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Chapter 1

Introduction

Two out of the four basic arithmetic operations are not associative. This revelation
alone should justify the study of non-associative structures, and it is therefore some-
what surprising that many books dealing with non-associativity open with a lengthy
defense of their topic—a branch of mathematics where, with a slight hyperbole, paren-
theses outnumber all other characters combined. Perhaps the human tendency to give
more significance to subjects that admit elegant description is responsible for this phe-
nomenon.

The multitude of ways that open up with the transition from associative towards
non-associative structures is mindboggling. The change in the order of complexity that
one perceives when passing from abelian groups to groups falls short to the change
experienced while proceeding from groups to loops (or quasigroups). To restrict one’s
interest is then not just a matter of taste, but necessity.

Non-associative finite simple Moufang loops form the central topic of this work. The
emphasis will be on the connections between groups, composition algebras, combina-
torics, and quasigroups. We tried to make this work intelligible for mathematicians
working in any of the above areas. Many of the notions we will be discussing are not
new; in fact, they are often known under several names and described with different
notation. We do not believe it is possible to design new notation which would appeal
to everybody. Instead, we will use multiple labels for single objects, depending on the
adopted point of view, however, we will always carefully introduce all symbols. As far
as the nontrivial notation is concerned, this work is self-contained. The same cannot be
said about the results we build on. We have made reasonable effort to refer the reader
to easily accessible, standard sources.

Our first comments concern mappings. Most algebraists like to write them to the left
of the argument, most loop-theorists to the right. In this regard, we have no preference.
In fact, if f is a mapping and x an argument, we write f(x), (x)f , xf , and even xf to
denote the image of x under f . This inevitably leads to ambiguity, unless we always say
what we mean. Well, we almost always say what we mean. As a rule, mappings written
to the right of the argument compose from left to right, and vice versa.

Secondly, the name non-associative finite simple Moufang loops is quite long and the
concept appears throughout this work. We believe that hard-to-pronounce abbreviations

1



CHAPTER 1. INTRODUCTION 2

(such as NFSML) are disturbing for the reader. We therefore give credit to the man
who discovered non-associative finite simple Moufang loops, L. Paige, by calling them
Paige loops. We are not the first to use this term (cf. [40], for instance).

We assume that the reader is familiar with elementary set theory, algebra, universal
algebra and their notation. If X is a set, we let |X| denote the cardinality of X. For any
universal algebras A, B, we write A ≤ B to signify that A is a subalgebra of B. If S is
a subset of an algebra A, the smallest subalgebra of A containing S—the subalgebra of
A generated by S—will be denoted by 〈S〉. Although there is no mention of A in 〈S〉, it
will be always clear from the context what A is. We sometimes abuse this notation in
a natural way. So, if S = {s} is a singleton, 〈s〉 stands for 〈{s}〉. Also, if T is another
subset of A, 〈S, T 〉 means 〈S∪T 〉. The group of all automorphisms of A will be denoted
by Aut(A). If A is isomorphic to B, we write A ∼= B.

The author used algebra package GAP [22] while working on this thesis, and he is
happy to acknowledge it. It proved useful on many occasions. However, only two argu-
ments in this work are actually based on machine computation, and the results obtained
in this way have not been invoked later. As its name suggests, GAP’s primary appli-
cation are groups. Nevertheless, its open architecture allows to implement literally any
algebraic structure. Appendix A contains several libraries developed by the author. All
GAP libraries related to this thesis (and, for that matter, the thesis itself) are available
electronically at author’s homepage, currently www.public.iastate.edu/~petr, and
also at www.math.iastate.edu/~petr.

Appendix B contains tables that make certain routine calculations easier, and hence
the reading more enjoyable.

Let us now recall the basic definitions and properties of quasigroups, loops, Paige
loops, and split octonion algebras. More material will be covered later.

1.1 Quasigroups and Loops

Let Q be a set and · a binary operation on Q. Thus (Q, ·) is a universal algebra of type
{2}, usually called groupoid or binar . We will often not mention the binary operation ·
and simply write Q for (Q, ·). As O. Chein remarks in [9], the primary effect of denoting
the operation in Q by some symbol is to lengthen most equations, and we will therefore
agree to write ab instead of a · b.

A groupoid Q is a quasigroup if, for a, b, c ∈ Q, the knowledge of any two elements
in the equation

ab = c (1.1)

uniquely specifies the third. (Multiplication tables of quasigroups are known in com-
binatorics as Latin squares.) It is convenient to capture the same idea in terms of
translations. Let a be an element of Q. A left translation by a in Q is the mapping
L(a) : Q −→ Q defined by

xL(a) = ax.

Symmetrically, the right translation by a in Q is the mapping R(a) : Q −→ Q defined
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by
xR(a) = xa.

It is then easy to see that Q is a quasigroup if and only if every left translation L(a)
and every right translation R(a) is a bijection of Q. Hence, in a quasigroup, every
translation has an inverse, denoted by L(a)−1, R(a)−1. The inverse of a translation is
not necessarily a translation.

If you work in universal algebra, you might know a different definition of a quasi-
group. Namely, an algebra (Q, ·, /, \) with three binary operations is called a quasigroup
if and only if

a · (a\b) = b, (b/a) · a = b, a\(a · b) = b, (b · a)/a = b (1.2)

is satisfied for every a, b ∈ Q. These two definitions are equivalent, however, unlike
the former one, the latter one guarantees that the class of quasigroups is closed under
homomorphic images, and is therefore a variety. (Should you have difficulties remem-
bering (1.2), think of / and \ as right division and left division, respectively, and of · as
multiplication. Then simplify the left hand sides of every identity in (1.2).)

A quasigroup Q is a loop if Q possesses a neutral element e, i.e., if

ae = a = ea

holds for every a ∈ Q. It can be shown by the standard argument that if a neutral
element exists, it is unique.

Neither quasigroups nor loops are necessarily associative, and we must be careful
when writing down expressions involving complex products. In order to avoid excessive
use of parentheses, we employ the following evaluation rules: juxtaposition (as in ab)
has the highest priority, followed by ·, followed by parentheses. Thus, ab · c means:
first compute ab and then multiply the result on the right by c. The meaning of more
complicated expressions, such as (ab · c)df , should now be clear, too.

For a subloop P ≤ Q and and element x ∈ Q, let xP = {xy; y ∈ P} be the
left coset corresponding to P and x. Recall the left translation L(x) by x in Q. Since
xP = PL(x), and since L(x) is bijective, all left cosets have the same cardinality. Unlike
in group theory, two distinct left cosets can have a non-empty intersection. We define
right cosets in a similar way.

Subloop P is normal in Q if

xP = Px, (xP )y = x(Py), x(yP ) = (xy)P

holds for every x, y ∈ Q. Normality can be restated in terms of inner mappings, much
like in group theory. For x, y ∈ Q, consider the mappings

R(x, y) = R(xy)−1R(x)R(y),
L(x, y) = L(yx)−1L(x)L(y),

T (x) = R(x)L(x)−1,
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where, following our rule, we compose mappings from left to right. The mapping T (x)
plays the role of conjugation. Both R(x, y), L(x, y) are trivial when Q is a group. To
understand what they mean, consult Figure 1.1. Let

Inn(Q) = 〈R(x, y), L(x, y), T (x); x, y ∈ Q〉

be the subgroup of Aut(Q) generated by all inner mappings. Then P is normal in Q if
and only if P is invariant under Inn(Q).

z
R(xy)−−−→ z · xy

R(x)

y
∥∥∥ ?

zx −−−→
R(y)

zx · y

z
L(yx)−−−→ yx · z

L(x)

y
∥∥∥ ?

xz −−−→
L(y)

y · xz

Figure 1.1: Inner mappings R(x, y) and L(x, y)

A loop Q is said to be simple if Q has no non-trivial normal subloops. Equivalently,
Q is simple if Q has no non-trivial congruences.

Finally, the multiplication group Mlt(Q) of a quasigroup Q is defined by

〈L(x), R(x); x ∈ Q〉.

1.2 Moufang Loops

In order to understand the vast variety of loops, one habitually studies only loops satis-
fying some weak form of associativity. A loop L is called a Moufang loop if the Moufang
identities

xy · zx = x(yz · x), (1.3)
x(y · xz) = (xy · x)z, (1.4)
x(y · zy) = (x · yz)y (1.5)

are satisfied for every x, y, z ∈ L. Any of the three identities implies the other two (cf.
[35, chapter IV]). The crucial result concerning Moufang loops is the Moufang Theorem,
first proved by R. Moufang [32]. To state the theorem, we say that x, y, z ∈ L associate
if xy · z = x · yz. In a Moufang loop, if three elements associate, they associate in any
order. It follows directly from the Moufang identities that x, x, y associate for every x,
y.

Theorem 1.1 (Moufang Theorem) Let x, y, z be (not necessarily distinct) elements
of a Moufang loop L. Then 〈x, y, z〉 is an associative subloop of L if and only if x, y,
z associate.
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A loop is said to be power associative if every element generates an associative
subloop, i.e., a group. A loop is said to be diassociative if every two elements generate
an associative subloop. Both power associativity and diassociativity for Moufang loops
follow from the Moufang Theorem. Thanks to power associativity, the expression xn

has a unique interpretation for every non-negative integer n and every x ∈ L. Thanks
to diassociativity, we may omit parentheses in expressions involving only powers of two
elements.

Moreover, every element of a Moufang loop has a unique, both-sided inverse. More
precisely, for x ∈ L, there is a unique y ∈ L such that xy = yx = e. This inverse of x
will be denoted by x−1. We have therefore defined xn for every integer n and x ∈ L.
Also, the inverse of a translation is a translation when L is Moufang. Namely,

L(x)−1 = L(x−1), R(x)−1 = R(x−1).

We define the commutator of x, y and the associator of x, y, z by

[x, y] = x−1y−1xy, (1.6)
[x, y, z] = (xy · z)−1(x · yz), (1.7)

respectively.
The center Z(L) of a loop L is the set of all elements of L which commute and

associate with all other elements of L.

1.3 Split Octonion Algebras

For every field, there is an 8-dimensional algebra with zero divisors equipped with a
non-degenerate quadratic form that permits composition. In this section, we explain
the preceding sentence and introduce the needed notation. We will closely follow the
exposition of T. A. Springer and F. D. Veldkamp [41], where the subject is treated in
greater detail.

Let k be a field of characteristic p or 0, and let V be a vector space over k. Then
f : V × V −→ k is a bilinear form if f is linear in both arguments, i.e., if

f(u + v, w) = f(u, w) + f(v, w),
f(λu, w) = λf(u, w) = f(u, λw),

f(u, v + w) = f(u, v) + f(u, w)

holds for every u, v, w ∈ V , λ ∈ k. A mapping N : V −→ k is called a quadratic form if

N(λu) = λ2N(u)

is satisfied for every u ∈ V , λ ∈ k, and if N( , ) : V × V −→ k defined by

N(u, v) = N(u + v)−N(u)−N(v)
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is a bilinear form. The bilinear form N( , ) is called the bilinear form associated with N .
Two quadratic forms N1 and N2 on V are equivalent if there exists a surjective linear
map t : V −→ V such that

N1(u) = N2(t(u))

for every u ∈ V .
The classification of non-equivalent quadratic forms is a classical subject. We do

not need to know the details at this moment, but we have to introduce the notion of
orthogonality in order to define composition algebras. Assume that f is a bilinear form
on V . Two vectors u and v are said to be orthogonal if f(u, v) = 0. We write u ⊥ v. If
W is a subspace of V , the orthogonal complement of W in V is

W⊥ = {v ∈ V ; v ⊥ w for every w in W}.
The bilinear form f is non-degenerate if V ⊥ = 0. A quadratic form N on V is non-
degenerate if the bilinear form associated with N is non-degenerate.

An algebra over a field k is a vector space over k with bilinear multiplication. Specif-
ically, just as in [36], we do not assume that the multiplication is associative!

A composition algebra C over a field k is an algebra with a neutral element such
that there exist a non-degenerate quadratic form N on C which permits composition,
i.e., such that

N(uv) = N(u)N(v)

holds for every u, v ∈ C.
Every composition algebra satisfies the Moufang identities (cf. [41, Proposition

1.4.1]), but it is not a quasigroup, of course, because it contains 0. We will identify
certain Moufang loops within composition algebras in Section 1.4. Since C is a vector
space, it makes sense to speak about the dimension of C. One can show that the only
possible dimensions of C are 2, 4, and 8; and also 1, provided the characteristic of k is
different from 2. Composition algebras of dimension 2n are built from composition al-
gebras of dimension n by the so-called Cayley–Dickson process, also known as doubling .
The best known instance of doubling is the construction of complex numbers from real
numbers, quaternions from complex numbers, and octonions from quaternions. Starting
with a 2-dimensional composition algebra, each application of doubling strips the ensu-
ing algebra of some algebraic property. The first application destroys commutativity,
the second associativity. Then the Cayley–Dickson process stops. We say that C is an
octonion algebra if C has dimension 8. (Octonion algebras can be built in other system-
atic ways, too. In [14], the multiplication of basis elements is described in a compact
way. Dixon [19] uses Galois sequences.)

Every element x of a composition algebra satisfies

x2 −N(x, e)x + N(x)e = 0. (1.8)

This is the minimal equation for x when x is not a scalar multiple of e. The importance
of (1.8) cannot be stressed enough.

For our purposes, it is crucial to look more closely at the quadratic form N of a
composition algebra C. If N(u) = 0 for some nonzero vector u (i.e., if C contains a
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nonzero isotropic vector), we say that C is a split composition algebra. Otherwise, C is
called a division composition algebra. Note that split composition algebras are exactly
those composition algebras that have zero divisors. The following result is a part [41,
Theorem 1.8.1]:

Theorem 1.2 (Existence of Split Octonion Algebras) There is a unique split oc-
tonion algebra for every field.

Moreover, if k is finite, every octonion algebra constructed over k is split. Let GF (q)
be the Galois field of q elements, where q is a prime power. We denote by O(q) the
unique (split) octonion algebra constructed over GF (q). This algebra is the key to the
construction of Paige loops. Nevertheless, we will pay more attention to an alternative
construction, due to M. Zorn.

1.4 Paige Loops

In 1956, L. Paige [33] constructed one Paige loop for every field GF(q). (Of course, he
did not call them Paige loops.) Thirty years later, M. Liebeck [30] showed that there
are no other Paige loops. Following Bannai and Song [40], we denote the unique Paige
loop constructed over GF (q) by M∗(q). Let us give a brief description of M∗(q) now.

For α, β ∈ k3, let α · β denote the standard dot product , and α × β the standard
vector product of α, β. In detail, if α = (α1, α2, α3) and β = (β1, β2, β3), we have

α · β = α1β1 + α2β2 + α3β3,

α× β = (α2β3 − α3β2, α3β1 − α1β3, α1β2 − α2β1).

The Zorn algebra of vector matrices Zrn(q) consists of matrices
(

a α
β b

)
,

where a, b ∈ k, and α, β ∈ k3. The addition is defined entry-wise, and the multiplication
is given by the Zorn multiplication formula

(
a α
β b

)(
c γ
δ d

)
=

(
ac + α · δ aγ + dα− β × δ

cβ + bδ + α× γ β · γ + bd

)
. (1.9)

(Actually, the original Zorn multiplication formula [48] is different, albeit equivalent.
The formula we use can be found in [33], [41, p. 20], and [39, p. 93].) Note that this
multiplication differs from the ordinary matrix multiplication only by the two antidiag-
onal terms −β × δ and α × γ. The Zorn algebra Zrn(q) is isomorphic to O(q), and is
therefore a split composition algebra. See [28] for details. Since the algebraic structure
of any composition algebra uniquely specifies the quadratic form, there must be a unique
quadratic form on Zrn(q) corresponding to the quadratic form N of O(q). It turns out
to be the determinant ,

det
(

a α
β b

)
= ab− α · β.
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An element of Zrn(q) has a multiplicative inverse if and only if its determinant is nonzero.
In such a case, (

a α
β b

)−1

=
(

b −α
−β a

)
.

All elements of Zrn(q) with nonzero determinant form a Moufang loop, and so do
all elements of Zrn(q) with determinant 1. Let us denote the latter loop by M(q). The
neutral element of M(q) is

e =
(

1 (0, 0, 0)
(0, 0, 0) 1

)
.

The center of M(q) consists of scalar matrices with determinant 1. Thus Z(M(q)) =
{e, −e}. Note that the center is trivial when q is even.

Definition 1.3 Let M∗(q) be the quotient loop M(q)/Z(M(q)).

The Moufang loop M∗(q) is simple and non-associative, hence a Paige loop. We will
not introduce a special notation for the two-element cosets of M∗(q) = M(q)/Z(M(q))
when q is odd. We simply write x for xZ(M(q)) and tacitly identify x with −x. Some-
times the negative sign appears in our computations, but it can be ignored when the
equations are interpreted in M∗(q).

An easy argument of Paige [33] shows that M∗(q) has q3(q4− 1) elements when q is
even, and q3(q4 − 1)/2 elements when q is odd.

