3 + C)s log(12e)

)
.

Similarly to the proof of Lemma 4, this is O(n−2) for C sufficiently large. Here we also
observe that we needed to stop this at set of a size s so that n/s > 12e. A union bound over
1 ≤ i ≤ t the completes the proof.
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For the remainder of the proof, we fix T1, T2, . . . , Tt which satisfy the property guaranteed
by Lemma 6, along with the S1, St2 . . . , St we have already fixed.

3 Proof of Theorem 1

In this section we combine the properties of the Si and Ti proved in Lemmas 1 and 6 to show
that the (edge disjoint) Gi = Si ∪ Ti each contain rainbow spanning trees, thus completing
the proof of Theorem 1.

Proof of Theorem 1. Let Gi = Si∪Ti for 1 ≤ i ≤ t be so that Si and Ti satisfy the properties
guaranteed in Lemmas 1 and 6 respectively. We check that Gi satisfies the property of
Proposition 1. To do this, fix an arbitrary 1 ≤ i ≤ t and an arbitrary partition P =
{P1, P2, . . . , Ps}. We show that there are at least s− 1 colors between parts

Case 1: s ≤ C
4

.

Suppose P is a partition into s ≤ C
2

parts. If P contains a part Pj ∈ P of size n
C
≤

|Pj| ≤ n
2
, then by Lemma 1 (v), eSi

(Pj, P̄j) >
C|Pj |

4
for every i. Thus there exists a v ∈ Pj

with eSi
(v, P̄j) ≥ C/4 > s − 1. Since the colors incident to vi are distinct, we are done in

this case.

Otherwise, all parts in s have size at most n
C

, and there is at most one larger part of size
at least n/2. Let the parts of P be denoted 1 ≤ |P1| ≤ |P2| ≤ · · · ≤ |Ps|, with |Ps−1| ≤ n

C
.

Then there exists a k ≤ s− 1 so that

Q =
⋃
j≤k

Pj

satisfies s−1
2
≤ |Q| ≤ 2 n

C
. The conclusion of Lemma 6 applied to Q implies that there are at

least 2|Q| ≥ s− 1 colors represented between Q̄ and Q and hence between parts.

Case 2: C
4
≤ s ≤ n/100.

This case is quite similar to the above. Suppose P is a partition into C
4
≤ s ≤ n/100

parts. If P contains a part P of size s−1
2
≤ |P | ≤ n/75, Lemma 6 guarantees that cdeg(P ) ≥

2|P | ≥ s− 1, and we are done.

Otherwise, assume the parts of P are {P1, P2, . . . , Ps} with |P1| ≤ |P2| ≤ · · · ≤ |Ps|. Note
that at most 75 of the parts can be of size at least n

75
, the remainder are of size at most s

2
.

Let j denote the largest index so that |Pj| ≤ s
2
. Then j ≥ s− 75 so that

∣∣∣⋃k≤j Pk

∣∣∣ ≥ s− 75.

Note that for C sufficiently large, s − 75 > s
2
. This, along with the fact that |Pk| ≤ s

2
for

1 ≤ k ≤ j implies that there exists some index j′ ≤ j so that if Q =
⋃
k≤j′ Pk

s

2
≤ |Q| ≤ s,
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and as in the previous case satisfying the conclusion of Lemma 6 guarantees that the edges
between Q and Q̄ witness the necessary colors.

Note that the only substantive difference between this and the previous case is that in
the previous case we handled the case in which parts were large (say of size ≈ n/s) slightly
differently: here we argued that their could not be so many of them so that the smaller parts
still have a large enough union to find the set we want, while previously we argued that these
large parts already witnessed enough colors between the parts.

Case 3: n
100
≤ s ≤ 99n

100
.

Suppose P is a partition into n
100
≤ s ≤ 99

100
n parts. Suppose fewer than s − 1 colors

appear between the partition classes of P in our fixed Gi. Then there exists a set of n−s+1
color classes so that all edges of these colors are contained entirely within the Pi, say X. For
s in this range, n− s+ 1 ≥ n

100
so the conclusion of Lemma 1 (iv) holds for the colors in set

X. Consider
∑s

i=1(|Pi| − 1). On one hand,

s∑
i=1

(|Pi| − 1) = n− s.

Bounding the sum in a slightly different way, we see that

(n− s) =
s∑
i=1

(|Pi| − 1) =

 ∑
i:|Pi|≥2

|Pi|

− |{i : |Pi| ≥ 2}|, (2)

But by Lemma 1 (iv), noting that certainly all vertices with log(C) colors represented in X
are in parts of size at least 2, ∑

i:|Pi|≥2

|Pi| ≥ (1− 2

log(C)
)n. (3)

On the other hand, for any vertex with at least log(C) colors represented as neighbors it
must be in a part of size at least log(C). Thus,

|{i : |Pi| ≥ 2}| ≤ n

log(C)
+

2

log(C)
· n

2
, (4)

with the first term coming from the parts including vertices with log(C) neighbors, and the
second term covering the remainder. But then, combining equations (2), (3) and (4), we have

n− s ≥
(

1− 4

log(C)

)
n,

or

s ≤ 4

log(C)
n.
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But since s ≥ n
100

, this is not true for C chosen sufficiently large.

Case 4: s ≥ 99n
100

Here the proof is similar to Case 3, but slightly easier.

Suppose P is a partition into s ≥ 99
100
n parts, with fewer than s − 1 colors appearing

between the partition classes of P . Then there is a set X of n − s + 1 < n
100

color classes
so that all edges of these colors is entirely contained within the Pi. Again considering∑s

i=1(|Pi| − 1), we have

(n− s) =
s∑
i=1

(|Pi| − 1) =

 ∑
i:|Pi|≥2

|Pi|

− |{i : |Pi| ≥ 2}|. (5)

Since the conclusion of Lemma 1 (iii) holds for this set X,∑
i:|Pi|≥2

|Pi| ≥ 2(n− s+ 1).

But then  ∑
i:|Pi|≥2

|Pi|

− |{i : |Pi| ≥ 2}| ≥ 1

2

∑
i:|Pi|≥2

|Pi| ≥ (n− s+ 1),

where the inequality follows as |Pi| − 1 ≥ 1
2
|Pi| if |Pi| ≥ 2. Thus equation (5) yields

n− s ≥ (n− s+ 1).

This obvious contradiction completes the proof of the theorem.
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