
The giant component in a random subgraph of a given graph

Fan Chung1 ?, Paul Horn1, and Linyuan Lu2 ??

1 University of California, San Diego
2 University of South Carolina

Abstract. We consider a random subgraph Gp of a host graph G formed by retaining each edge of
G with probability p. We address the question of determining the critical value p (as a function of
G) for which a giant component emerges. Suppose G satisfies some (mild) conditions depending on its
spectral gap and higher moments of its degree sequence. We define the second order average degree d̃ to
be d̃ =

∑
v d

2
v/(
∑
v dv) where dv denotes the degree of v. We prove that for any ε > 0, if p > (1 + ε)/d̃

then asymptotically almost surely the percolated subgraph Gp has a giant component. In the other
direction, if p < (1− ε)/d̃ then almost surely the percolated subgraph Gp contains no giant component.

1 Introduction

Almost all information networks that we observe are subgraphs of some host graphs that often
have sizes prohibitively large or with incomplete information. A natural question is to deduce the
properties that a random subgraph of a given graph must have.

We are interested in random subgraphs of Gp of a graph G, obtained as follows: for each edge
in Gp we independently decide to retain the edge with probability p, and discard the edge with
probability 1 − p. A natural special case of this process is the Erdős-Rényi graph model G(n, p)
which is the special case where the host graph is Kn. Other examples are the percolation problems
that have long been studied [13, 14] in theoretical physics, mainly with the host graph being the
lattice graph Zk. In this paper, we consider a general host graph, an example of which being a
contact graph, consisting of edges formed by pairs of people with possible contact, which is of
special interest in the study of the spread of infectious diseases or the identification of community
in various social networks.

A fundamental question is to ask for the critical value of p such that Gp has a giant connected
component, that is a component whose volume is a positive fraction of the total volume of the
graph. For the spread of disease on contact networks, the answer to this question corresponds to
the problem of finding the epidemic threshold for the disease under consideration, for instance.

For the case of Kn, Erdős and Rényi answered this in their seminal paper [11]: if p = c
n for

c < 1, then almost surely G contains no giant connected component and all components are of size
at most O(log n), and if c > 1 then, indeed, there is a giant component of size εn. For general host
? This author was supported in part by NSF grant ITR 0426858 and ONR MURI 2008-2013
?? This author was supported in part by NSF grant DMS 0701111



graphs, the answer has been more elusive. Results have been obtained either for very dense graphs
or bounded degree graphs. Bollobas, Borgs, Chayes and Riordan [4] showed that for dense graphs
(where the degrees are of order Θ(n)), the giant component threshold is 1/ρ where ρ is the largest
eigenvalue of the adjacency matrix. Frieze, Krivelevich and Martin [12] consider the case where the
host graph is d-regular with adjacency eigenvalue λ and they show that the critical probability is
close to 1/d, strengthening earlier results on hypercubes [2, 3] and Cayley graphs [15]. For expander
graphs with degrees bounded by d, Alon, Benjamini and Stacey [1] proved that the percolation
threshold is greater than or equal to 1/(2d).

There are several recent papers, mainly in studying percolation on special classes of graphs,
which have gone further. Their results nail down the precise critical window during which component
sizes grow from log(n) vertices to a positive proportion of the graph. In [5, 6], Borgs, et. al. find
the order of this critical window for transitive graphs, and cubes. Nachmias [16] looks at a similar
situation to that of Frieze, Krivelevich and Martin [12] and uses random walk techniques to study
percolation within the critical window for quasi-random transitive graphs. Percolation within the
critical window on random regular graphs is also studied by Nachmias and Peres in [17]. Our
results differ from these in that we study percolation on graphs with a much more general degree
sequence. The greater preciseness of these results, however, is quite desirable. It is an interesting
open question to describe the precise scaling window for percolation for the more general graphs
studied here.

Here, we are interested in percolation on graphs which are not necessarily regular, and can be
relatively sparse (i.e., o(n2) edges.) Compared with earlier results, the main advantage of our results
is the ability to handle general degree sequences. To state our results, we give a few definitions here.
For a subset S of vertices, the volume of S, denoted by vol(S) is the sum of degrees of vertices in
S. The kth order volume of S is the kth moment of the degree sequence, i.e. volk(S) =

∑
v∈S d

k
v .