1.5 Summary of Results

After introducing the basic notions, let us briefly outline the results of this work.
Chapter 2 is devoted to generators of Paige loops. We prove that every Paige loop

is 3-generated and we list several generating sets for every prime power q. A primitive
element of GF (q) is needed to describe these generators, unless q is a prime. The prime
case is considered once again in Section 2.2, and generators consisting only of 0, 1 and
−1 are found. Thanks to its connection to the real octonions, the case q = 2 is of
special interest, and is consequently treated in greater detail in Section 2.3. There we
also construct an isomorphism between the integral Cayley numbers modulo their center
and M∗(2). This result first appeared in [43]. Generators for all values of q are treated
in [44].

Automorphisms of octonion algebras are investigated in Chapter 3. We prove on
the way that every element of O(q) can be written as a sum of two elements of norm 1,
and that the projective unimodular group L2(q) contains elements of exactly the same
orders as the loop M∗(q). We characterize elements of order 2 and 3 in Section 3.2,
and find how many such elements are there in M(q) and M∗(q), respectively. This will
allow us to prove that the only Paige loops of exponent 6 are M∗(2) and M∗(3). Several
automorphisms of O(q) (and M∗(q)) are constructed in Section 3.3. We focus on two
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classes of automorphisms: diagonal automorphisms and conjugations. First, it is shown
that (

a α
β b

)
7→

(
a f(α)

f(β) b

)

is an automorphism of O(q) if and only if f is a non-singular orthogonal linear transfor-
mation respecting the vector product. Secondly, the conjugation T (x) is an automor-
phism of M∗(q) if and only if |x| = 3.

The natural notion of Hasse constants is introduced in Chapter 4, and some basic
properties are derived. Using Hasse constants, we investigate the class of Moufang loops
M2n(G, 2). We prove several structural results (e.g., Sylow Theorems), and initiate
the theory of presentations for M2n(G, 2). We find compact presentations for all loops
M2n(G, 2) with G 2-generated, and we comment on the general case. Chapter 4 is
concluded with a visualization of the smallest non-associative Moufang loop M12(S3, 2),
thus offering, as far as we know, the best description of M12(S3, 2).

Chapter 5 is devoted entirely to the smallest Paige loop M∗(2). We give a complete
description of the lattice of subloops of M∗(2). As a consequence, we verify that M∗(2)
satisfies the strong Lagrange property. The most interesting facts about M∗(2) are
summarized in Theorem 5.27. We rely on the classification of small Moufang loops
due to O. Chein. Some of the arguments are of rather detailed nature, nevertheless,
all of them can be comfortably carried out by hand. In Section 5.4, we calculate the
probability that three randomly chosen elements of M∗(2) actually generate it, and some
refinements thereof. This is done with help of a tailored counting technique. There are
numerous combinatorial structures based on O(2) and M∗(2). We investigate two of
them more closely: the combinatorial design defined by the overlap of subgroups of
type S3 in M∗(2), and the generalized hexagon of order 2 defined by a certain incidence
structure based on the lattice of subloops. It seems that this is the first time the
generalized hexagon of order two appears as a natural incidence structure.

Chapter 6 deals with the automorphism groups of Paige loops. It is known that
Aut(O(q)) is the exceptional group G2(q). We prove in two different ways that the
group Aut(M∗(2)) equals G2(2), and embark on the general case. Here the role of the
additive structure and the minimal equation is especially apparent. It is fruitful to look
at O(q) in three ways: as a Zorn vector matrix algebra, as an algebra constructed from
GF (q) by three applications of doubling, and as an algebra with elegant quaternion-like
multiplication for basis elements. Much to his disappointment, the author was unable
to determine the isomorphism type of Aut(M∗(q)) for q 6= 2.

A small, but important part of the lattice of subloops of M∗(q) is unveiled in Chapter
7. More specifically, for every prime power q, we find three elements g1, g2, g3 ∈ M∗(q)
such that 〈g1, g2, g3〉 = M∗(q), and such that the groups 〈gi, gj〉, for i 6= j, are all
isomorphic to a certain group (3, 3 | 3, p) defined by Edington, Coxeter and Moser.
The structure of these groups was not known. They are now completely described by
Theorem 7.5. The form of their lattice of subgroups depends on solvability of a certain
quadratic congruence, and it can be nicely visualized in terms of affine geometry. The
results are based on [45]. We also include a short note on permutation representations
of quasigroups.
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The investigation of Paige loops is far from finished. The most important open
questions can be found in the last chapter.



Chapter 2

Generators

It is remarkable that every finite simple group is 2-generated, i.e., generated by 2 el-
ements. In hindsight, it appears to be an intrinsic property of finite simple groups,
however, no proof of this fact based only on the simplicity is known. Instead, the com-
plete list of finite simple groups—obtained from the classification—must be considered
class by class, and explicit generators must be found for every group. Decisive steps in
this program were made by L. E. Dickson (cf. Dickson Theorem) and by R. Steinberg
[42]. The entire effort was concluded in [3], and its history can be found in [47].

Paige loops cannot be 2-generated because they are diassociative but not associative.
In view of the results on finite simple groups, it is natural to expect that Paige loops
will be generated by a small number of elements. Indeed, we prove in this chapter that
every Paige loop is 3-generated.

2.1 Generators for Paige Loops

We adopt the notation of [13] for classical groups. In particular, we use SL2(q) for the
special linear group of 2×2 matrices of determinant 1 over k = GF (q), and L2(q) for the
projective unimodular group SL2(q)/Z(SL2(q)). We will see later that M∗(q) contains
many subgroups isomorphic to L2(q). Three of them show up in a straightforward way.

Let e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) be the canonical basis for k3. For i,
1 ≤ i ≤ 3, let φi : L2(q) −→ M∗(q) be defined by

φi

(
a b
c d

)
=

(
a bei

cei d

)
.

Since the multiplication in Gi = φi(L2(q)) coincides with the ordinary matrix multipli-
cation (all vector products involved in (1.9) vanish), φi is an isomorphism.

2.1.1 Generators for L2(q)

With the exception of (n, q) = (2, 2), (2, 3), all groups Ln(q) are simple [26, p. 182],
and so 2-generated [3]. The remaining two groups L2(2), L2(3) are 2-generated as well.

11
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We will need explicit generators for L2(q) and SL2(q). First of all, there is the Dickson
Theorem:

Theorem 2.1 (Dickson Theorem) Let q 6= 9 be an odd prime power, or q = 2. Then
SL2(q) is generated by (

1 1
0 1

)
,

(
1 0
u 1

)
, (2.1)

where u is a primitive element of GF (q).

The proof can be found in [18], and more recently in [24, pp. 44–55]. Traditionally,
Dickson Theorem does not mention the case q = 2, despite the fact that (2.1) generate
L2(2). (The group L2(2) is isomorphic to S3, hence generated by any two involutions,
for instance by (2.1).)

Remark 2.2 L2(4) is not generated by (2.1). What about L2(2r), r > 2?

A. A. Albert and J. Thompson claim [1, Lemma 8] that for any primitive element u
of GF (q), the group SL2(q) is generated by B, −B, and C, where

B =
(

u 0
0 u−1

)
, C =

(
0 1
−1 u

)
. (2.2)

Actually, the claim is not true for q = 2 (if q = 2, the primitive element u = α equals 1,
thus equation (92) in [1, Lemma 8] yields k = 0, and then Dj from equation (93) equals
I). We still have an impressive result:

Proposition 2.3 (A. A. Albert, J. Thompson, 1959) Let q > 2 be a prime power.
Then L2(q) is generated by (2.2), where u is a primitive element of GF (q).

The generators (2.2) are especially convenient for our purposes, because φi(B) = B
for every i, 1 ≤ i ≤ 3; but let us not get ahead of ourselves. It is practical to know some
generators that do not involve a primitive element. For that matter, Coxeter and Moser
argue in [17] that

Lemma 2.4 For every prime p, the group L2(p) is generated by
(

1 0
1 1

)
,

(
0 1
−1 0

)
. (2.3)

The following generators undoubtedly belong to mathematical folklore, but the au-
thor was unable to find a reference.

Lemma 2.5 Let q = 2r, r > 1. Then SL2(q) = L2(q) is generated by
(

1 1
1 0

)
,

(
u 0
0 u−1

)
, (2.4)
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where u is a primitive element of GF (q).

Proof. Let G be the subgroup of SL2(2r) generated by
(

1 1
1 0

)
and

(
u 0
0 u−1

)
.

As u is a primitive element of k = GF (2r),
(

a 0
0 a−1

)

belongs to G for all a ∈ k∗ = k \ {0}. Note that
(

a2 1
1 0

)
=

(
a 0
0 a−1

)(
1 1
1 0

)(
a 0
0 a−1

)

belongs to G, and thus (
a 1
1 0

)
∈ G

for all a ∈ k∗ (k is perfect). Because r > 1, there are x, y ∈ k∗ such that x + y = 1, and
consequently (

0 1
1 0

)
=

(
1 1
1 0

)2 (
x 1
1 0

)(
y 1
1 0

)−1

∈ G.

We also have (
1 a
0 1

)
=

(
1 + a 1

1 0

)(
1 1
1 0

)−1

∈ G

for every a ∈ G. Finally, consider

M =
(

a b
c d

)

with ad− bc = 1. First assume that a 6= 0. Since

M =
(

1 ab
ca−1 ad

)(
a 0
0 a−1

)
,

we may assume that a = 1. But then

M =
(

1 b
c 1 + bc

)
=

(
1 0
c 1

)(
1 b
0 1

)
∈ G.

Now assume that a = 0. If d 6= 0, then

M =
(

d b
b−1 0

)−1

∈ G.

If d = 0, we have

M =
(

b 0
0 b−1

)(
0 1
1 0

)
∈ G,

and we are through. ¤
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2.1.2 Reducing the number of generators for Paige loops

Within the proof of simplicity of M∗(q), L. Paige showed that M∗(q) is generated by
the elements

Xα =
(

1 α
0 1

)
, Yα =

(
1 0
α 1

)
, (2.5)

where α runs over k3. (Combine Lemmas 4.2 and 4.3 of [33].) We now deduce from
(2.5) that every M∗(q) is at most 6-generated. Recall the subgroups Gi introduced in
Subsection 2.1.1.

Proposition 2.6 M∗(q) is generated by G1 ∪G2 ∪G3.

Proof. Let Q be the subloop of M∗(q) generated by G1 ∪ G2 ∪ G3. It suffices to
prove that Q contains the elements Xα, Yα for all α ∈ k3. We show simultaneously that
Xα ∈ Q and Yα ∈ Q.

Let n denote the number of nonzero entries of α. There is nothing to prove when
n ≤ 1. Suppose that n = 2. Without loss of generality, let α = (a, b, 0) for some a,
b ∈ k∗. Verify that

(
1 ae1

0 1

)(
1 be2

0 1

)
·
(

1 0
−abe3 1

)
=

(
1 (a, b, 0)
0 1

)
,

and thus Xα ∈ Q. Similarly, Yα ∈ Q. We can therefore assume that Q contains all
elements Xα, Yα with n ≤ 2.

Let n = 3, α = (a, b, c) for some a, b, c ∈ k∗. As
(

1 (a, b, 0)
0 1

)(
1 (0, 0, c)
0 1

)
·
(

1 0
(−bc, ac, 0) 1

)
=

(
1 (a, b, c)
0 1

)
,

Xα belongs to Q. Symmetrically, Yα ∈ Q, and we are done. ¤
In fact, G1 ∪G2 already generates M∗(q). The role of the cross product is especially

apparent in the next proposition.

Proposition 2.7 The subgroup G3 is contained in the subloop of M∗(q) generated by
G1 ∪G2. In particular, M∗(q) is generated by G1 ∪G2.

Proof. As it turns out, all we need are these two equations:
(

1 0
ue3 1

)
=−

(
0 e2

−e2 0

)(
1 ue1

−u−1e1 0

)
·
(

1 e2

−e2 0

)(
1 ue1

−u−1e1 0

)
,

(
0 e3

−e3 0

)
=

(
0 e1

−e1 0

)(
0 −e2

e2 0

)
.

Note that the left hand sides of these equations are elements of G3, whereas the right
hand sides are products of elements of G1 ∪G2. If q = 2, we are done by Lemma 2.4. If
q > 2, observe that, calculating in L2(q),(

1 0
u 1

)(
0 1
−1 0

)
=

(
0 1
−1 u

)
= C.

Since B = φi(B) for every i, 1 ≤ i ≤ 3, we are done by Proposition 2.3. ¤
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2.1.3 Main Result

We are now ready to show that every Paige loop is 3-generated. We present more than
one generating set for every M∗(q) with q 6= 2, 9.

Theorem 2.8 (Generators for Paige Loops) Every Paige loop is generated by three
elements. When q > 2, then

(
0 (1, 0, 0)

(−1, 0, 0) u

)
,

(
0 (0, 1, 0)

(0,−1, 0) u

)
,

(
u (0, 0, 0)

(0, 0, 0) u−1

)
(2.6)

generate M∗(q). When q 6= 9 is odd or q = 2, then M∗(q) is generated by
(

1 (1, 0, 0)
(0, 0, 0) 1

)
,

(
1 (0, 1, 0)

(0, 0, 0) 1

)
,

(
0 (0, 0, u)

(0, 0,−u−1) 1

)
. (2.7)

When q > 2 is even, then M∗(q) is generated by
(

1 (1, 0, 0)
(1, 0, 0) 0

)
,

(
1 (0, 1, 0)

(0, 1, 0) 0

)
,

(
u (0, 0, 0)

(0, 0, 0) u−1

)
. (2.8)

In all cases, u is a primitive element of GF (q).

Proof. To see that (2.6) generates M∗(q) when q > 2, combine Propositions 2.3 and
2.7, and note that φ1(B) = φ2(B) = B.

Assume that q 6= 9 is odd, or q = 2. Keeping Proposition 2.7 and Dickson Theorem
in mind, we only need to obtain the elements

(
1 0

uei 1

)
,

for i = 1, 2. Straightforward computation reveals that

(
1 0

ue1 1

)
= −

(
0 ue3

−u−1e3 1

)2 (
1 e2

0 1

) (
0 ue3

−u−1e3 1

)
,

(
1 0

ue2 1

)−1

= −
(

0 ue3

−u−1e3 1

)2 (
1 e1

0 1

) (
0 ue3

−u−1e3 1

)
.

Note that the expressions on the right hand side can be evaluated in any order.
Finally, let q = 2r, r > 1. Since φ1(B) = φ2(B), we are done by Lemma 2.5 and

Proposition 2.7. ¤

2.2 Generators for Paige Loops over Prime Fields

We present an alternative set of generators for M∗(q) in case that q = p is a prime. The
proof does not require the complicated Dickson Theorem.



CHAPTER 2. GENERATORS 16

Proposition 2.9 (Theorem 2.1[43]) Let p be a prime. Then M∗(p) is generated by

U1 =
(

1 (1, 0, 0)
0 1

)
, U2 =

(
1 (0, 1, 0)
0 1

)
, X =

(
0 (0, 0, 1)

(0, 0, −1) 1

)
.

Proof. First check that
(

1 0
1 1

)
=

(
0 1
−1 0

)(
1 1
0 1

)−1 (
0 1
−1 0

)−1

. (2.9)

Combine (2.3) and (2.9) to see that L2(p) is generated by

U =
(

1 1
0 1

)
, V =

(
0 1
−1 0

)
.

Consequently, M∗(p) is generated by U1 = φ1(U), U2 = φ2(U), V1 = φ1(V ), and
V2 = φ2(V ). Now,

V2 = −(XU1 ·XU2) ·X−1U1,

V1 = −U1U2 · (V2 · U1X),

and we are through. ¤

2.3 Generators for Integral Cayley Numbers

We have seen in Section 1.4 how every Paige loops arises from the octonion algebra
O(q). The loop M∗(2) is exceptional in the sense that it can also be linked to the real
octonion algebra O in a nice way. By real octonion algebra we mean the octonion algebra
constructed over R by the standard Cayley–Dickson process (see below). We will refer
to O simply as octonions. Others prefer different names, such as algebra of octaves, or
Cayley numbers. We will give the details of the construction of O(q), since we will need
them later anyway.

2.3.1 The Cayley–Dickson process = Doubling

We excerpt parts of the material from [41] once again.
Let D be a composition algebra over k with quadratic form N and associated bilinear

form N( , ). We will call N suggestively a norm, although the reader should be warned
that N does not need to satisfy any of the axioms of a (metric space) norm, especially
when D is split. We will see in Section 3.1 that O(q) has very peculiar metric properties.

For x ∈ D, define the conjugate x by

x = N(x, e)e− x. (2.10)

Pick λ ∈ k∗. On C = D ⊕D, define the addition entry-wise, multiplication by

(x, y)(u, v) = (xu + λvy, vx + yu),
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and the norm by
N((x, y)) = N(x)− λN(y).

This procedure is known as the Cayley–Dickson process, or doubling . When D is
associative and commutative, then C is associative. When D is associative, then C is a
composition algebra. Note that the dimension of C is twice that of D. Also note that
λ is a parameter in the process. Different values of λ may result in different algebraic
properties of C. We speak about standard Cayley–Dickson process if λ = −1.

The octonions O can be constructed from R by three applications of the standard
Cayley–Dickson process. A more classical approach to the standard Cayley–Dickson
process is to introduce a new unit in every step, say f , let C = D⊕Df , and define the
multiplication by

(x + yf)(u + vf) = (xu− vy) + (vx + yx)f,

and the norm by
N(x + yf) = N(x) + N(y).

We can then obtain O from R in three steps by adjoining i (to get C), then j (to get H),
and finally e. (Here, our notation for the neutral element collides with the usual name
for the lastly adjoined unit.) Following Dickson, we can then write a (vector space) basis
for O as 1, i, j, k = ij, e, ie, je, ke, where 1 is the neutral element of O, and e is the
lastly adjoined unit.

2.3.2 Integral Cayley Numbers

Let C be a composition algebra. A subset S of C is called a set of integral elements if
it is a maximal subset of C with respect to the following conditions:

(i1) e ∈ S,

(i2) S is closed under multiplication and subtraction,

(i3) N(a) and a + a belong to the prime field for every a ∈ S.

This generalizes the definition of a set of integral elements given in [15]. Coxeter explains
the meaning of (i3) essentially as follows: in any composition algebra, every element
satisfies

x2 −N(x, e)e + N(x)e = 0. (2.11)

We recognize that (2.11) is the (minimal) equation (1.8) introduced in Section 1.4. We
see immediately from the conjugation formula (2.10) that (2.11) is the same as

x2 − (x + x)x + N(x)e = 0. (2.12)

Thus, the condition (i3) means that the coefficients of (2.11) are in the prime field.
Everybody should be familiar with the integral real numbers (= integers), and the

integral complex numbers (= Gauss’ integers). We can speak of the set of integral
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numbers in case of R, C, and even H, because there is a unique set of integral numbers.
However, for O, there are 7 isomorphic sets of integral numbers. We will call each of
them integral Cayley numbers, or integral octonions. For the rest of this section, select
the one which Coxeter calls J in [15].

2.3.3 An Isomorphism and Generators

Let J ′ = {x ∈ J ; N(x) = 1}. It is well known that |J ′| = 240 and that J ′/{1, −1} is, as
a loop, isomorphic to M∗(2). Indeed, J ′ is probably the best known finite non-associative
Moufang loop! Coxeter knew that J is generated by 3 elements by multiplication and
subtraction. Since norm permits composition, and since M∗(2) is 3-generated, it is
reasonable to expect that J ′ is 3-generated (by multiplication only), too.

We will use Dickson’s notation for O.

Theorem 2.10 (Generators for Integral Cayley Numbers) Every loop of inte-
gral Cayley numbers of unit norm is 3-generated. For J ′, the generators are i, j, and
h = 1/2(i + j + k + e).

Proof. Define a mapping ψ : M∗(2) −→ J ′/{1, −1} by
(

0 e3

e3 0

)
7→ i,

(
0 e2

e2 0

)
7→ j,

(
1 (0, 1, 0)

(1, 0, 1) 1

)
7→ h.

It is rather tedious to check by hand that ψ extends into an isomorphism of M∗(2) onto
J ′/{1, −1}. The author used his own GAP libraries (see Appendix A) to confirm the
computation. This being said, we can see that J ′/{1, −1} is generated by i, j, and h.
As i2 = −1, we are done. ¤

The traditional multiplication in O is cumbersome. For instance, let us verify that
e (the unit adjoined to H) equals −(jh ·hi) · kh. Even if we take advantage of Coxeter’s
tables [15, p. 576, or p. 28], the computation requires many steps. First, we read off
hi = −1− ih. Then

−(jh · hi) · kh = (jh + jh · ih) · kh = (jh + k − h− ih) · kh

= jh · kh + k · kh− h · kh− ih · kh

= (−i + h− kh) + (−h)− (k − h)− (j − h− kh)
= −i− j − k + 2h,

which equals e, since h = 1/2 · (i + j + k + e).
On the other hand, multiplication in M∗(2) is easy enough once we know ψ−1(e).

One can see that

ψ−1(e) =
(

0 (1, 1, 1)
(1, 1, 1) 0

)
.

See Chapter 6 for more information on additive properties of ψ.
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Automorphisms

Not surprisingly, the group Aut(M∗(q)) is useful in the investigation of M∗(q). We find
some automorphisms of M∗(q) and O(q) needed in Chapter 5, and return to a more
detailed investigation of Aut(M∗(q)) and Aut(O(q)) in Chapter 6.

3.1 Automorphisms of Split Octonion Algebras

Three groups are usually studied in connection with a loop Q: the inner mapping group
Inn(Q), the multiplication group Mlt(Q), and the automorphism group Aut(Q). In case
of the Paige loop M∗(q), there is another group of interest, namely Aut(O(q)).

By an automorphism of an algebra A over a field k (cf. A = O(q)) we mean a linear
automorphism, i.e., a bijection f satisfying

f(x + y) = f(x) + f(y), (additivity)
f(λx) = λf(x), (scalar linearity)
f(xy) = f(x)f(y), (multiplicativity)

for every x, y ∈ A, λ ∈ k.

3.1.1 Lie Algebras and Groups of Lie Type

It goes beyond the scope of this work to shed light on all the details pertinent to the
classification of simple Lie algebras over complex numbers and to the construction of
groups of Lie type. We only introduce the notation and the basic concepts. For more
details, see [8].

A Lie algebra A is an algebra where the product [ , ], usually called Lie bracket , is
bilinear, satisfies [x, x] = 0 for every x ∈ A, and where the Jacobi identity

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (3.1)

holds for every x, y, z ∈ A.
Multiplication in a Lie algebra is anticommutative, i.e., [x, y] = −[y, x]. An ideal I

of A is a subspace of A such that [I, A] ⊆ I. Lie algebra A is said to be simple if it
has no non-trivial ideals.

19
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D4 G2

Figure 3.1: The Dynkin diagrams for D4 and G2

Simple Lie algebras over k = C are known to belong to one of nine types—there
are four countable families Ai, Bi, Ci, Di, and five exceptional Lie algebras G2, F4, E6,
E7 and E8. The Dynkin diagrams corresponding to the fundamental roots completely
characterize each of the simple algebras. We will only deal with Lie algebras of type D4

and G2 whose Dynkin diagrams are in Figure 3.1.
To every field k and every simple Lie algebra A over C, one associates a certain group

A(k), the Chevalley group of type A over k. See [8, Chapter 4]. These groups are also
called groups of Lie type. We write G2(q) and D4(q) to denote the groups G2(GF (q))
and D4(GF (q)), respectively.

The following two results are of importance to us.

Theorem 3.1 (Springer and Veldkamp [41, Ch. 2]) The automorphism group of
the split octonion algebra O(q) is the Chevalley group G2(q).

Theorem 3.2 (Doro [20]) The multiplication group of M∗(q) is the Chevalley group
D4(q).

3.1.2 Metric Properties of O(q)

Before we construct several automorphisms of O(q), we would like to point out how far
are the properties of the norm N on O(q) from the intuitive understanding of (metric)
norms.

Theorem 3.3 In the split octonion algebra O(q), every element is a sum of two elements
of norm one.

Proof. We identify O(q) with Zrn(q), where the norm is given by the determinant. Let

x =
(

a α
β b

)

be an element of O(q). First assume that β 6= 0. Note that for every λ ∈ k = GF (q)
there is γ ∈ k3 such that γ · β = λ. Pick γ ∈ k3 so that γ · β = a + b− ab + α · β. Then
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choose δ ∈ γ⊥ ∩α⊥ 6= ∅. This choice guarantees that (a− 1)(b− 1)− (α− γ) · (β − δ) =
ab− a− b + 1− α · β + γ · β = 1. Thus

(
a α
β b

)
=

(
1 γ
δ 1

)
+

(
a− 1 α− γ
β − δ b− 1

)

is the desired decomposition of x into a sum of two elements of norm 1. Note that the
above procedure works for every α.

Now assume that β = 0. If α 6= 0, we use a symmetrical argument as before to
decompose x. It remains to discuss the case when α = β = 0. Then the equality

(
a 0
0 b

)
=

(
a e1

−e1 0

)
+

(
0 −e1

e1 b

)

does the job. ¤

We will need this result later, although all we really need to know is the weaker
statement that O(q) is generated by elements of norm one (by multiplication and addi-
tion).

3.1.3 Restricting Automorphisms

Theorem 3.1 describes the automorphism group of O(q). We now restrict the automor-
phisms to the first shell M(q) of O(q).

Lemma 3.4 Let f ∈ Aut(O(q)). Then f ¹ M(q) ∈ Aut(M(q)). Moreover, if f 6= g ∈
Aut(O(q)), then f ¹ M(q) 6= g ¹ M(q). In particular, G2(q) is a subgroup of Aut(M(q)).

Proof. Since f(uv) = f(u)f(v) holds for every u, v ∈ O(q), it also holds for u,
v ∈ M(q). Assume that f ¹ M(q) = g ¹ M(q). Since f , g ∈ Aut(O(q)) and, by Theorem
3.3, O(q) = 〈M(q)〉, we have f = g, a contradiction. ¤

Remark 3.5 Note that all we needed to assume about f , g was the additivity and mul-
tiplicativity, not linearity.

3.2 Orders of Elements in Paige Loops

We prove that the orders of elements of M∗(q) are the same as the orders of elements
of L2(q). Then we focus on elements of order 2, 3. This order statistics can be used
sometime for black box recognition of Paige loops. See [29] for more information on black
box models of groups and algebras.
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3.2.1 Orders in L2(q) versus Orders in M∗(q)

Proposition 3.6 explains how to calculate the orders of elements of M∗(q) without using
the vector product, hence faster.

Proposition 3.6 For

x =
(

a α
β b

)

in M∗(q), define x̃ ∈ L2(q) by

x̃ =





(
a 0
0 b

)
, if (α, β) = (0, 0),

(
a 1

α · β b

)
, if α 6= 0,

(
a α · β
1 b

)
, otherwise.

Then the order of x in M∗(q) is the same as the order of x̃ in L2(q).

Proof. If (α, β) = (0, 0), we may consider x as an element of L2(q). Assume that
(α, β) 6= (0, 0). Taking the Zorn multiplication formula (1.9) into account, verify that
every element of 〈x〉 has the form

(
c sα
tβ d

)
, (3.2)

for some c, d, s, t ∈ k. Furthermore, if α = 0 we may assume that s = 0, if β = 0
we may assume that t = 0. With this additional convention, every element of 〈x〉 is
uniquely written as (3.2). This allows us to define a mapping ω : 〈x〉 −→ L2(q) by

ω

(
c sα
tβ d

)
=





(
c s

tα · β d

)
, if α 6= 0,

(
c sα · β
t d

)
, otherwise.

Straightforward computation shows that ω is a homomorphism onto a subgroup of L2(q).
Since the kernel of ω is trivial, ω preserves orders. Now observe that x̃ = ω(x). ¤

We have just shown that for every element x ∈ M∗(q), there is an element y ∈ L2(q)
such that |x| = |y|. The converse is also true.

Theorem 3.7 Let S ⊆ Z be the set of orders of all elements of M∗(q), and let T be the
set of orders of all elements of L2(q). Then S = T .
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Proof. Proposition 3.6 shows that S ⊆ T . We show that element element y of L2(q)
has the same order as some element z ∈ Im(ω), where ω is the mapping defined in the
proof of Proposition 3.6. Let

y =
(

a c
d b

)
.

If (c, d) = (0, 0) then y can be considered as an element of M∗(q). Assume that c 6= 0.
The case c = 0, d 6= 0 is similar. Since the mapping

(
r s
t u

)
7→

(
r λs

λ−1t u

)

is an automorphism of L2(q) for every λ ∈ k∗, we can assume that c = 1. Let α, β ∈ k3

be such that α · β = cd = d. Then

ω

(
a α
β b

)
=

(
a 1

α · β b

)
= y,

and we are done. ¤

We do not claim that this speeds up the computation of orders dramatically, but
it reduces the problem of finding orders of elements of M∗(q) to the theory of groups.
For example, since |L2(2)| = 6, it is immediately obvious from Theorem 3.7 that M∗(2)
contains only elements of order 1, 2, and 3. More importantly, the set of orders is known
for every L2(q), cf. [26, Ch. II, §8], and therefore also for every M∗(q) now.

A result similar to Theorem 3.7 can be proved for M(q) and SL2(q).

3.2.2 Counting Elements of Order Two and Three

We will find it convenient to have characterizations of elements of order 2 and 3 in M(q)
and M∗(q). All calculations in Lemma 3.8 take place in M(q).

Lemma 3.8 Let

x =
(

a α
β b

)

be an element of M(q). Then:

(i) For q odd, x2 = e if and only if (α, β) = (0, 0) and a = b = ±1.

(ii) For every q, x2 = −e if and only if ((α, β) = (0, 0), b = a−1, and a2 = −1) or
((α, β) 6= (0, 0), and b = −a).

(iii) For q odd, x3 = e if and only if ((α, β) = (0, 0), b = a−1, and a3 = 1) or
((α, β) 6= (0, 0), and b = −1− a).

(iv) For every q, x3 = −e if and only if ((α, β) = (0, 0), b = a−1, and a3 = −1) or
((α, β) 6= (0, 0), and b = 1− a).
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Proof. Suppose that (α, β) = (0, 0). Then b = a−1, else N(x) 6= 1. Therefore

xm =
(

am 0
0 a−m

)

for every integer m.
For the rest of the proof assume that (α, β) 6= (0, 0). We have

x2 =
(

a2 + α · β (a + b)α
(a + b)β b2 + α · β

)
.

If x2 = εe, where ε = ±1, we must have b = −a. Conversely, if b = −a, we have
α · β = ab− 1 = −a2 − 1, and x2 = −e. If x3 = εe, then

x2 = εx−1 = ε

(
b −α
−β a

)
,

and we must have a + b = −ε, i.e., b = −ε − a. Conversely, if b = −ε − a, then
α · β = ab− 1 = −1− εa− a2, and b2 = 1 + 2εa + a2. Hence

x2 =
( −1− εa −εα

−εβ εa

)
= εx−1,

i.e., x3 = εe. ¤

We want to count the number of elements of order 2 and 3 in M(q) and M∗(q). It
is perhaps not difficult in every particular case, but the general formulas are somewhat
complicated. We start with an easy lemma.

Lemma 3.9 Let c ∈ GF (q) = k. If c 6= 0 (resp. c = 0), there are q2(q3 − 1) (resp.
q2(q3 + q − 1)) ordered pairs (α, β) of vectors α, β ∈ k3 such that α · β = c.

Proof. Let α = (α1, α2, α3), β = (β1, β2, β3). If α1 6= 0, and α2, α3, β2, β3 are
arbitrary, there is a unique β1 such that α · β = c. We have found (q − 1)q4 ordered
pairs. Similarly, we find (q − 1)q3 ordered pairs when α1 = 0, α2 6= 0, and additional
(q − 1)q2 ordered pairs when α1 = α2 = 0, α3 6= 0. When α1 = α2 = α3 = 0, then
α · β = 0 for every β ∈ k3.

Therefore, if c 6= 0, there are (q − 1)(q4 + q3 + q2) = q2(q3 − 1) ordered pairs. If
c = 0, there are q2(q3 − 1) + q3 = q2(q3 + q − 1) ordered pairs. ¤

Proposition 3.10 Let π, ρ, σ, τ be the number of solutions to x3 − 1 = 0, x2 + 1 = 0,
x2 +x+1 = 0, x2−x+1 = 0 in GF (q), respectively. Denote by tn(q), t∗n(q) the number
of elements of order n in M(q), M∗(q), respectively. Let q0 = q2(q3 + q − 1) − 1, and
q1 = q2(q3 − 1). Then

t2(q) =
{

1, if q is odd,
ρ + ρq0 + (q − ρ)q1 − 1, if q is even,
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t3(q) =
{

π + σq0 + (q − σ)q1 − 1, if q is odd,
π + τq0 + (q − τ)q1 − 1, if q is odd,

t∗2(q) =
{

1
2 [ρ + ρq0 + (q − ρ)q1], if q is odd,
ρ + ρq0 + (q − ρ)q1 − 1, if q is even,

t∗3(q) =
{

π − 1 + 1
2 [(σ + τ)q0 + (2q − σ − τ)q1], if q is odd,

π + τq0 + (q − τ)q1 − 1, if q is even.

Proof. Let p(i), . . ., p(iv) be the number of elements x ∈ M(q) satisfying part (i), . . .,
(iv) of Lemma 3.8, respectively.

Assume that q is even. Then t2(q) = p(ii)− 1, and t3(q) = p(iv)− 1. Since M(q) =
M∗(q), we also have t∗n(q) = tn(q), for n = 2, 3.

Assume that q is odd. Then t2(q) = p(i) − 1, and t3(q) = p(iii) − 1. Note that x ∈
M(q) satisfies (i) (resp. (ii)) if and only if −x satisfies (i) (resp. (ii)); and that y ∈ M(q)
satisfies (iii) if and only if −y satisfies (iv). Therefore t∗2(q) = 1/2 · (p(i)− 1 + p(ii)− 1),
t∗3(q) = 1/2 · (p(iii)− 1 + p(iv)− 1).

It remains to calculate p(i), . . ., p(iv). The right hand sides of parts (i), . . ., (iv)
consist of two exclusive statements. For r = ii, iii, iv, let p(r)(A) (resp. p(r)(B)) be the
number of elements x ∈ M(q) satisfying the first (resp. second) statement on the right
hand side of (r). Thus, p(r) = p(r)(A) + p(r)(B), for r = ii, iii, iv.