We write vol1(S) = vol(S) and volk(G) = volk(V (G)), where V (G) is the vertex set of G. We
denote by d̃ = vol2(G)/vol(G) the second order degree of G, and by σ the spectral gap of the
normalized Laplacian, which we fully define in Section 2. Further, recall that f(n) is O(g(n)) if
lim supn→∞ |f(n)|/|g(n)| <∞, and f(n) is o(g(n)) if limn→∞ |f(n)|/|g(n)| = 0.

We will prove the following

Theorem 1. Suppose G has the maximum degree ∆ satisfying ∆ = o( d̃σ ). For p ≤ 1−c
d̃

, a.a.s.
every connected component in Gp has volume at most O(

√
vol2(G)g(n)), where g(n) is any slowly

growing function as n→∞.

Here, an event occurring a.a.s. indicates that it occurs with probability tending to one as n
tends to infinity. In order to prove the emergence of giant component where p ≥ (1 + c)/d̃, we need
to consider some additional conditions. Suppose there is a set U satisfying

(i) vol2(U) ≥ (1− ε)vol2(G).
(ii) vol3(U) ≤Mdvol2(G)



where ε and M are constant independent of n. In this case, we say G is (ε,M)-admissible and U is
an (ε,M)-admissible set.

We note that the admissibility measures of skewness of the degree sequence. For example, all
regular graphs are (ε, 1)-admissible for any ε, but a graph needs not be regular to be admissible.
We also note that in the case that vol3(G) ≤Mdvol2(G), G is (ε,M)-admissible for any ε.

Theorem 2. Suppose p ≥ 1+c
d̃

for some c ≤ 1
20 . Suppose G satisfies ∆ = o( d̃σ ), ∆ = o( d

√
n

logn) and
σ = o(n−κ) for some κ > 0, and G is ( cκ10 ,M)-admissible. Then a.a.s. there is a unique giant
connected component in Gp with volume Θ(vol(G)), and no other component has volume more than
max(2d log n, ω(σ

√
vol(G))).

Here, recall that f(n) = Θ(g(n)) if f(n) = O(g(n)) and g(n) = O(f(n)). In this case, we say
that f and g are of the same order. Also, f(n) = ω(g(n)) if g(n) = o(f(n)).

We note that under the assumption that the maximum degree ∆ of G satisfying ∆ = o( d̃σ ),
it can be shown that the spectral norm of the adjacency matrix satisfies ‖A‖ = ρ = (1 + o(1))d̃.
Under the assumption in Theorem 2, we observe that the percolation threshold of G is 1

d̃
.

To examine when the conditions of Theorems 1 and 2 are satisfied, we note that admissibility
implies that d̃ = Θ(d), which essentially says that while there can be some vertices with degree
much higher than d, there cannot be too many. Chung, Lu and Vu [8] show that for random graphs
with a given expected degree sequence σ = O( 1√

d
), and hence for graphs with average degree nε the

spectral condition of Theorem 2 easily holds for random graphs. The results here can be viewed as
a generalization of the result of Frieze, Krivelevich and Martin [12] with general degree sequences
and is also a strengthening of the original results of Erdős and Reyni to general host graphs.

The paper is organized as follows: In Section 2 we introduce the notation and some basic facts.
In Section 3, we examine several spectral lemmas which allow us to control the expansion. In Section
4, we prove Theorem 1, and in Section 5, we complete the proof of Theorem 2.

2 Preliminaries

Suppose G is a connected graph on vertex set V . Throughout the paper, Gp denotes a random
subgraph of G obtained by retaining each edge of G independently with probability p.

Let A = (auv) denote the adjacency matrix of G, defined by

auv =
{

1 if {u, v} is an edge;
0 otherwise.

We let dv =
∑

u auv denote the degree of vertex v. Let ∆ = maxv dv denote the maximum degree
of G and δ = minv dv denote the minimum degree. For each vertex set S and a positive integer k,



we define the k-th volume of G to be

volk(S) =
∑
v∈S

dkv .