Apparently, p(i) equals 1 when q is even, and 2 when q is odd. Also, p(ii)(A) = ρ,
p(iii)(A) = π, and p(iv)(A) = p(iii)(A) (since a3 = −1 if and only if (−a)3 = 1).

We proceed to calculate p(r)(B) for r = ii, iii, iv. Let x ∈ M(q) be written as in
Lemma 3.8, with (α, β) 6= (0, 0). When x satisfies (r)(B), the element b is uniquely
determined by a. For instance, x satisfies (iii)(B) if and only if b = −1 − a. Since ab
equals 1 if and only if α · β = 0, Lemma 3.9 yields p(r)(B) = ξq0 + (q − ξ)q1, where ξ is
the number of elements a ∈ GF (q) for which ab = 1. When r = ii, we have b = −a, and
so ξ = ρ. When r = iii, we have b = −1− a, so ξ = σ. When r = iv, we have b = 1− a,
and so ξ = τ .

Therefore, p(ii) = ρ + ρq0 + (q − ρ)q1, p(iii) = π + σq0 + (q − σ)q1, and p(iv) =
π + τq0 + (q − τ)q1. Everything follows. ¤

The constants π, ρ, σ, and τ are known for every prime power q, of course. We write
a | b when a divides b, and a - b when it does not.

Lemma 3.11 Let π, ρ, σ, and τ be as in Proposition 3.10. Then

π =
{

3, if 3 | q − 1,
1, otherwise,

ρ =





1, if q is even,
2, if 4 | q − 1,
0, otherwise,

σ =





1, if 3 | q,
2, if 3 | q − 1,
0, otherwise,

τ =





1, if 3 | q,
2, if 3 | q − 1,
0, otherwise.
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Proof. The multiplicative group GF (q)∗ is isomorphic to Cq−1. Since π counts the
number of elements satisfying x3 = 1, its value follows.

An element x satisfies x2 + x + 1 = 0 and x 6= 1 if and only if x3 = 1 and x 6= 1.
Therefore, there are π − 1 elements satisfying x2 + x + 1 = 0 and x 6= 1. The element
x = 1 solves x2 + x + 1 = 0 if and only if 3 | q. The value of σ follows.

If q is even, there is a unique element satisfying x2 = −1. Assume that q is odd.
Then x2 = −1 implies that |x| = 4. The value of ρ follows.

Finally, x = −1 solves x2−x+1 = 0 if and only if 3 | q. Assume that x 6= −1. Then
x2 − x + 1 = 0 is equivalent to (x + 1)(x2 − x + 1) = x3 + 1 = 0. Now, x3 = −1 if and
only if (−x)3 = 1. The value of τ can thus be calculated from π. ¤

In particular, Proposition 3.10 and Lemma 3.11 imply that t2(q) = t∗2(q) = q6 − 1
when q is even.

Lemma 3.11 suggests the following definition. We say that two prime powers q, q′

are ∼-equivalent if the constants π, ρ, σ, and τ are the same for q, q′. It is easy to see
that there are 8 equivalence classes with respect to ∼. When q is even, then q ≡ 1, 2
(mod 3) (remember, q is a prime power), and 4 does not divide q − 1. When q is odd,
then q ≡ 0, 1, 2 (mod 3) and q − 1 ≡ 0, 2 (mod 4). The constants are summarized
in Table B.4 for each of these equivalence classes. The smallest class representative is
also listed in Table B.4.

Example 3.12 Let q = 2. Then π = 1, τ = 0, and q1 = 4 · 7 = 28. Therefore
t∗2(2) = 64− 1 = 63 and t∗3(2) = 1 + 2 · 28− 1 = 56.

Let q = 3. Then π = σ = τ = 1, ρ = 0, q0 = 9 · 29− 1 = 260, and q1 = 9 · 26 = 234.
Therefore t∗2(3) = 1/2 · 3 · 234 = 351, and t∗3(3) = 1/2 · (2 · 260 + 4 · 234) = 728.

Since M∗(2) has 120 = 56 + 63 + 1 elements and M∗(3) has 33(34 − 1)/2 = 1080 =
351 + 728 + 1 elements, we have just demonstrated that both M∗(2), M∗(3) consist of
elements of order 1, 2 and 3. There are no other Paige loops with this property, as we
will see next.

Lemma 3.13 The only Paige loops with exponent 6 are M∗(2) and M∗(3).

Proof. The group L2(q) has order q(q − 1)(q + 1)/d, where d is the greatest common
divisor of q − 1 and 2 [13, p. x]. Thus q divides |L2(q)|, and L2(q) contains an element
of order p, where q = pn. By Theorem 3.7, so does M∗(q). Therefore M∗(2) can have
exponent 6 only if q = pn, where p = 2, 3. Unquestionably, one could use Theorem 3.7
and properties of L2(q) to deduce that n = 1. However, we wish to use Proposition 3.10,
Lemma 3.11 and Table B.4 instead.

Assume that p = 2, 3. Then q ∼ 4, 2, 9, or 3. Suppose that q ∼ 4. Then
t = t∗2(q) + t∗3(q) equals q6 − 1 + 2q0 + (q − 2)q1 = 2q6 + q3 − 3. This equals to
|M∗(q)| = q3(q4 − 1) if and only if s(q) = q7 − 2q6 − 2q3 + 2 = 0. But s(4) > 0, whence
s(q) > 0 for every q ∼ 4 (because 4 is the smallest representative, and all coefficients of
s(q) are less than 4).

Suppose that q ∼ 2. Then t = 2q6 − q3 − 1, hence t = |M∗(q)| − 1 if and only if
2q6 = q7. This happens if and only if q = 2.
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Suppose that q ∼ 9. Then t = 1/2 · (3q6 + q3 − 2), hence t = |M∗(q)| − 1 =
1/2 · (q7 − q3)− 1 if and only if q7 − 3q6 − 2q3 = 0. This is never the case for q ∼ 9.

Finally, suppose that q ∼ 3. Then t = 1/2 · (3q6 − q3 − 2), hence t = |M∗(q)| − 1 if
and only if 3q6 = q7. This happens if and only if q = 3. ¤

3.3 Explicit Automorphisms of Split Octonion Algebras
and Paige Loops

Let us have a look at two classes of automorphisms of O(q).

3.3.1 Diagonal Automorphisms

Let k = GF (q), and let Lie(q) denote the 3-dimensional Lie algebra k3 where the vector
product × plays the role of Lie bracket. Then f : k3 −→ k3 is an element of Aut(Lie(q))
if and only if f is a linear transformation onto k3 satisfying

f(α× β) = f(α)× f(β)

for every α, β ∈ k3. We say that a linear transformation f : k3 −→ k3 is orthogonal if
f preserves the dot product, i.e., if

f(α) · f(β) = α · β

holds for every α, β ∈ k3.

Proposition 3.14 (Diagonal Automorphisms of O(q)) For a non-singular orthog-
onal linear transformation f : k3 −→ k3, let f̂ : O(q) −→ O(q) be the mapping

f̂

(
a α
β b

)
=

(
a f(α)

f(β) b

)
.

Then f̂ ∈ Aut(O(q)) if and only if f ∈ Aut(Lie(q)). For λ ∈ k∗, define λ̂ : O(q) −→ O(q)
by

λ̂

(
a α
β b

)
=

(
a λα

λ−1β b

)
.

Then λ̂ ∈ Aut(O(q)) if and only if λ3 = 1.

Proof. Both λ̂ and f̂ are clearly linear and preserve the norm. Since f is one-to-one,
so is f̂ . We have

f̂

(
a α
β b

)
f̂

(
c γ
δ d

)

=
(

ac + f(α) · f(δ) af(γ) + df(α)− f(β)× f(δ)
cf(β) + bf(δ) + f(α)× f(γ) f(β) · f(γ) + bd

)
.
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On the other hand,

f̂

((
a α
β b

)(
c γ
δ d

))
=

(
ac + α · δ f(aγ + dα− β × δ)

f(cβ + bδ + α× γ) β · γ + bd

)
.

The sufficiency is now obvious, and the necessity follows by specializing the elements a,
b, c, d, α, β, γ, δ.

Now for the mapping λ̂. We have

λ̂

(
a α
β b

)
λ̂

(
c γ
δ d

)
=

(
ac + α · δ λ(aγ + dα)− λ−2β × δ

λ−1(cβ + bδ) + λ2α× γ β · γ + bd

)
,

whereas

λ̂

((
a α
β b

)(
c γ
δ d

))
=

(
ac + α · δ λ(aγ + dα− β × δ)

λ−1(cβ + bδ + α× γ) β · γ + bd

)
.

The result follows. ¤

Remark 3.15 We obtain some automorphisms λ̂ from Proposition 3.14 if and only if
q = 3m + 1. In such a case, we obtain exactly 2 nontrivial automorphisms.

For f : k3 −→ k3, let −f be the map opposite to f , i.e., (−f)(α) = −(f(α)) for all
α ∈ k3. Also, for a permutation π ∈ S3, consider π as a linear transformation on k3

defined by
π(α1, α2, α3) = (απ(1), απ(2), απ(3)).

Apparently, −S3 = {−π; π ∈ S3} is a set of non-singular orthogonal linear transforma-
tions.

Lemma 3.16 −̂π ∈ Aut(O(q)) for every π ∈ S3.

Proof. Let π ∈ S3 be the transposition interchanging 1 and 2, and let α, β ∈ k3. Then

π(α× β) = (α3β1 − α1β3, α2β3 − α3β2, α1β2 − α2β1),

and
π(α)× π(β) = (α1β3 − α3β1, α3β2 − α2β3, α2β1 − α1β2).

Hence −π(α × β) = π(α) × π(β) = (−π)(α) × (−π)(β). Thanks to the symmetry of
S3, we have shown that −π ∈ Aut(Lie(q)) for every π ∈ S3. The rest follows from
Proposition 3.14. ¤

There is another obvious automorphism when q is even.

Lemma 3.17 Define ∂ : O(q) −→ O(q) by

∂

(
a α
β b

)
=

(
b β
α a

)
.
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Then ∂ ∈ Aut(O(q)) if and only if q = 2n.

Proof. The result follows by straightforward calculations. The linearity is obvious. We
have

∂

(
a α
β b

)
∂

(
a′ α′

β′ b′

)
=

(
bb′ + β · α′ bβ′ + a′β − α× α′

b′α + aα′ + β × β′ α · β′ + aa′

)
,

whereas

∂

((
a α
β b

) (
a′ α′

β′ b′

))
=

(
bb′ + β · α′ bβ′ + a′β + α× α′

b′α + aα′ − β × β′ α · β′ + aa′

)
.

These two vector matrices coincide in general only over GF (2n). ¤

3.3.2 Conjugations

As in [35, Section III.4], a (right) pseudo-automorphism of a quasigroup Q is a bijection
f : Q −→ Q such that

xf (yfc) = (xy)fc

is satisfied for some fixed c ∈ Q and every x, y ∈ Q. The element c is called a companion
of f . In general, pseudo-automorphisms can have more companions.

As we have already remarked in the Introduction, the right nucleus

Nρ(Q) = {c; [a, b, c] = 0 for every a, b ∈ Q}

coincides with the nucleus

N(Q) = {c; c associates with every a, b ∈ Q}

when Q is a Moufang loop.
Theorem IV.1.8. of [35] says that the set of all companions of a pseudo-automorphism

f of a Moufang loop Q is the coset cN(Q), where c is any of the companions of f .
Consequently, every pseudo-automorphism of a Paige loop has a unique companion.

This leads us to the following proposition:

Proposition 3.18 (Conjugations of M∗(q)) For every x ∈ Q = M∗(q), define the
conjugation T (x) : Q −→ Q by yT (x) = x−1yx. Then T (x) ∈ Aut(Q) if and only if x is
of order 3.

Proof. By Theorem IV.1.6 of [35], T (x) is a pseudo-automorphism with companion
x−3. If x is of order 3, then T (x) is clearly an automorphism of Q. Conversely, if
T (x) ∈ Aut(Q), it is a pseudo-automorphism with companions e and x−3. By the
uniqueness of the companion, x−1 = e. ¤
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3.3.3 Conjugations Fixing Chosen Involution

This subsection deals with a specific problem, but we introduce here some general ideas
which we will use repeatedly in Chapter 5.

Assume that A is an algebra, a ∈ A, and f , g ∈ Aut(A) are such that f(a) = g(a).
Then the automorphisms g−1f , gf−1 fix a. Observe that f(a) = g(a) if and only if
f(h(a)) = g(h(a)) for every h ∈ Aut(A) such that h(a) = a.

When q is even, the element

x0 =
(

0 (1, 1, 1)
(1, 1, 1) 0

)

belongs to M∗(q). We are interested in x0 because x0 is fixed by all automorphisms π̂
(where π = −π ∈ S3), and by the automorphism ∂. We write u ∼ v for two elements u,
v ∈ M∗(q) of order 3, if and only if x0T (u) = x0T (v).

For a vector α, let w(α) be the number of nonzero coordinates of α, the weight of α.
For the rest of this section, let q = 2.

Proposition 3.19 Let v ∈ M∗(2) be an element of order 3. Then

v =
(

a α
β 1 + a

)

for some a ∈ k, α, β ∈ k3, and v ∼ ∂(v) if and only if w(α− β) = 1.

Proof. The form of v is guaranteed by Lemma 3.8. Let

u =
(

c γ
δ d

)
.

Then

u−1 =
(

d γ
δ c

)
, ∂(u−1) =

(
c δ
γ d

)
,

and we may therefore assume that a = 0 and w(α) ≥ w(β). Since det v = α · β, we
must have α · β = 1. Because π̂ fixes x0 for every π ∈ S3, we may further assume that
α1 = β1 = 1, where α = (α1, α2, α3), β = (β1, β2, β3).

Assume, for a while, that α = β. Then ∂(v) = v−1. When v ∼ ∂(v), we have
v−1x0v = vx0v

−1, or vx0v
−1 = x0. But, with ϕ = (1, 1, 1),

vx0v
−1 =

(
α · ϕ α× ϕ

ϕ + α× ϕ α · ϕ
)(

1 α
α 0

)
=

(
α · ϕ

α · ϕ
)

,

thus α · ϕ = 0. In other words, w(α) ≡ 0 (mod 2). Then α · α = 0, a contradiction.
We can therefore assume that α 6= β; moreover, that α2 6= β2. There are then only

three cases to consider, since v must be one of

v0 =
(

0 (1, 1, 0)
(1, 0, 0) 1

)
, v1 =

(
0 (1, 1, 1)

(1, 0, 0) 1

)
,

v2 =
(

0 (1, 0, 1)
(1, 1, 0) 1

)
.
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Check that vi ∼ ∂(vi) if and only if i = 0. ¤

Let [v]∼ denote the class of elements equivalent to v in M∗(2).

Lemma 3.20 Assume that v ∈ M∗(2) is as in Proposition 3.19, and that v ∼ ∂(v).
Then [v]∼ ⊇ {v, ∂(v), π̂(v), ∂(π̂(v))}, where π is the transposition interchanging the
two coordinates on which α and β agree.

Proof. The vectors α, β agree on exactly two positions, by Proposition 3.19. Following
the same train of thoughts as in the proof of Proposition 3.19, we may assume that
v = v0. Then π is the transposition interchanging 1 and 3. Verify that v ∼ π̂(v). Since
π̂(v) ∼ ∂(π̂(v)), we are done. ¤

Remark 3.21 Actually, more is true. It is possible to show that [v]∼ 6= {v} if and only
if v ∼ ∂(v), and that in such a case [v]∼ = {v, ∂(v), π̂(v), ∂(π̂(v))}. We will neither
prove nor need this fact.



Chapter 4

Presentations

In order to derive a presentation for a groupoid A = (A, ·), one usually needs to introduce
a normal form for elements of A written in terms of some generators. Such a normal
form is not easy to find when A is not commutative, and even more so when A is not
associative. Once a normal form is found, it might be still difficult to come up with
presenting relations. Indeed, it is often the case that the only known presentation for a
non-associative groupoid is the table presentation, i.e., the presentation consisting of all
relations x · y = z such that x · y equals z in A, and where x, y run over all elements of
A. Table presentations are extremely useful when one constructs a multiplication table
for A, however, they are of little use when one needs to identify A as a subgroupoid of
another groupoid. To do the latter, it is necessary, in principle, to evaluate all products
x · y with x, y ∈ A. It is therefore desirable to have access to presentations with a few
presenting relations.

We derive presentations for a certain class of Moufang loops called M2n(G, 2), first
studied by O. Chein [9]. Two of these loops will later emerge as subloops of Paige loops.

Thirty years ago, Chein and Pflugfelder [12] proved that the smallest non-associative
Moufang loop is of order 12 and is unique up to isomorphism. It coincides with M =
M12(S3, 2). Guided by our presentation for M , we give a new, visual description of M
in Section 4.4.

To begin with, we introduce a useful technique for counting in lattices of subalgebras.