The volume vol(G) is simply the sum of all degrees, i.e. vol(G) = vol1(G). We define the average
degree d = 1

nvol(G) = vol1(G)
vol0(G) and the second order average degree d̃ = vol2(G)

vol1(G) .

Let D = diag(dv1 , dv2 , . . . , dvn) denote the diagonal degree matrix. Let 1 denote the column
vector with all entries 1 and d = D1 be column vector of degrees. The normalized Laplacian of G
is defined as

L = I −D−
1
2AD−

1
2 .

The spectrum of the Laplacian is the eigenvalues of L sorted in increasing order.

0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1.

Many properties of λi’s can be found in [7]. For example, the least eigenvalue λ0 is always equal to
0. We have λ1 > 0 if G is connected and λn−1 ≤ 2 with equality holding only if G has a bipartite
component. Let σ = max{1 − λ1, λn−1 − 1}. Then σ < 1 if G is connected and non-bipartite. For
random graphs with a given expected degree sequence [8], σ = O( 1√

d
), and in general for regular

graphs it is easy to write σ in terms of the second largest eigenvalue of the adjacency matrix.
Furthermore, σ is closely related to the mixing rate of random walks on G, see e.g. [7].

The following lemma measures the difference of adjacency eigenvalue and d̃ using σ.

Lemma 1. The largest eigenvalue of the adjacency matrix of G, ρ, satisfies

|ρ− d̃| ≤ σ∆.

Proof: Recall that ϕ = 1√
vol(G)

D1/21 is the unit eigenvector of L corresponding to eigenvalue 0.

We have
‖I − L− ϕϕ∗‖ ≤ σ.

Then,

|ρ− d̃| =
∣∣∣∣‖A‖ − ‖ dd∗

vol(G)
‖
∣∣∣∣ ≤ ‖A− dd∗

vol(G)
‖

= ‖D1/2(I − L− ϕϕ∗)D1/2‖
≤ ‖D1/2‖ · ‖I − L− ϕϕ∗‖ · ‖D1/2‖ ≤ σ∆.

�

For any subset of the vertices, S, we let let S̄ denote the complement set of S. The vertex
boundary of S in G, denoted by ΓG(S) is defined as follows:



ΓG(S) = {u 6∈ S | ∃v ∈ S such that {u, v} ∈ E(G)}.

When S consists of one vertex v, we simply write ΓG(v) for ΓG({v}). We also write Γ (S) =
ΓG(S) if there is no confusion.

Similarly, we define ΓGp(S) to be the set of neighbors of S in our percolated subgraph Gp.

3 Several spectral lemmas

We begin by proving two lemmas, first relating expansion in G to the spectrum of G, then giving
a probabilistic bound on the expansion in Gp

Lemma 2. For two disjoint sets S and T , we have∣∣∣∣∑
v∈T

dv|Γ (v) ∩ S| − vol(S)vol2(T )
vol(G)

∣∣∣∣ ≤ σ√vol(S)vol3(T ).

∣∣∣∣∑
v∈T

dv|Γ (v) ∩ S|2 − vol(S)2vol3(T )
vol(G)2

∣∣∣∣ ≤ σ2vol(S) max
v∈T
{d2

v}+ 2σ

√
vol(S)3vol5(T )

vol(G)
.

Proof: Let 1S (or 1T ) be the indicative column vector of the set S (or T ) respectively. Note∑
v∈T

dv|Γ (v) ∩ S| = 1∗SAD1T .

vol(S) = 1∗Sd.

vol2(T ) = d∗D1T .

Here 1∗S denotes the transpose of 1S as a row vector. We have∣∣∣∣∑
v∈T

dv|Γ (v) ∩ S| − vol(S)vol2(T )
vol(G)

∣∣∣∣
= |1∗SAD1T −

1
vol(G)

1∗Sdd∗D1T |

= |1∗SD
1
2 (D−

1
2AD−

1
2 − 1

vol(G)
D

1
2 11∗D

1
2 )D

3
2 1T |

Let ϕ = 1√
vol(G)

D1/21 denote the eigenvector of I −L for the eigenvalue 1. The matrix I −L−

ϕϕ∗, which is the projection of I − L to the hyperspace ϕ⊥, has L2-norm σ.



We have ∣∣∣∣∑
v∈T

dv|Γ (v) ∩ S| − vol(S)vol2(T )
vol(G)

∣∣∣∣ = |1∗SD
1
2 (I − L− ϕϕ∗)D

3
2 1T |

≤ σ‖D
1
2 1S‖ · ‖D

3
2 1T ‖

≤ σ
√

vol(S)vol3(T ).

Let ev be the column vector with v-th coordinate 1 and 0 else where. Then |ΓG(v)∩S| = 1∗SAev.
We have ∑

v∈T
dv|ΓG(v) ∩ S|2 =

∑
v∈T

dv1∗SAeve
∗
vA1S = 1∗SADTA1S .

Here DT =
∑

v∈T dveve
∗
v is the diagonal matrix with degree entry at vertex in T and 0 else where.

We have

∣∣∣∣∑
v∈T

dv|ΓG(v) ∩ S|2 − vol(S)2vol3(T )
vol(G)2

∣∣∣∣
= |1∗SADTA1S −

1
vol(G)2

1∗Sdd∗DTdd∗1S |

≤ |1∗SADTA1S −
1

vol(G)
1∗Sdd∗DTA1S |

+| 1
vol(G)

1∗Sdd∗DTA1S −
1

vol(G)2
1∗Sdd∗DTdd∗1S |

= |1SD
1
2 (I − L− ϕϕ∗)D

1
2DTA1S |

+| 1
vol(G)

1∗Sdd∗DTD
1
2 (I − L− ϕϕ∗)D

1
2 1S |

≤ |1SD
1
2 (I − L− ϕ∗ϕ)D

1
2DTD

1
2 (I − L− ϕϕ∗)D

1
2 1S |

+2| 1
vol(G)

1∗Sdd∗DTD
1
2 (I − L− ϕϕ∗)D

1
2 1S |

≤ σ2vol(S) max
v∈T
{d2

v}+ 2σ

√
vol(S)3vol5(T )

vol(G)
.

�

Lemma 3. Suppose that two disjoint sets S and T satisfy

vol2(T ) ≥ 5p
2δ
σ2 max

v∈T
{d2

v}vol(G) (1)

25σ2vol3(T )vol(G)2

δ2vol2(T )2
≤ vol(S) ≤ 2δvol2(T )vol(G)

5pvol3(T )
(2)



vol(S) ≤ δ2vol2(T )2

25p2σ2vol5(T )
. (3)

Then we have that
vol(ΓGp(S) ∩ T ) > (1− δ)pvol2(T )

vol(G)
vol(S).

with probability at least 1− exp
(
− δ(1−δ)pvol2(T )vol(S)

10∆vol(G)

)
.

Proof: For any v ∈ T , let Xv be the indicative random variable for v ∈ ΓGp(S). We have

P(Xv = 1) = 1− (1− p)|ΓG(v)∩S|.

Let X = |ΓGp(S) ∩ T |. Then X is the sum of independent random variables Xv.

X =
∑
v∈T

dvXv.

Note that

E(X) =
∑
v∈T

dvE(Xv)

=
∑
v∈T

dv(1− (1− p)|ΓG(v)∩S|)

≥
∑
v∈T

dv(p|ΓG(v) ∩ S| − p2

2
|ΓG(v) ∩ S|2)

≥ p(vol(S)vol2(T )
vol(G)

− σ
√

vol(S)vol3(T ))

−p
2

2
(
vol(S)2vol3(T )

vol(G)2
+ σ2vol(S) max

v∈T
{d2

v}+ 2σ

√
vol(S)3vol5(T )

vol(G)
)

> (1− 4
5
δ)p

vol2(T )
vol(G)

vol(S)

by using Lemma 2 and the assumptions on S and T .

We apply the following Chernoff inequality, see e.g. [10]

P(X ≤ E(X)− a) ≤ e−
a2

2
∑
d2vE[X2

v] ≤ e−
a2

2∆E(X) .