4.1 Hasse Constants

Let A, B, C be (universal) algebras, A ≤ C. For X ≤ C, let OX denote the orbit of X
under the natural action of Aut(C) on the set of subalgebras of C isomorphic to X. We
will speak of the subalgebras of C isomorphic to X as of copies of X in C. We define

HC(B) = |{B0 ≤ C; B0
∼= B}|,

HC(A|B) = |{B0 ≤ C; A ≤ B0
∼= B}|,

HO
C(A|B) = |{B0 ≤ C; A ≤ B0, B0 ∈ OB}|.

32
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In words, HC(B) counts the number of copies of B in C, HC(A|B) counts the number
of copies of B in C containing A, and HO

C(A|B) counts the number of copies of B in C
containing A, and in the same orbit as B.

Yet another description of these constants is perhaps the most appealing. If B is
a subalgebra of C, the constant HC(B) counts the number of edges connecting C to
a copy of B in the complete Hasse diagram of subalgebras of C. The other constants
can be interpreted in a similar way. We will therefore refer to these constant jointly as
Hasse constants.

Note that HC(A|B) = HO
C(A|B) if Aut(C) acts transitively on the copies of B in C.

Lemma 4.1 Let A, B, C be algebras, A ≤ C. Then:

(i) If B′ ∼= B, C ′ ∼= C, then HC(B) = HC′(B′).

(ii) If A′ ∈ OA, B′ ∼= B, then HC(A|B) = HC(A′|B′).

(iii) If A′ ∈ OA, B′ ∈ OB, then HO
C(A|B) = HO

C(A′|B′).

Proof. Part (i) is obvious from the definition of HC(B). Also, HC(A|B) = HC(A|B′)
holds if B ∼= B′. Choose A′ ∈ OA, and let f ∈ Aut(C) be an automorphism mapping
A to A′. Then HC(A|B) = Hf(C)(f(A)|f(B)) = HC(A′|f(B)) = HC(A′|B), where the
last equality holds because B ∼= f(B). This proves (ii).

Part (iii) is similar. Let B′ ∈ OB. Then HO
C(A|B) = HO

C(A|B′) because OB = OB′ .
Let A′ ∈ OA, and let f ∈ Aut(C) be an automorphism mapping A to A′. Then
HO

C(A|B) = HO
f(C)(f(A)|f(B)) = HO

C(A′|f(B)) = HO
C(A′|B), where the last equality

holds because f(B) ∈ OB. ¤

Proposition 4.2 Let A, B, C be algebras, A ≤ C. Let A1, . . ., Am be representatives
from all the orbits OA1, . . ., OAm of the action of Aut(C) on the copies of A in C.
Similarly, let B1, . . ., Bn be representatives for B. Then

HC(A|B) =
n∑

j=1

HO
C(A|Bj), (4.1)

HB(A) · |OB| =
m∑

i=1

|OAi | · HO
C(Ai|B), (4.2)

HB(A) · HC(B) =
m∑

i=1

|OAi | · HC(Ai|B). (4.3)

If Aut(C) acts transitively on the copies of B (i.e., if n = 1), then equation (4.2) and
(4.3) are the same.

If Aut(C) acts transitively on the copies of A (i.e., if m = 1), then

HB(A) · |OB| = HC(A) · HO
C(A|B), (4.4)

HB(A) · HC(B) = HC(A) · HC(A|B). (4.5)
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C2 × C4

C4 ∼= C1 × C4 C4 ∼= 〈(1, 1)〉 C2 ×D ∼= V4

C2 ∼= C1 ×D C2 ∼= C2 × C1 〈(1, 2)〉 ∼= C2

C1 × C1

Figure 4.1: Lattice of subgroups of C2 × C4

Proof. The proof of (4.1) is straightforward because every copy of B in C belongs to
exactly one orbit OBj .

To establish (4.2), count twice the cardinality t of {(A0, B0); A0 ≤ B0 ∈ OB, A0
∼=

A}. On the one hand,

t =
∑

B0∈OB

HB0(A)
4.1(i)
=

∑

B0∈OB

HB(A) = HB(A) · |OB|.

On the other hand,

t =
∑

A0≤C, A0
∼=A

HO
C(A0|B)

=
m∑

i=1

∑

A0∈OAi

HO
C(A0|B)

4.1(iii)
=

m∑

i=1

|OAi | · HO
C(Ai|B).

The proof of (4.3) is similar to (4.2). Just count twice the cardinality of the set

{(A0, B0); A0 ≤ B0 ≤ C, A0
∼= A, B0

∼= B}.

Equations (4.2) and (4.3) are the same when n = 1. When m = 1, (4.4) and (4.5)
follow immediately from (4.2) and (4.3), respectively. ¤

Example 4.3 This example illustrates that the Hasse constant HC(A|B) may differ
from HC(A′|B) even though A ∼= A′. Let C be the group C2×C4, C2 = {0, 1}, C4 = {0,
1, 2, 3}, and let D = {0, 2} be the (unique) two-element subgroup of C4. The lattice of
subgroups of C is depicted in Figure 4.1.

Then with B = C4, A = C1 ×D ∼= C2 × C1 = A′, we have HC(A|B) = |{C1 × C4,
〈(1, 1)〉}| = 2 6= 0 = HC(A′|B).
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4.2 The Loops M2n(G, 2)

The infinite class of Moufang loops M2n(G, 2) is obtained as follows:

Theorem 4.4 (Chein [10, Theorem 0]) If L is a finite non-associative Moufang
loop for which every minimal set of generators contains an element of order 2, then
L contains a non-abelian subgroup G and an element u of order 2 such that each ele-
ment of L may be uniquely expressed in the form guα, where g ∈ G and α = 0 or 1.
Furthermore, the product of two elements of L is given by

(g1u
δ)(g2u

ε) = (gν
1gµ

2 )νuδ+ε, (4.6)

where ν = (−1)ε and µ = (−1)ε+δ.
Conversely, given any non-abelian group G of order n, the loop L constructed as

above is a non-associative Moufang loop of order 2n. It will be denoted by M2n(G, 2).

When speaking of M2n(G, 2), we will always fix the element u.
We are going to prove several structural theorems for M2n(G, 2). Some of them are

hinted at in Chein [10]. Let us get started with a rather general observation.

Proposition 4.5 Let Q be a quasigroup, G ≤ Q and u ∈ Q \ G such that Q is the
disjoint union of G and Gu. Assume that Gu ·Gu ⊆ G, and G ·Gu ⊆ Gu. Let H ≤ Q.
Then either H ≤ G, or |H ∩G| = |H ∩Gu|.
Proof. Assume that H 6≤ G, and let {g1, . . ., gm} = H ∩G, {h1u, . . ., hnu} = H ∩Gu,
where gi, hj ∈ G. Since gi · h1u 6= gj · h1u for i 6= j, we get n ≥ m. Since hiu · h1u 6=
hju · h1u for i 6= j, we get m ≥ n. ¤

Notice that M2n(G, 2) satisfies the assumptions of Proposition 4.5. The following
easy lemma tells us something about the local behaviour of M2n(G, 2).

Lemma 4.6 Let g, h, k ∈ G, and assume that M2n(G, 2) is constructed as in Theorem
4.4. Then

(i) |gu| = 2,

(ii) g · hu = hg · u, gu · h = gh−1 · u, gu · hu = h−1g,

(iii) [g, h, ku] = e if and only if [g, h] = e,

(iv) [g, hu, ku] = e if and only if [g, k−1h] = e,

(v) [gu, hu, ku] = e if and only if gh−1k = kh−1g.

Proof. Parts (i) and (ii) follow immediately from (4.6). As for (iii), g(h · ku) =
g(kh · u) = khg · u, and gh · ku = kgh · u. As for (iv), g(hu · ku) = gk−1h, and
(g · hu)ku = (hg · u)ku = k−1hg. Finally, gu(hu · ku) = gu · k−1h = gh−1k, and
(gu · hu)ku = h−1g · ku = kh−1g. ¤
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Lemma 4.7 The multiplication formula (4.6) remains valid if we replace u by xu (x ∈
G). More precisely, for every x ∈ G, we have

(g1(xu)δ)(g2(xu)ε) = (gν
1gµ

2 )ν(xu)δ+ε, (4.7)

where ν = (−1)ε and µ = (−1)ε+δ.

Proof. We prove (4.7) by considering all possible values of δ and ε. Let s (resp. t) be
the left (resp. right) hand side of (4.7). We will use Lemma 4.6 repeatedly. If δ = ε = 0,
we have s = g1g2, and t = g1g2. If δ = 1 and ε = 0, we have s = g1(xu) · g2 =
(xg1 · u)g2 = xg1g

−1
2 · u, and t = g1g

−1
2 · xu = xg1g

−1
2 · u. If δ = 0 and ε = 1, we have

s = g1 · g2(xu) = g1(xg2 · u) = xg2g1 · u, and t = (g−1
1 g−1

2 )−1xu = g2g1 · xu = xg2g1 · u.
Finally, if δ = ε = 1, we have s = g1(xu)·g2(xu) = (xg1·u)(xg2·u) = (xg2)−1xg1 = g−1

2 g1,
and t = (g−1

1 g2)−1 = g−1
2 g1. ¤

4.2.1 Sylow Theorems for M2n(G, 2)

For a prime p, a finite algebra A is said to be a p-algebra if |A| = pk for some integer k.
A p-algebra A is a Sylow p-subalgebra of B if A ≤ B and A is not a proper subalgebra of
any p-algebra C ≤ B. The set of Sylow p-subalgebras of B will be denoted by Sylp(B).
Also, let np(B) = |Sylp(B)|.

This definition is motivated by group theory, naturally. In the variety of groups,
the six statements (A)–(F ), found below, are satisfied. They are usually referred to
as Sylow Theorems. Part (C) is habitually not mentioned because it follows directly
from (D), at least in a variety where every conjugation is an automorphism. We do not
have this luxury in the variety of loops. (The loops where every inner mapping is an
automorphism are called A-loops [6]).

Let A be a finite algebra of order n = psm, where s is an integer and p is a prime
not dividing m. Let us formulate six statements about Sylp(A), that are true if A is a
group (cf. any book on abstract algebra or group theory, for instance [27, Ch. 5]), but
not necessarily for every algebra A.

(A) Every p-algebra B ≤ A of order pr (with r < s) is contained in some p-algebra
C ≤ A of order pr+1.

(B) Every Sylow p-subalgebra of A has order ps.

(C) All Sylow p-subalgebras of A are isomorphic.

(D) If it makes sense to speak about conjugations in A, i.e., if A has a unique binary
operation · such that every element of A has a two-sided inverse with respect to ·,
then all Sylow p-subalgebras of A are conjugate.

(E) np(A) ≡ 1 (mod p).

(F ) np(A) divides m.

We would like to see which of these statements are true for the loops M2n(G, 2).
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Lemma 4.8 Let H be a subgroup of G ≤ M2n(G, 2). Then 〈H, gu〉 ∼= 〈H, u〉 for every
g ∈ G, and |〈H, u〉| = 2|H|. Moreover, 〈H, gu〉 is associative if and only if H is abelian.

Proof. By Lemma 4.7, 〈H, gu〉 behaves just as 〈H, u〉. By the definition, 〈H, u〉 =
M2|H|(H, 2). ¤

Lemma 4.9 Every subloop of M2n(G, 2) is either a subgroup of G or of the form
〈H, gu〉 for some H ≤ G and g ∈ G.

Proof. Let L ≤ M2n(G, 2), L 6≤ G. By Proposition 4.5, H = L ∩ G has |L|/2
elements. If L = M2n(G, 2), there is nothing to prove. Otherwise, pick g ∈ L \G. Then
L = 〈H, gu〉. ¤

Theorem 4.10 (Sylow Theorems for M2n(G, 2)) Let G be a non-abelian group.
Then the non-associative Moufang loop A = M2n(G, 2) satisfies statements (A), (B),
(C) and (E), for every prime p. Claim (D) holds if p is odd. Claim (F ) holds if and
only if p is odd or p = 2 and n2(G) = 1.

Proof. Let L be a Sylow p-subloop of A, |A| = psm, where p foes not divide m. By
Lemma 4.9, either L ≤ G, or p = 2. Assume that p is odd. Then the statements (A)–(E)
are satisfied thanks to the classical Sylow Theorems for groups. (We do not claim that
the appropriate conjugation is an automorphism of A.) Note that n = |G| = psm/2.
Thus (F ) holds, too, since np(A) = np(G) divides m/2, and hence np(A) divides m.

Assume that p = 2. Then n = |G| = 2s−1m. Let L ≤ G, |L| = 2r, r < s. If L ≤ A, it
is contained in 〈L, u〉, and |〈L, u〉| = 2r+1. If L 6≤ G, it is of the form 〈H, gu〉, H ≤ G,
g ∈ G, |H| = 2r−1. Since r − 1 < s − 1, H is contained in a group K ≤ G, |K| = 2r.
Then L ≤ 〈K, gu〉, |〈K, gu〉| = 2r+1. This proves (A). Pick L ∈ Syl2(A), |L| = 2r. If
r > s, the 2-group L ∩ G ≤ G has order 2r or 2r−1 > 2s−1, a contradiction. If r < s,
then L 6∈ Syl2(A) by (A). This proves (B). The collection S = {〈H, gu〉; H ∈ Syl2(G),
g ∈ G} contains n ·n2(G)/|H| = m ·n2(G) distinct Sylow 2-subloops of A, all isomorphic
by Lemma 4.7 and by the classical Sylow Theorems. Also, Syl2(A) ⊆ S. Therefore (C)
holds. Moreover, n2(A) = m · n2(G) ≡ 1 (mod 2) because n2(G) ≡ 1 and m is odd.
We have proved (E). Finally, n2(A) divides m if and only if n2(G) = 1. ¤

Remark 4.11 Does (D) hold for every loop A = M2n(G, 2) when p = 2? It does if G
has a unique Sylow 2-subgroup such that G2 ∩ gH 6= ∅ for every g ∈ G \H. To see this,
put H1 = 〈H, u〉, and let H2 be another Sylow 2-subloop of A. By the uniqueness of H,
we have H2 = 〈H, gu〉 for some g ∈ G \H. Then H2 = H ∪H · gu = H ∪ gH · u. There
is x ∈ G such that x−2 ∈ gH. We claim that H1T (x) = H2. Clearly, HT (x) = H.
Finally, uT (x) = x−1ux = x−2u ∈ gH · u ⊆ H2, and we are done.

4.2.2 A Structural Result for M2n(G, 2)

Recall the Hasse constants, and let us further examine the subloop structure of
M2n(G, 2).
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Proposition 4.12 Let M2n(G, 2) be constructed as in Theorem 4.4.

(i) We have

HM2n(G, 2)(Cm) =
{ HG(Cm), if m 6= 2,
HG(C2) + n, if m = 2.

(ii) 〈H, gu〉 ∼= (C2)k+1 for every g ∈ G, H ≤ G, H ∼= (C2)k, k = 0, 1, . . ..

(iii) For k ≥ 1,

HM2n(G, 2)((C2)k) =
{

0, if 2k−1 - n,
HG((C2)k) +HG((C2)k−1) · n/2k−1, otherwise.

(iv) 〈g, hu〉 ∼= S3 for every g, h ∈ G with |g| = 3.

(v) Assume that G contains an element of order 3, and that S3 is not a subgroup of G.
Then G is the unique subgroup of M2n(G, 2) isomorphic to G, i.e., HM2n(G, 2)(G) =
1.

Proof. Let m > 2. A group isomorphic to Cm must be contained in G, by Lemma
4.6(i). Every loop 〈gu〉 (g ∈ G) is isomorphic to C2. This proves (i).

Let H ≤ G, H ∼= (C2)k, g ∈ G. By Lemmas 4.6 and 4.8, 〈H, gu〉 is a group of order
2k+1 and exponent 2.

To show (iii), let H ∼= (C2)k be a subgroup of M2n(G, 2) not contained in G. By
Proposition 4.5, H ∩G is isomorphic to (C2)k−1. On the other hand, given a subgroup
A ∼= (C2)k−1 of G and any element g of G, the group 〈A, gu〉 is isomorphic to (C2)k, by
(ii). This proves (iii).

Let g 6= h be in G, |g| = 3. Then 〈g, hu〉 ∼= S3, since g3 = (hu)2 = (g(hu))2 = e.
We are going to prove (v). Let L 6= G be a subgroup of M2n(G, 2) isomorphic to G.

There is g ∈ L of order 3. By (i), g is in G. Pick x ∈ L \ G. Necessarily, x = hu for
some h ∈ G. Then S3

∼= 〈g, hu〉 ≤ L by (iv), a contradiction. ¤

4.3 Presentations for M2n(G, 2)

The infinite class of Moufang loops of type M2n(G, 2) represents a significant portion
of non-associative Moufang loops of small order. Let π(m) be the number of iso-
morphism types of non-associative Moufang loops of order at most m, and let σ(m)
be the number of non-associative loops of the form M2n(G, 2) of order at most m.
Then, according to Chein’s classification [10], π(31) = 13, σ(31) = 8, π(63) = 158,
σ(63) = 50. (As Orin Chein kindly notified me, Edgar Goodaire noticed that the loop
M12(S3, 2)×C3 is missing in [10]. He also observed that M48(5, 5, 5, 3, 3, 0) is isomor-
phic to M48(5, 5, 5, 3, 6, 0), and M48(5, 5, 5, 3, 3, 6) to M48(5, 5, 5, 3, 6, 6). That is
why π(63) equals 158, rather than 159.) This demonstrates eloquently the abundance
of loops of type M2n(G, 2) among Moufang loops of small order.
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We derive compact presentations for M2n(G, 2) for every finite, two-generated group
G. Professor Kenneth Johnson informs me that he has just generalized the construction
of M2n(G, 2), and it seems likely that the methods introduced here will be applicable
to his loops as well.