We set a = αE(X), with α chosen so that (1− α)(1− 4
5δ) = (1− δ). Then

P(X ≤ (1− δ)pvol2(T )
vol(G)

vol(S)) < P(X ≤ (1− α)E(X))

≤ exp
(
−α

2E(X)
2∆

)
< exp

(
−α(1− δ)pvol2(T )vol(S)

2∆vol(G)

)
.

To complete the proof, note α > δ/5. �



4 The range of p with no giant component

In this section, we will prove Theorem 1.

Proof of Theorem 1: It suffices to prove the following claim.

Claim A: If pρ < 1, where ρ is the largest eigenvalue of the adjacency matrix, with probability at
least 1− 1

C2(1−pρ) , all components have volume at most C
√

vol2(G).

Proof of Claim A: Let x be the probability that there is a component of Gp having volume greater
than C

√
vol2(G). Now we choose two random vertices with the probability of being chosen propor-

tional to their degrees in G. Under the condition that there is a component with volume greater

than C
√

vol2(G), the probability of each vertex in this component is at least C
√

vol2(G)

vol(G) . Therefore,
the probability that the random pair of vertices are in the same component is at least

x

(
C
√

vol2(G)
vol(G)

)2

=
C2xd̃

vol(G)
. (4)

On the other hand, for any fixed pair of vertices u and v and any fixed path P of length k in G, the
probability that u and v is connected by this path in Gp is exactly pk. The number of k-paths from
u to v is at most 1∗uA

k1v. Since the probabilities of u and v being selected are du
vol(G) and dv

vol(G)
respectively, the probability that the random pair of vertices are in the same connected component
is at most ∑

u,v

du
vol(G)

dv
vol(G)

n∑
k=0

pk1∗uA
k1v =

n∑
k=0

1
vol(G)2

pkd∗Akd.

We have
n∑
k=0

1
vol(G)2

pkd∗Akd ≤
∞∑
k=0

pkρkvol2(G)
vol(G)2

≤ d̃

(1− pρ)vol(G)
.

Combining with (4), we have C2xd̃
vol(G) ≤

d̃
(1−pρ)vol(G) . which implies x ≤ 1

C2(1−pρ) .

Claim A is proved, and the theorem follows taking C to be g(n). �

5 The emergence of the giant component

Lemma 4. Suppose G contains an (ε,M)-admissible set U . Then we have

1. d̃ ≤ M
(1−ε)2d.

2. For any U ′ ⊂ U with vol2(U ′) > ηvol2(U), we have

vol(U ′) ≥ η2(1− ε)d̃
Md

vol(G).



Proof: Since G is (ε,M)-admissible, we have a set U satisfying

(i) vol2(U) ≥ (1− ε)vol2(G)
(ii) vol3(U) ≤Mdvol2(G).

We have

d̃ =
vol2(G)
vol(G)

≤ vol2(G)
vol(U)

≤ 1
1− ε

vol2(U)
vol(U)

≤ 1
1− ε

vol3(U)
vol2(U)

≤ M

(1− ε)2
d.

For any U ′ ⊂ U with vol2(U ′) > ηvol2(U), we have

vol(U ′) ≥ vol2(U ′)2

vol3(U ′)
≥ η2vol2(U)2

vol3(U)
≥ η2(1− ε)vol2(G)

Md
≥ η2(1− ε)d̃

Md
vol(G).

�

Proof of Theorem 2: It suffices to assume p = 1+c
d̃

for some c < 1
20 .

Let ε = cκ
10 be a small constant, and U be a (ε,M)-admissible set in G. Define U ′ to be the

subset of U containing all vertices with degree at least
√
εd. We have

vol2(U ′) ≥ vol2(U)−
∑

dv<
√
εd

d2
v ≥ (1− ε)vol2(G)− εnd2 ≥ (1− 2ε)vol2(G).

Hence, U ′ is a (2ε,M) admissible set. We will concentrate on the neighborhood expansion within
U ′.

Let δ = c
2 and C = 25M

δ2(1−4ε)2
. Take an initial set S0 ⊂ U ′ with max(Cσ2vol(G), ∆ lnn) ≤

vol(S0) ≤ max(Cσ2vol(G), ∆ lnn) +∆.

Let T0 = U ′ \S0. For i ≥ 1, we will recursively define Si = ΓGp(Si−1)∩U ′ and Ti = U ′ \∪ij=0Sj

until vol2(Ti) ≤ (1− 3ε)vol2(G) or vol(Si) ≥ 2δvol2(Ti)vol(G)
5pvol3(Ti)

.

Condition 1 in Lemma 3 is always satisfied.

5p
2δ
σ2 max

v∈Ti
d2
vvol(G) ≤ 5(1 + c)

2d̃δ
σ2∆2vol(G) = (

σ∆

d̃
)2

5(1 + c)
2δ

vol2(G)

= o(vol2(G)) ≤ vol2(Ti).

Condition 3 in Lemma 3 is also trivial because

δ2vol2(Ti)2

25p2σ2vol5(Ti)
≥ δ2vol2(Ti)2

25p2σ2∆2vol3(Ti)
≥ δ2(1− 3ε)vol2(G)

25p2σ2∆2Md

≥ (
d̃

σ∆
)2

δ2(1− 3ε)
25(1 + c)2M

vol(G) = ω(vol(G)).



Now we verify condition 2. We have

vol(S0) > Cσ2vol(G) =
25M

δ2(1− 4ε)2
σ2vol(G) ≥ 25σ2vol3(T0)vol(G)2

δ2vol2(T0)2
.

The conditions of Lemma 3 are all satisfied. Then we have that

vol(ΓGp(S0) ∩ T0) > (1− δ)pvol2(T0)
vol(G)

vol(S0).

with probability at least 1− exp
(
− δ(1−δ)pvol2(T0)vol(S0)

10∆vol(G)

)
.

Since (1− δ)pvol2(Ti)
vol(G) ≥ (1− δ)(1− 3ε)(1 + c) = β > 1 by our assumption that c is small (noting

that ε and δ are functions of c), the neighborhood of Si grows exponentially, allowing condition 2
of Lemma 3 to continue to hold and us to continue the process. We stop when one of the following
two events happens,

– vol(Si) ≥ 2δvol2(Ti)vol(G)
5pvol3(Ti)

.
– vol2(Ti) ≤ (1− 3ε)vol2(G).

Let us denote the time that this happens by t.

If the first, but not the second, case occurs we have

vol(St) ≥
2δvol2(Tt)vol(G)

5pvol3(Tt)
≥ 2δ(1− 3ε)

5M(1 + c)
vol(G).

In the second case, we have

vol2(
t⋃

j=0

Sj) = vol2(U ′)− vol2(Tt) ≥ εvol2(G) ≥ εvol(U ′).

By Lemma 4 with η = ε, we have vol(
⋃t
j=0 Sj) ≥

ε2(1−2ε)d̃
Md vol(G). On the other hand, note that

since vol(Si) ≥ βvol(Si−1), we have that vol(Si) ≤ βi−tvol(St), and hence we have vol(
⋃t
j=0 Sj) ≤∑t

j=0 β
−jvol(St) so

vol(St) ≥
ε2(1− 2ε)d̃(β − 1)

Mdβ
vol(G).

In either case we have vol(St) = Θ(vol(G)). For the moment, we restrict ourselves to the case
where Cσ2n > ∆ lnn.

Each vertex in St is in the same component as some vertex in S0, which has size at most vol(S0)√
εd
≤

C ′σ2n. We now combine the k1 largest components to form a set W (1) with vol(W (1)) > Cσ2vol(G),



such that k2 is minimal. If k1 ≥ 2, vol(W (1)) ≤ 2Cσ2vol(G). Note that since the average size of a
component is vol(St)

|S0| ≥ C1
vol(G)
σ2n

, k1 ≤ C ′1σ4n.