We start with the table presentation

guδ · huε = (g(−1)ε
h(−1)δ+ε

)(−1)ε
uδ+ε (g, h ∈ G; δ, ε = 0, 1). (4.8)

for M2n(G, 2)—that is the same as (4.6)—and prove

Theorem 4.13 (Presentation for M2n(G, 2)) Let G = 〈x, y; R〉 be a presentation
for a finite group G, where R is a set of relations in generators x, y. Then M2n(G, 2)
is presented by

〈x, y, u; R, u2 = (xu)2 = (yu)2 = (xy · u)2 = e〉, (4.9)

where e is the neutral element of G.

Let us emphasize that (4.9) is a presentation in the variety of Moufang loops, not
groups.

The complicated multiplication formula (4.8) merely describes the four cases

g · h = gh, (4.10)
gu · h = gh−1 · u, (4.11)
g · hu = hg · u, (4.12)

gu · hu = h−1g (4.13)

in a compact way (cf. Lemma 4.6). In particular, identities (4.13) and (4.11) imply

u2 = e, gu = ug−1 (g ∈ G). (4.14)

We claim that (4.14) is equivalent to (4.8). An element g ∈ G will be called good if
gu = ug−1 can be derived from (4.9).

Lemma 4.14 If h ∈ G is good, then (4.11) holds. If g, h, hg ∈ G are good, then (4.12)
holds. If g, g−1h are good, then (4.13) holds.

Proof. We have gu · h = (gu · h)u · u = (g · uhu)u = (g · h−1uu)u = gh−1 · u if h
is good. Assume that g, h, hg are good. Then g · hu = g · uh−1 = u · u(g · uh−1) =
u(ugu · h−1) = u · g−1h−1 = hg · u. Finally, when g and g−1h are good, we derive
gu · hu = ug−1 · hu = u · g−1h · u = h−1g. ¤

Thus (4.14) is equivalent to (4.8). Moreover, in order to prove Theorem 4.13, it
suffices to show that every g ∈ G is good.

Thanks to diassociativity, gs (s positive integer) is good whenever g is. Since G is
finite, g−1 is good whenever g is.
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Lemma 4.15 Assume that g, h ∈ G are good. Then gh is good if and only if hg is.

Proof. Because of the symmetry, it is enough to prove only one implication. Assume
that hg is good. By Lemma 4.14, g · hu = hg · u. Using this identity, we obtain
g ·hu ·g = (hg ·u)g, gh ·ug = h ·gug = hu, gh = hu ·g−1u = uh−1 ·g−1u = u ·h−1g−1 ·u,
and so gh · u = u · h−1g−1. ¤

Lemma 4.16 Assume that g, h ∈ G are good. Then so is ghg.

Proof. Since g−1, h are good, Lemma 4.14 yields ug · h = g−1u · h = g−1h−1 · u. Then
u · ghg · u = (ug · h)g · u = (g−1h−1 · u)g · u = g−1h−1 · ugu = g−1h−1g−1, and we are
done. ¤

We continue by induction on the complexity , or length, if you will, of the elements
of G, defined below.

For ε = 1, −1, let Xε be the set of symbols {xε
1, · · ·, xε

m}, and write X = X1 ∪X−1.
Every word w of the free group F = 〈X〉 can be written uniquely in the form xε1

i1
· · ·xεr

ir
,

where ij 6= ij+1, and εj is a nonzero integer. Define the complexity of w as the ordered
pair c(w) = (r,

∑r
j=1 |εj |), and order the complexities lexicographically.

From now on, assume that G is two-generated, and write x = x1, y = x2.
Since xu = ux−1 and yu = uy−1 are presenting relations, both x, y are good, and

hence both xs, ys are good for every integer s. The last presenting relation xy · u =
u · y−1x−1 shows that both xy and y−1x−1 = (xy)−1 are good. Then yx and x−1y−1 =
(yx)−1 are good, by Lemma 4.15. Also, Lemma 4.16 implies that x−1 · xy · x−1 = yx−1

is good. Then x−1y, xy−1 = (yx−1)−1 and y−1x = (x−1y)−1 are good, by Lemma 4.15.
This means that every g ∈ G with c(g) < (2, 3) is good.

Lemma 4.17 Every g ∈ G with c(g) < (3, 0) is good.

Proof. Suppose there is g that is not good, and let c(g) = (r, s) be as small as possible.
We can assume that g = aubv, where {a, b} = {x, y}, s = |u|+ |v| > 2, and u 6= 0 6= v.

Either |u| > 1 or |v| > 1. Without loss of generality, u > 1. (By Lemma 4.15,
we can assume that |u| > 1. When u is negative, consider the inverse b−va−u instead,
and apply Lemma 4.15 again.) Since c(au−2bv) < (2, s), the element au−2bv is good,
and so is au−1bva = a · au−2bv · a. As au−1bv is good by the induction hypothesis,
aubva = a·au−1bv ·a is good as well, by Lemma 4.16. Then the decomposition of the good
element au−1bva into two good elements a−1 ·aubva demonstrates that aubva ·a−1 = aubv

is good, by Lemma 4.15. We have reached a contradiction. ¤

To finish the proof, assume there is g ∈ G that is not good, and let c(g) = (r, s)
be as small as possible. By Lemma 4.17, r ≥ 3. When r is odd, we can write g =
aε1bε2aε3 · · · bεr−1aεr = khk, where k = aεr , h = aε1−εrbε2aε3 · · · bεr−1 , and {a, b} =
{x, y}. Since c(k), c(h) < (r, s), both k, h are good, and then g is good by Lemma 4.16.

Assume that r is even. Then g = aε1bε2 · · · aεr−1bεr = khk, where k = aε1bεr ,
h = bε2−εraε3 · · · bεr−2aεr−1−ε1 . Again, c(k), c(h) < (r, s), thus both k and h are good,
and so is g, by Lemma 4.16.

Theorem 4.13 is proved.
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Figure 4.2: Multiplication in M12(S3, 2)

4.4 Visualization of the Smallest Moufang Loop

The multiplication formula (4.8) for M = M12(S3, 2) is certainly difficult to memorize,
and so is the one in [35, Example IV.1.2]. We present a visual description of M .

Note that there are 9 involutions and 2 elements of order 3 in M (cf. [9, Table 3],
or Proposition 4.12). We are going to define a 12-element groupoid L and show that it
is isomorphic to M .

Look at the four diagrams in Figure 4.2. Think of the vertices x0, . . ., x8 as involu-
tions. Let L consists of e, x0, . . ., x8, y, y−1, where y is of order 3. Interpret the edges
of diagrams I–IV as multiplication rules in the following way. If xi and xj are connected
by a solid line, let xixj be the third vertex of the (unique) triangle containing both xi

and xj . If xi and xj are not connected by a solid line, we must have j = i± 3, and then
xi and xj are connected by a dotted line (in diagram III). Define xixi+3 = y.
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These visual rules translate into

xixj =





e, if i = j,
yε, if j ≡ i + 3ε (mod 3),
x2i−j , if i ≡ 0 and i 6≡ j (mod 3),
x(i+j)/2, otherwise.

(4.15)

This partial multiplication can be extended by properties of Moufang loops. To avoid
ambiguity, we postulate that y3 = e, xiy = y−1xi = xi+3, yxi = xiy

−1 = xi−3.
Obviously, L is closed under multiplication and has a neutral element. It is non-

associative, since x0x1 · x3 = x8x3 = x7 6= x4 = x0x5 = x0 · x1x3. Is L isomorphic to
M? There is a unique Moufang loop of order 12 [12], so it suffices to check the Moufang
identities for L. However, this is not so easy! Instead, we verify directly that L satisfies
the multiplication formula (4.8) with some choice of G and u. We suggest using Figure
4.2 rather than (4.15).

Remark 4.18 It does not suffice to verify (4.14) for some choice of G and u because
(4.14) is equivalent to (4.8) only when it is assumed that L is Moufang.

Put x = x0, and observe that G = 〈x, y〉 = {e, x0, y, x3, x6, y−1} is isomorphic
to S3. Let u = x1 6∈ G. We show that (4.10)–(4.13) are satisfied for every g, h ∈ G.
Thanks to the symmetry of Figure 4.2, it is enough to consider only {g, h} = {x0, x3},
{x0, y}.

Identity (4.10) is trivial. Let us prove (4.11). We have x0x1 · x3 = x8x3 = x7 =
yx1 = x0x

−1
3 · x1, x0x1 · y = x8y = x2 = x6x1 = xoy

−1 · x1, x3x1 · x0 = x5x0 = x4 =
y−1x1 = x3x

−1
0 · x1, and yx1 · x0 = x7x0 = x2 = x6x1 = yx−1

0 · x1. Similarly for (4.12),
(4.13).

Hence L is isomorphic to M . The subloop structure of L is apparent from the visual
rules, too. If j ≡ i + 3 (mod 3) then 〈xi, xj〉 ∼= S3; otherwise, 〈xi, xj〉 ∼= V4, for i 6= j.



Chapter 5

The Smallest Paige Loop M∗(2)

We have already discussed the importance of M∗(2) = M∗ for the real octonions. Most of
our effort was originally motivated by this smallest Paige loop, and we have consequently
obtained a much more detailed description of M∗ than that of other Paige loops. It is
therefore appropriate to devote an entire chapter to it.

We will completely describe the lattice of subloops of M∗ in the following sense. We
list all non-isomorphic subloops of M∗. Given an isomorphism type, we count the orbits
of transitivity of the subloops of that type under the natural action of Aut(M∗). We pick
a representative from each orbit. For every member of an orbit, we find an automorphism
transforming that member into its orbit representative. For every representative, we
enumerate all subloops containing it as a maximal subloop. For any two representatives
A, B, we find the Hasse constants HB(A) and HM∗(A|B).

This provides us with a complete local description of the lattice, which can easily
be expanded into a global view, especially with the aid of Figure 5.1. From our local
description, it is easy to find all copies of B containing A, provided A is maximal in B.
If A is not maximal, we have to proceed in several steps. The Hasse constant HM∗(A|B)
tells us when to stop.

The subloops of M∗ are quite numerous (there are 1045 of them), so we will also
have a look at some combinatorial structures built from their overlap. Our selection is
somewhat arbitrary here, but, hopefully, representative.

5.1 Possible Subloops

O. Chein enumerated all Moufang loops of order at most 63 [10]. Since M∗ has 120
elements, every proper subloop of M∗ can be found in Chein’s list. This is a consequence
of the following simple Lemma:

Lemma 5.1 (Chein [10, Lemma 0]) Let H be a subloop of a finite Moufang loop L,
and let u ∈ L. If m is the smallest integer such that um ∈ H then |〈H, u〉| ≥ m|H|.

We say that a finite power associative loop L has the weak Cauchy property if L
contains an element of order p for every prime p dividing |L|. A finite loop L has the

43
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strong Cauchy property if every subloop of L has the weak Cauchy property.
Not every Moufang loop has the weak Cauchy property. Indeed, it is known that

M∗ does not, as it contains no element of order 5 (cf. Lemma 3.13). Small Moufang
loops have the strong Cauchy property, however.

Theorem 5.2 (Chein [10, Ch. XIV]) Every Moufang loop of order at most 63 has
the weak Cauchy property. Thus, every Moufang loop of order at most 63 has the strong
Cauchy property .

This result allows us to narrow down the list of possible orders of subloops of M∗.

Corollary 5.3 Let H be a proper subloop of M∗. Then |H| = 2r3s for some r, s.

Proof. By Lemma 5.1, |H| ≤ |M∗|/2 = 60, and so H has the weak Cauchy property,
by Theorem 5.2. Since M∗ consists of elements of order 1, 2, and 3, we are done. ¤

Following H. Pflugfelder [35, p. 12], a finite quasigroup Q is said to have the weak
Lagrange property if |H| divides |Q| for every subquasigroup H of Q. A finite quasigroup
Q has the strong Lagrange property if every subquasigroup of Q has the weak Lagrange
property.

Whether finite Moufang loops satisfy the weak Lagrange property is an excellent
open question. G. Glauberman proved [23] that finite Moufang loops of odd order have
the strong Lagrange property. We proceed to show that M∗ has it as well.

5.1.1 Strong Lagrange Property

By Corollary 5.3, a non-trivial subloop of M∗ has order 2, 3, 4, 6, 8, 9, 12, 16, 18, 24,
27, 32, 36, 48 or 54. Let us now focus on the possible orders of subgroups of M∗.

Lemma 5.4 Let a, b ∈ M∗, |a| = |b| = 3, b 6∈ 〈a〉. Then 〈a, b〉 contains an involution.

Proof. We may assume that

a =
(

1 α
β 0

)
, b =

(
1 γ
δ 0

)
,

for some α1, α2, β1, β2 ∈ k3. Then

ab =
(

1 + α · δ
β · γ

)
, a2b =

(
α · δ

β · γ
)

.

By Lemma 3.8, one of ab, a2b is of order 3, and the other of order 2. ¤

We claim that there is no 9-element subgroup in M∗. Assume there is one. Then it
is either a cyclic group, or a group of exponent 3. The former is impossible because M∗

contains no element of order 9, the latter is impossible by Lemma 5.4.
Consequently, by Sylow Theorems, 9 does not divide the order of any subgroup of

M∗.
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Every group of order 24 contains an element of order at least 4. This is clearly
true for abelian groups. For a contradiction, assume that G is a non-abelian group of
order 24 consisting of elements of order 1, 2, 3. Then all Sylow 2-subgroups of G are
necessarily isomorphic to (C2)3. Thus, using [10, Table 1], G ∼= D6×C2 or G ∼= A4×C2,
where D6 is the 12-element dihedral group, and A4 the alternating group on 4 points.
A contradiction!

Assume that G ≤ M∗ is a group of order 16. Since G has exponent 2, it is isomorphic
to (C2)4. It is not obvious—at least not to the author—why M∗ could not contain such
a subgroup. Nevertheless, it does not, and we prove it in Section 5.3. Let us state this
fact as a proposition.

Proposition 5.5 HM∗((C2)4) = 0.

Since every group of order 32 = 2 · 16 or 48 = 3 · 16 contains a subgroup of order 16,
there are no subgroups of these orders in M∗. Altogether, if G is a non-trivial subgroup
of M∗, it has order 2, 3, 4, 6, 8 or 12. The groups of these orders containing no element
of order greater than 3 are: C2, C3, V4, S3, (C2)3 = E8, and A4. Only two of these
groups are non-abelian, namely S3 and A4.

O. Chein concludes in [10, Ch. XIII] that every non-associative Moufang loop of
order at most 63 which contains no element of order greater than 3 is necessarily of
the form M2n(G, 2) for some non-abelian group G. Since G ≤ M2n(G, 2), we can
possibly find only two non-associative proper subloops in M∗, namely M12(S3, 2) and
M24(A4, 2). Let us write Mo12 and Mo24 for M12(S3, 2), M24(A4, 2), respectively. (For
obvious reasons, we prefer this notation to M12, M24.)

Summarizing our discussion, if H is a non-trivial subloop of M∗, it is isomorphic to

C2, C3, V4, S3, E8, A4, Mo12, Mo24. (5.1)

In particular, M∗ has the strong Lagrange property.

Proposition 5.6 M∗ satisfies the strong Lagrange property.

Let us remind the reader that we still have to prove Proposition 5.5. All subloops
listed in (5.1) indeed appear as subloops of M∗, as wee shall see in a moment.

5.2 Orbits of Transitivity, Representatives, and Hasse
Constants

The detailed discussion of M∗ starts here. We consider all possible isomorphism types of
subloops of M∗, as found in (5.1). For every isomorphism type H, we investigate the ac-
tion of Aut(M∗) on the copies of H, count the orbits of transitivity, pick a representative
from each orbit, and calculate the related Hasse constants.
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5.2.1 Subloops Isomorphic to C2

By Lemma 3.8, every involution x ∈ M∗ is of the form
(

n α
β n

)

for some n ∈ {0, 1}, α, β ∈ k3. In order to linearize our notation, we write x = ((α, β))
when the value of n is clear from α, β or when it is not important, and x = ((α, β))n

otherwise.
Every element x ∈ M∗ of order 3 is of the form

(
n α
β 1 + n

)

for some n ∈ {0, 1}, α, β ∈ k3. This time, we write x = (((α, β)))n.
Also, we will sometimes leave out commas and parentheses when writing down vec-

tors. Thus, both 101 and (101) stand for (1, 0, 1).

Proposition 5.7 Let x = ((α, β))n, y = ((γ, δ))m be two involutions, x 6= y, and z =
(((ε, ϕ)))l an element of order 3 in M∗. Then:

(i) [x, y] = e if and only if |xy| = 2 if and only if 〈x, y〉 ∼= V4 if and only if α ·δ = β ·γ.

(ii) [x, y] 6= e if and only if |xy| = 3 if and only if 〈x, y〉 ∼= S3 if and only if α ·δ 6= β ·γ.

(iii) x is contained in a copy of S3 ,

(iv) every copy of S3 contains an involution of the form (( , ))0,

(v) |zx| = 2 if and only if α · ϕ + β · ε = n.

Proof. The involution x commutes with y if and only if |xy| = 2. Since

xy =
(

nm + α · δ
nm + β · γ

)
,

parts (i) and (ii) follow.
Given x = ((α, β))n, pick δ ∈ α⊥, γ 6∈ β⊥, and choose m ∈ {0, 1} so that y =

((γ, δ))m ∈ M∗. Then 〈x, y〉 ∼= S3, and (iii) is proved.
Let G ≤ M∗, G ∼= S3, and suppose that x = ((α, β))1, y = ((γ, δ))1 ∈ G, x 6= y. Then

xy =
(

1 + α · δ α + γ + β × δ
β + δ + α× γ 1 + β · γ

)
.

Since |xy| = 3, we have α · δ 6= β · γ. In other words, α · δ + β · γ = 1. Then the third
involution xyx ∈ G equals

(
1 + α · δ + (α + γ) · β )

=
(

α · β )
.
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Now, α · β = 0 since det x = 1, and we are done with (iv).
Let us prove (v). If l = 1, the diagonal entries of zx are n+ε·β and ϕ·α, respectively.

Thus |zx| = 2 if and only if α · ϕ + β · ε = n. Similarly for l = 0. ¤

We are going to show that Aut(M∗) acts transitively on the copies of C2. As in
Subsection 3.3.3, we let

x0 = ((111, 111))

be the canonical involution.

Lemma 5.8 Let x, y ∈ M∗ be two involutions such that 〈x, y〉 = S3. Then T (yx) is
an automorphism of M∗, and xT (yx) = y.

Proof. Since |yx| = 3, T (yx) ∈ Aut(M∗), by [35, Theorem IV.1.6]. Also, xT (yx) =
xyxyx = y. ¤

The proof of Proposition 5.9 is illustrative and will be imitated many times.

Proposition 5.9 The group Aut(M∗) acts transitively on the 63 copies of C2 in M∗.

Proof. Whatever α, β ∈ k3 are, exactly one of ((α, β))0, ((α, β))1 is an element of M∗,
unless both α and β are zero vectors. Thus, HM∗(C2) = 63.

Let x = ((α, β))n be an involution. We describe how to transform x into x0. By
Proposition 5.7(iii), x is contained in a copy of S3. By Lemma 5.8 and Proposition
5.7(iv), we may assume that n = 0.

Let r = w(α), s = w(β). Using the automorphism ∂ from Lemma 3.17, we can
assume that r ≥ s. We now transform x into x′ so that x′ = x0, or x′ = x∗, or
〈x′, x0〉 ∼= S3,or 〈x′, x∗〉 ∼= S3, where x∗ = ((100, 100)).

If r 6≡ s (mod 2), then 〈x, x0〉 ∼= S3. So assume that r ≡ s. The following trick
will be used throughout the chapter. Every permutation of coordinates can be made
into an automorphism of M∗, by Lemma 3.16. The involution x0 is invariant under all
permutations. Since n = 0, we must have s > 0, and thus (r, s) = (2, 2), (1, 1), (3, 1), or
(3, 3). If (r, s) = (2, 2), transform x into x′ = ((110, 011)), and note that 〈x′, x∗〉 ∼= S3,
by Proposition 5.7. If (r, s) = (1, 1), transform x into x′ = x∗. If (r, s) = (3, 1),
transform x into x′ = ((111, 001)). Once again, 〈x′, x∗〉 ∼= S3. Finally, if (r, s) = (3, 3),
we have x = x′ = x0.

Now, when 〈x′, x0〉 ∼= S3 or 〈x′, x∗〉 ∼= S3, we can permute the involutions so that x′

is transformed into x0 or x∗, using Lemma 5.8.
It remains to show how to transform x∗ into x0. For that matter, consider the

element y = (((001, 101)))1, and check that x0 = x∗T (y). ¤

Note that the proof of Proposition 5.9 gives a practical way of constructing an
automorphism mapping one involution of M∗ onto another (also see Appendix A).

Example 5.10 Let us construct an automorphism f mapping x = ((100, 111)) onto
z = ((101, 010)). It suffices to find g, h ∈ Aut(M∗) such that g(x) = x0 and h(z) = x0.
Then f = h−1g.
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The element x has zeros on the diagonal, and satisfies r = 1, s = 3, r ≡ s, r ≤ s.
Thus we look at ∂(x) instead. Following the proof, π̂(∂(x)) = x′ = ((111, 001)), where π is
the transposition (1, 3). Then 〈x′, x∗〉 ∼= S3, and x′T (x∗x′) = x∗. Finally, x0 = x∗T (y).
Altogether, f = T (y) ◦ T (x∗x′) ◦ (1, 3) ◦ ∂, where we compose from right to left. (We
have purposely selected x to be as unpleasant as possible, given the proof of Proposition
5.9.)

Now for h. The element z has ones on the diagonal. Luckily, 〈x0, z〉 ∼= S3, thus
h = T (x0z) does the job.

Select 〈x0〉 for the representative among all subloops of M∗ isomorphic to C2.

5.2.2 Subloops Isomorphic to C3 or S3

Let
y0 = (((011, 110)))1

be the canonical element of order 3. We show that Aut(M∗) acts transitively on the
copies of S3. Since HS3(C3) = 1, this will imply that Aut(M∗) acts transitively on the
copies of C3, too.

Let us first state a technical result.

Lemma 5.11 Let v1 = (((010, 110)))0, v2 = (((001, 101)))0. Then both f1 : a 7→
v2(v−1

1 av1)v−1
2 , f2 : a 7→ v1(v−1

2 av2)v−1
1 are automorphisms of M∗ fixing x0.

Proof. Recall the equivalence ∼ for elements of order 3 defined in Subsection 3.3.3. By
Proposition 3.19, v1 ∼ ∂(v1). By Lemma 3.20, v1 ∼ π̂(v1), where π is the transposition
interchanging 2 and 3. In other words, v1 ∼ v2, or x0T (v1) = x0T (v2). ¤

Proposition 5.12 The group Aut(M∗) acts transitively on the copies of S3.

Proof. Let G ∼= S3, G = 〈u, v〉, where |u| = |v| = 2. By Proposition 5.9, we can assume
that u = x0. Let v = ((α, β))n, r = w(α), s = w(β). By Proposition 5.7(ii), we must
have r 6≡ s (mod 2). The automorphism ∂ fixes x0, and we may thus assume that
r > s. We will show that v can be transformed into x1 = ((110, 100)) without moving
x0.

When n = 1, we have α·β = 0. Taking the permutations of coordinates into account,
we may transform v into x2 = ((010, 000)) (if (r, s) = (1, 0)), x3 = ((011, 100)) (if (r, s) =
(2, 1)), x4 = ((111, 000)) (if (r, s) = (3, 0)) or x5 = ((111, 101)) (if (r, s) = (3, 2)). Let
f1, f2 be as in Lemma 5.11. Check that the involutions f1(x2), f2(x3), f1(x4), and
f2(x5) are of the form (( , ))0. We may hence assume that n = 0.

When n = 0, then s ≥ 1, else det v = 0. This leaves us with (r, s) = (2, 1) or (3, 2).
In fact, (r, s) = (3, 2) leads to det v = 0, too. So (r, s) = (2, 1), and we can permute
the coordinates of v so that v transforms into x1. ¤

In the following lemma, we will see the power of local analysis once again. Also note
that we take advantage of Proposition 4.2 for the first time.
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Lemma 5.13

HM∗(C3) = 28, HS3(C2) = 3, HM∗(C2|S3) = 16,
HM∗(S3) = 336, HS3(C3) = 1, HM∗(C3|S3) = 12.

Proof. By Proposition 5.9, HM∗(C3) = (119−HM∗(C2))/2 = 28.
Let x be an involution. By Proposition 5.9, the number of involutions y such that

|xy| = 3 is independent of x. Pick x = ((100, 100)), and let α = (α1, α2, α3), β = (β1, β2,
β3), y = ((α, β)). Then |xy| = 3 if and only if α1 6= β1. Thus (α1, β1) = (0, 1) or (1, 0).
Whatever α2, β2, α3, β3 are, there is a unique n such that ((α, β))n is an involution.
Therefore, there are 32 involutions y such that |xy| = 3. Since HS3(C2) = 3, we get
HM∗(C2|S3) = 16. Then, by (4.3),

HM∗(S3) =
HM∗(C2) · HM∗(C2|S3)

HS3(C2)
=

63 · 16
3

= 336.

Again by (4.3),

HM∗(C3|S3) =
HS3(C3) · HM∗(S3)

HM∗(C3)
=

1 · 336
28

= 12,

and we are done. ¤

With
x1 = ((110, 100))

from Proposition 5.12, we get x0x1 = y0, justifying our choice of y0 as the canonical
element of order 3. It is reasonable to let 〈y0〉 be the representative for C3, and 〈x0, x1〉 =
〈x0, y0〉 the representative for S3.

Going back to our promise from the beginning of this chapter, we should now find
all copies of S3 containing the representative 〈x0〉, and all copies of S3 containing the
representative 〈y0〉. Well, we will not list the copies explicitly, just as we did not list
all automorphisms mapping a given involution onto x0. However, the proof of Lemma
5.13 in fact enumerates all copies of S3 containing the involution x∗ = ((100, 100)). It
is easy to adopt the proof for x0. Or, alternatively, use the automorphism mapping
x∗ onto x0. The situation for 〈y0〉 is more complicated, because we have used one
of the properties of Hasse constants to calculate HM∗(C3|S3) without resorting to the
local analysis. Nevertheless, it is easy to find the twelve copies of S3 containing 〈y0〉;
for instance, by using Proposition 5.7(v). We will not comment on the local analysis
anymore.

5.2.3 Subloops Isomorphic to A4

Perhaps it would be more natural to look at the copies of V4 first, however, the Klein
subgroups of M∗ are exceptional in the sense that Aut(M∗) does not act transitively on
them (cf. Subsection 5.2.6), rendering the situation less transparent.
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Fix
z0 = (((110, 100)))0.

Observe that HA4(C2) = 3, HA4(C3) = 4.

Proposition 5.14 The group Aut(M∗) acts transitively on the 63 copies of A4. More-
over, HM∗(C2|A4) = 3.

Proof. If G ≤ M∗ is isomorphic to C3 and u ∈ M∗\G is an involution, then 〈G, u〉 ∼= S3

or 〈G, u〉 ∼= A4. Since HM∗(C3|S3) = 12 and HS3(C2) = 3, by Lemma 5.13, there are 36
involutions u in M∗ such that 〈G, u〉 ∼= S3. Thus, HM∗(C3|A4) = (63− 36)/HA4(C3) =
9. By (4.3),

HM∗(A4) =
HM∗(C3) · HM∗(C3|A4)

HA4(C3)
=

28 · 9
4

= 63.

Now for the transitivity. Let G ∼= A4, G ≤ M∗. By Proposition 5.9, we may
assume that G = 〈x0, z〉, where |z| = 3 (and, necessarily, |x0z| = 3). Let z = (((ε, ϕ)))l,
r = w(ε), s = w(ϕ). As |x0z| = 3, we have r 6≡ s, by Proposition 5.7(v). Also, r, s ≥ 1,
else det z = 0. Since ∂(x0) = x0, we may assume that r > s. Then (r, s) = (2, 1) is
the only possibility. Permuting the coordinates of z leaves us with z0 = (((110, 100)))0 or
(((110, 100)))1. The latter element is just the inverse of z0. ¤

Let 〈x0, z0〉 be the representative for A4.

5.2.4 Subloops Isomorphic to Mo12

Table B.2 lists all involutions of M∗, and their relation to x0. See the table for details.
As we have seen in Section 4.3, the loop Mo12 contains 3 copies of S3 (corresponding

to the three dotted triangles in diagram III of Figure 4.2. In symbols, HMo12(S3) = 3.
Since Aut(M∗) acts transitively on the copies of S3, the constant HM∗(Mo12) can be
calculated from (4.5) once we know HM∗(S3|Mo12).

Let us have a look at the representative G = 〈x0, x1〉 ∼= S3, where x0 = ((111, 111)),
x1 = ((110, 100)). We want to find a subloop of M∗ isomorphic to M12(G, 2) and
containing G. Thus, we first need to find an involution u 6∈ G such that |x0u| = |x1u| = 2.
This is not a sufficient condition for 〈G, u〉 to be isomorphic to M2n(G, 2), but it is a
necessary one. (Recall that all elements gu (g ∈ G) of M2n(G, 2) are of order 2, by
Lemma 4.6(i).)

The only possible candidates for u are the following involutions:

((000, 110))1, ((001, 001))0, ((010, 001))1, ((100, 010))1,
((100, 100))0, ((001, 111))0, ((010, 111))0, ((011, 000))1,
((011, 110))0, ((101, 011))0, ((101, 101))1, ((110, 011))1,
((110, 101))0, ((111, 010))0, ((111, 100))0.

(5.2)

This can be verified easily with the help of Table B.2 and Proposition 5.7(i). Moreover,
x0x1 · u = y0u must be an involution, too. This additional restriction reduces (5.2) into

((000, 110))1, ((001, 111))0, ((011, 000))1,
((011, 110))0, ((110, 011))0, ((111, 100))0.

(5.3)



CHAPTER 5. THE SMALLEST PAIGE LOOP M∗(2) 51

This can be seen with the help of Proposition 5.7(v), where y0 = (((011, 110)))1 is in
place of z, and u is in place of x.

The coset Gu of G in M12(G, 2) consists of 6 involutions. Thus, if some u listed in
(5.3) is such that 〈G, u〉 = M ∼= Mo12, than there are additional 5 elements u′ in (5.3)
with 〈G, u′〉 = M . Since there are 6 elements in (5.3), the number HM∗(S3|Mo12) is at
most 1. We show that it is equal to one.

Let
u0 = ((000, 110)).

Lemma 5.15 HM∗(S3|Mo12) = 1. In particular, Aut(M∗) acts transitively on the 112
copies of Mo12 in M∗.

Proof. Check that the presenting relations for Mo12 from Theorem 4.13 are satisfied
with x = x0, y = x1, and u = u0. This can be done quickly when you realize that
gu = ug−1 for g ∈ G if and only if |gu| = 2. Hence 〈G, u0〉 = M ∼= Mo12. (The elements
of M \G are listed in (5.3).) It follows from the above discussion that there are no more
copies of Mo12 in M∗ containing G, i.e., HM∗(S3|Mo12) = 1. By Proposition 4.2,

HM∗(Mo12) =
HM∗(S3) · HM∗(S3|Mo12)

HMo12(S3)
=

336 · 1
3

= 112.

Let M , M ′ be two copies of Mo12 in M∗. Let G (respectively G′) be any subgroup
of M (respectively M ′) isomorphic to S3. By Proposition 5.12, there is f ∈ Aut(M∗)
mapping G onto G′. As HM∗(S3|Mo12) = 1, f must map M onto M ′. ¤

Let 〈x0, x1, u0〉 = 〈x0, y0, u0〉 be the representative for Mo12.

5.2.5 Subloops Isomorphic to Mo24

Thanks to Proposition 4.12(v) we know that HMo24(A4) = 1. We can calculate
HM∗(Mo24) as soon as we obtain HM∗(A4|Mo24).

For this matter, let G = 〈x0, z0〉 ∼= A4, where z0 = (((110, 100)))0 is as in Proposition
5.14. We are trying to find an involution u such that 〈G, u〉 ∼= Mo24. If there is such u,
we must have |x0u| = |x′u| = 2, where x′ = z−1

0 x0z0 = ((101, 101)). The third involution
of G is x0x

′ = ((010, 010)), Using Table B.2 and Proposition 5.7, we find that there are
only 12 involutions u 6= x0x

′ such that |x0u| = |x′u| = 2. Namely, u is one of

((000, 101)), ((001, 001)), ((001, 100)), ((100, 001)),
((100, 100)), ((010, 111)), ((101, 000)), ((011, 011)),
((011, 110)), ((110, 011)), ((110, 110)), ((111, 010)).

(5.4)

Since Mo24 contains 12 involutions not contained in A4, we have just shown that the
Hasse constant HM∗(A4|M12(A4, 2)) is at most 1.

Let
u1 = ((001, 001)).
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Lemma 5.16 HM∗(A4|Mo24) = 1, and Aut(M∗) acts transitively on the 63 copies of
Mo24 in M∗.

Proof. We are going to check that x = x0, y = z0, u = u1 satisfy the presenting relations
for Mo24, as found in Theorem 4.13. It follows from our choice of u that |xu| = 2, and
we can see easily that |yu| = 2. Now, xy = (((100, 110)))1, and therefore |xy · u| = 2,
too. Hence 〈x0, z0, u1〉 ∼= Mo24, and HM∗(A4|Mo24) = 1 follows. (The 12 elements of
〈x0, z0, u1〉 \ 〈x0, z0〉 are listed in (5.4).) By (4.5),

HM∗(Mo24) =
HM∗(A4) · HM∗(A4|Mo24)

HMo24(A4)
=

63 · 1
1

= 63.