We grow as before: Let W
(1)
0 = W (1), Q(1)

0 = Tt−1 \ W (1)
0 . Note that the conditions for

Lemma 3 are satisfied by W (1)
0 and T

(1)
0 . We run the process as before, setting W (1)

t = Γ (W (1)
t ) ∩

Q
(1)
t−1 and Q

(1)
t = Q

(1)
t−1 \W

(1)
t stopping when either vol(Q(1)

t ) < (1 − 4ε)vol2(G) or vol(W (1)
t ) >

2δvol2(Q
(1)
t )vol(G)

5pvol3(Q
(1)
t )

≥ 2δ(1−4ε)
5M(1+c)vol(G). As before, in either case vol(W (1)

t ) = Θ(vol(G)). Note that if

k1 = 1, we are now done as all vertices in W
(1)
t lie in the same component of Gp.

Now we iterate. Each of the vertices in W
(1)
t lies in one of the k1 components of W (1)

0 . We
combine the largest k2 components to form a set W (2) of size > Cσ2vol(G). If k2 = 1, then one
more growth finishes us, otherwise vol(W (2)) < 2Cσ2vol(G), the average size of components is at
least C2

vol(G)
σ4n

and hence k2 ≤ C ′2σ6n.

We iterate, growing W (m) until either vol(Q(m)
t ) < (1 − (m + 3)ε)vol2(G) or vol(W (m)

t ) >
2δvol2(Q

(m)
t )vol(G)

5pvol3(Q
(m)
t )

, so that W (m)
t has volume θ(vol(G)) and then creating W (m+1) by combining the

largest km+1 components to form a W (m+1) with volume at least Cσ2n. Once km = 1 for some m
all vertices in W (m) are in the same component and one more growth round finishes the process,
resulting in a giant component in G. Note that the average size of a component in W

(m)
n has size

at least Cm
vol(G)

σ2(m+1)n
(that is, components must grow by a factor of at least 1

σ2 each iteration) and
if km > 1, we must have km ≤ C ′mσ

2(m+1)n. If m = d 1
2κe − 1, this would imply that km = o(1) by

our condition σ = o(n−κ) , so after at most d 1
2κe− 1 rounds, we must have km = 1 and the process

will halt with a giant connected component.

In the case where ∆ lnn > Cσ2n, we note that |S0| ≤ vol(S0)√
εd
≤ C ′∆ lnn√

εd
, and the average volume

of components in St is at least C′′vol(G)d
∆ lnn = ω(∆ lnn), so we can form W (1) by taking just one

component for n large enough, and the proof goes as above.

We note that throughout, if we try to expand we have that

vol(Q(m)
t ) > (1− (m+ 3)ε)vol2(G) >

(
1−

(
1

2κ
+ 4
)
ε

)
vol2(G) >

(
1− 9c

20

)
vol2(G).

By our choice of c being sufficiently small, (1−(m+3)ε)(1−δ)(1+c) > 1 at all times, so throughout,
noting that vol(Si) and vol(W (m)

i ) are at least ∆ lnn, we are guaranteed our exponential growth
by Lemma 3 with an error probability bounded by

exp
(
−δ(1− δ)pvol2(Ti)vol(Si)

10∆vol(G)

)
≤ exp

(
−
δ(1− δ)(1− 9c

20)vol(Si)
2∆

)
≤ n−K .

We run for a constant number of phases, and run for at most a logarithmic number of steps
in each growth phase as the sets grow exponentially. Thus, the probability of failure is at most



C ′′ log(n)n−K = o(1) for some constant C ′′, thus completing our argument that Gp contains a
giant component with high probability.

Finally, we prove the uniqueness assertion. With probability 1− C ′′ log(n)n−K there is a giant
component X. Let u be chosen at random; we estimate the probability that u is in a component
of volume at least max(2d log n, ω(σ

√
vol(G))). Let Y be the component of u. Theorem 5.1 of [7]

asserts that if vol(Y ) ≥ max(2d log n, ω(σ
√

vol(G))):

e(X,Y ) ≥ vol(X)vol(Y )
vol(G)

− σ
√

vol(X)vol(Y ) ≥ 1.5d log n

Note that the probability that Y is not connected to X given that vol(Y ) = ω(σ
√

vol(G)) is
(1− p)e(X,Y ) = o(n−1), so with probability 1− o(1) no vertices are in such a component - proving
the uniqueness of large components. �
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