Under these circumstances, since Aut(M∗) acts transitively on the copies of A4, it also
acts transitively on the copies of Mo24. ¤

Let us calculate a few more Hasse constants.

Lemma 5.17

HA4(C2) = 3, HM∗(C2|A4) = 3,
HMo24(S3) = 16, HM∗(S3|Mo24) = 3,
HMo24(C3) = 4, HM∗(C3|Mo24) = 14,
HMo12(C2) = 9, HM∗(C2|Mo12) = 18,
HMo24(C2) = 15, HM∗(C2|Mo24) = 15,
HMo12(C3) = 1, HM∗(C3|Mo12) = 4.

Proof. We have used the equality HA4(C2) = 3 many times. HM∗(C2|A4) = 3 then
follows from (4.5).

Assume that L ∼= S3 is a subloop of Mo24. Since L 6≤ A4, we have |L ∩ A4| =
|L ∩ A4u| = 3, by Proposition 4.5. Thus, every subloop of Mo24 isomorphic to S3 is
of the form 〈g, xu〉, for some g, x ∈ A4, |g| = 3. Each such subgroup can be written
in 6 distinct ways as 〈h, yu〉, where h, y ∈ A4, |h| = 3. Since HA4(C3) = 4, we have
HMo24(S3) = 2 · 4 · 12/6 = 16. Consequently,

HM∗(S3|Mo24) =
HMo24(S3) · HM∗(Mo24)

HM∗(S3)
=

16 · 63
336

= 3.

By Proposition 4.12(iii), HMo24(C3) = HA4(C3) = 4. Therefore, by (4.5),
HM∗(C3|Mo24) = 63 · 8/28 = 14. The remaining six Hasse constants can be calcu-
lated in a similar way. Notice that HMo24(C2) = 15 follows from Proposition 4.12(i).
¤

Let 〈x0, z0, u1〉 be the representative for Mo24.
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5.2.6 Subloops Isomorphic to V4

As announced earlier, we prove that Aut(M∗) does not act transitively on the copies of
V4. Let us first show that there are at most two orbits of transitivity.

Put
u2 = ((100, 010)).

Lemma 5.18 Let V4
∼= 〈u, v〉 be one of the 315 copies of V4 in M∗. Then there is

f ∈ Aut(M∗) such that f(u) = x0 and f(v) is one of the two elements u1, u2.

Proof. Recall that HM∗(C2|S3) = 16. Therefore, given any involution x, there are
63−1−2·16 = 30 involutions y such that 〈x, y〉 ∼= V4. Hence,HM∗(V4) = (63·30)/(2·3) =
315.

By Proposition 5.9, we may assume that u = x0. Write v = ((α, β))n, r = w(α),
s = w(β). We have r ≡ s. Thanks to the automorphism ∂, we may assume that r ≤ s.
If (r, s) = (0, 2), transform v into u0; if (r, s) = (1, 1), into u1 or u2, depending on
n; if (r, s) = (1, 3), into u3 = ((001, 111)); if (r, s) = (2, 2), into u4 = ((110, 110)) or
u5 = ((011, 101)).

Recall the automorphisms f1, f2 from Lemma 5.11. Check that f1(u4) = u1, and
that f1(u3) = u2, f1(u5) = u3, f2(u5) = ∂(u0). Thus u4 an be transformed into u1, and
each of u0, u3, u5 can be transformed into u2. ¤

Assume, for a while, that Aut(M∗) acts transitively on the 315 copies of V4. Then,
by (4.5),

HM∗(V4|A4) =
HA4(V4) · HM∗(A4)

HM∗(V4)
=

1 · 63
315

,

a contradiction. Hence, by Lemma 5.18, there are 2 orbits of transitivity, with repre-
sentatives

V +
4 = 〈x0, u1〉, V −

4 = 〈x0, u2〉.
The proof of Lemma 5.18 also tells us which copies of V4 belong to OV +

4
and which to

OV −4
. In particular, all elements y with 〈x0, y〉 ∈ OV +

4
are denoted by an asterisk in

Table B.2.

Lemma 5.19 HO
M∗(C2|V +

4 ) = 3, HO
M∗(C2|V −

4 ) = 12, |OV +
4
| = 63, |OV −4

| = 252. A
copy of V4 is contained in some copy of A4 if and only if it belongs to OV +

4
. More

precisely, HM∗(V +
4 |A4) = 1, HM∗(V −

4 |A4) = 0.

Proof. Since HV4(C2) = 3 and since there are 6 elements y such that 〈x0, y〉 ∈ OV +
4

(cf. Table B.2), we have HO
M∗(C2|V +

4 ) = 6/2 = 3. Then HO
M∗(C2|V −

4 ) must be equal
to (30− 6)/2 = 12 (this corresponds to the remaining 24 involutions in set S2 of Table
B.2). By (4.4),

|OV +
4
| =

HM∗(C2) · HO
M∗(C2|V +

4 )
HV4(C2)

=
63 · 3

3
= 63,

|OV −4
| =

HM∗(C2) · HO
M∗(C2|V −

4 )
HV4(C2)

=
63 · 12

3
= 252.
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By (4.2),

63 = HA4(V4) · HM∗(A4) = |OV +
4
| · HM∗(V +

4 |A4) + |OV −4
| · HM∗(V −

4 |A4)

= 63 · HM∗(V +
4 |A4) + 252 · HM∗(V −

4 |A4).

This is only possible when HM∗(V +
4 |A4) = 1, HM∗(V −

4 |A4) = 0. ¤

Lemma 5.20 HM∗(V +
4 |Mo12) = 0, HM∗(V −

4 |Mo12) = 4.

Proof. Consider V +
4 = 〈x0, u1〉. Assume that there is G ∼= S3 such that V +

4 ≤
M12(G, 2) = M . How can the three involutions x0, u1, x0u1 = ((110, 110)) of V +

4 be
distributed in the cosets G, Gu of M12(G, 2)? Certainly, V +

4 6≤ G. Thus, by Proposition
4.5, exactly one involution must be in G (say g0), and the remaining two are in Gu (say
g1, g2).

There is an involution y ∈ G such that 〈y, g0〉 = G. Because G ∼= S3, we have
|yg0| = 3. Also, |yg1| = |yg2| = 2, by Proposition 4.12(i). We argue that this is
impossible.

Write gi = ((γi, γi)) for appropriate vectors γi ∈ k3, i = 0, 1, 2, and let y = ((α, β)).
Note that, remarkably, γ0 + γ1 + γ2 = 0. Since |yg0| = 3, |yg1| = |yg2| = 2, we have
α · γ0 6= β · γ0, α · γ1 = β · γ1, α · γ2 = β · γ2. Then 0 = α · 0 = α · (γ0 + γ1 + γ2) 6=
β · (γ0 + γ1 + γ2) = β · 0 = 0, a contradiction.

The inevitable conclusion is that V +
4 is not contained in any copy of Mo12, i.e.,

HM∗(V +
4 |Mo12) = 0. We proceed to calculate HM∗(V −

4 |Mo12). First observe that
Proposition 4.12(iii) implies that HMo12(V4) = 9. (We knew it already from Figure 4.2.)
We use the same trick as in Lemma 5.19. By (4.3), we have

9 · 112 = HMo12(V4) · HM∗(Mo12)
= |OV +

4
| · HM∗(V +

4 |Mo12) + |OV −4
| · HM∗(V −

4 |Mo12)

= 63 · 0 + 252 · HM∗(V −
4 |Mo12).

Hence HM∗(V −
4 |Mo12) = 4. ¤

We are going to calculate the Hasse constants

c+ = HM∗(V +
4 |Mo24), c− = HM∗(V −

4 |Mo24).

The argument is both subtle and detailed, and deserves a careful thought.

Lemma 5.21 With the above notation for c+, c−, we have

(i) (c+, c−) ∈ {(3, 4), (7, 3), (11, 2), (15, 1), (19, 0)},
(ii) c+ ≤ 7,

(iii) c− ≤ 3.
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Proof. Since HA4(C2) = 3 and HA4(V4) = 1, we have HMo24(V4) = 19, by Proposition
4.12(vi). Formula (4.3) then yields

19 · 63 = HMo24(V4) · HM∗(Mo24) = |OV +
4
| · c+ + |OV −4

| · c−

= 63c+ + 252c− = (c+ + 4c−) · 63.

In particular, c+ + 4c− = 19, and (i) follows.
Let V +

4 = 〈x0, u1〉. We are trying to find a group G ∼= A4 such that V +
4 ≤ M24(G, 2).

We look again at the distribution of the 3 involutions x0, u1, x0u1 in the cosets G, Gu.
There are two possibilities; either V +

4 ≤ G, or |V +
4 ∩G| = 2.

Suppose that V +
4 ≤ G. As HA4(V4) = 1 and HMo24(A4) = 1, there is at most one

subloop M ∼= Mo24 such that V +
4 ≤ M in such a case.

Now suppose that |V +
4 ∩G| = 2. Then V +

4 ∩G is one of the three 2-element subgroups
of V +

4 . Let us call it H. Since HA4(C2) = 3 and HMo24(A4) = 1, there are at most 3
subloops M ∼= M24(G, 2) such that H ≤ G ≤ M . Because there are three ways how to
choose H in V +

4 , there are at most 3 · 3 = 9 subloops M ∼= Mo24 such that V +
4 ≤ M .

Altogether, c+ ≤ 1 + 9 = 10. By (i), c+ ≤ 7, and (ii) is finished,
Let V −

4 = 〈x0, u2〉. We are trying to find a group G ∼= A4 such that V −
4 ≤ M24(G, 2).

Since HM∗(V −
4 |Mo24) = 0, the group V −

4 is not contained in G, i.e., |V −
4 ∩G| = 2. Using

the transitivity of Aut(M∗) on involutions, we can assume that V −
4 ∩ G = {e, x0}. If

there is such a group G, there is also an element

y =
(

c0 (γ1, γ2, γ3)
(δ1, δ2, δ3) c0 + 1

)

such that
|yg0| = 3, |yg1| = 2, |yg2| = 2. (5.5)

(Since we can assume that 〈x0, y〉 = G ∼= A4.) By Proposition 5.7, the system of
equations (5.5) is equivalent to

δ1 + δ2 + δ3 + γ1 + γ2 + γ3 = 1,
δ1 + γ2 = 1,
δ2 + γ1 = 1.

(5.6)

In particular, γ3 + δ3 = 1. There are 4 solutions to (5.6), namely
(

γ1, γ2, γ3

δ1, δ2, δ3

)
=

(
0, 1, c1

0, 1, c1 + 1

)
,

(
1, 0, c1

1, 0, c1 + 1

)
,

where c1 = 0, 1. This is easy to see since both (γ1, γ2) = (0, 0), (1, 1) lead to det y = 0.
Hence, there are at most 8 candidates for y (with c0 = 0, 1). However, if 〈g0, y〉 is
isomorphic to A4, then every element of order 3 in 〈g0, y〉 must satisfy (5.6). There are
8 elements of order 3 in A4, and thus there is at most 1 subloop M24(G, 2) satisfying
all of our restrictions.

Because our choice of x0 ∈ V −
4 ∩G was one of three equivalent choices, we conclude

that c− ≤ 3. ¤

Corollary 5.22 HM∗(V +
4 |Mo24)=7, HM∗(V −

4 |Mo24)=3.
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5.2.7 Subloops Isomorphic to E8

Recall the representatives V +
4 = 〈x0, u1〉, V −

4 = 〈x0, u2〉, and observe that 〈x0, u1, u2〉
is isomorphic to E8.

Lemma 5.23 HM∗(V +
4 |E8) = 3, HM∗(V −

4 |E8) = 1.

Proof. Let dε = HM∗(V ε
4 |E8). We have seen that both d+, d− are positive. An

inspection of Table B.2 reveals that there are 12 involutions y such that |x0y| = |u1y| = 2,
y 6∈ V +

4 . Namely, y is one of

a0 = ((000, 110)), a1 = ((010, 010)), a2 = ((010, 100)), a3 = ((100, 010)),
a4 = ((100, 100)), a5 = ((001, 111)), a6 = ((110, 000)), a7 = ((011, 011)),
a8 = ((011, 101)), a9 = ((101, 011)), a10 = ((101, 101)), a11 = ((111, 001)).

(5.7)

This immediately shows that d+ ≤ 3. Note that u2 = a3, and check that

E0
8 = V +

4 ∪ {a0, a5, a6, a11},
E1

8 = V +
4 ∪ {a1, a4, a7, a10},

E2
8 = V +

4 ∪ {a2, a3, a8, a9}

are all isomorphic to E8. Thus d+ = 3.
Let us prove that d− ≤ 1. Yet another inspection of Table B.2 shows that there are

12 involutions y such that |x0y| = |u2y| = 2, y 6∈ V −
4 . Namely, y is one of

((000, 011)), ((001, 001)), ((001, 010)), ((100, 001)),
((010, 111)), ((101, 000)), ((011, 101)), ((011, 110)),
((101, 011)), ((110, 101)), ((110, 110)), ((111, 100)).

(5.8)

This means that d− ≤ 3, but we prove more. The group V −
4 is contained in 4 copies of

Mo12. With the notation of Section 4.4, there are nine involutions x0, . . ., x8 in Mo12.
We can think of x0 as x0 and of u2 as x1, say. This is possible thanks to the symmetry.
Look at Figure 4.2 and you will see that |x0x2| = |x1x2| = 2 and |x0x5| = |x1x5| = 2.
(Also |x0x8| = |x1x8| = 2 but x8 is in 〈x0, x1〉.) Therefore, every copy of Mo12 steals
two involutions from the list (5.8). Only 4 elements remain in (5.8), hence d− ≤ 1. ¤

Lemma 5.24 Every copy of E8 contains a group from OV −4
.

Proof. Arguing as in the proof of Lemma 5.23, we can assume that E8 is isomorphic
to one of the three groups Ei

8, i = 0, 1, 2. Since the representative V −
4 is contained in

E2
8 , we proceed only with i = 0, 1.

Let π be the transposition (1, 2), x = (((001, 101)))1, and y = (((101, 100)))1. Define
f , g ∈ Aut(M∗) by f = π̂ ◦ T (x), g = T (y) ◦ T (x) (compose from left to right). Then
a1f = x0, u1f = ((011, 000)), a0g = x0, and u1g = ((000, 011)). By the proof of Lemma
5.18, both u1f , u1g can be mapped onto u2 without moving x0. ¤
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Corollary 5.25 The automorphism group Aut(M∗) acts transitively on the 63 copies
of E8. Moreover, HM∗(E8|Mo24) = 3.

Proof. Let E, E′ be two subgroups of M∗ isomorphic to E8. Then there are G,
G′ ∈ OV −4

such that G ≤ E, G′ ≤ E′, by Lemma 5.24. Since G, G′ belong to the same
orbit, there is f ∈ Aut(M∗) mapping G onto G′. As HM∗(V −

4 |E8) = 1, f must map E
onto E′ as well.

By (4.3) and Lemma 5.23,

7 · HM∗(E8) = HE8(V4) · HM∗(E8)
= |OV +

4
| · d+ + |OV −4

| · d− = 63 · 3 + 1 · 252 = 441.

Hence, HM∗(E8) = 63. Consequently, (4.5) yields

HM∗(E8|Mo24) =
HMo24(E8) · HM∗(Mo24)

HM∗(E8)
=

3 · 63
63

= 3,

and we are finished. ¤

Remark 5.26 Alternatively, to show that Aut(M∗) acts transitively on the copies of
E8, it suffices to prove that every copy of E8 is contained in some Mo24. This is enough
thanks to Lemma 5.16 and Remark 4.11. However, this alternative approach does not
seem to be easier as far as the numerical calculation is concerned.

As HE8(C2) = 7, we have HM∗(C2|E8) = 7, by (4.5).
Let 〈x0, u1, u2〉 be the representative for E8.

5.3 Subloop Lattice

It is about time to prove Proposition 5.5. Assume that G ∼= (C2)4 is a subgroup of M∗.
By Corollary 5.25, we can assume that 〈x0, u1, u2〉 ≤ G. Then there must be at least
8 involutions y outside of 〈x0, u1, u2〉 in M∗ such that |x0y| = |u1y| = |u2y| = 2. Each
such involution must be listed in both (5.7) and (5.8), a contradiction.

Let us summarize the results obtained in this chapter so far.

Theorem 5.27 (Structural Properties of M∗) The smallest Paige loop M∗ is a
non-associative simple Moufang loop of order 120. It has trivial center and nucleus,
and it satisfies the strong Lagrange property but not the weak Cauchy property. The
following loops (and no other) appear as subloops of M∗: {e}, C2, C3, V4, S3, E8, A4,
Mo12, Mo24, and M∗.

The automorphism group Aut(M∗) acts transitively on the copies of each of these
subloops, with the exception of V4. There are two orbits of transitivity V +

4 , V −
4 for V4.

With the notational conventions introduced in this chapter, we have the following orbit
representatives: 〈x0〉 for C2, 〈y0〉 for C3, 〈x0, u1〉 for V +

4 , 〈x0, u2〉 for V −
4 , 〈x0, y0〉

for S3, 〈x0, u1, u2〉 for E8, 〈x0, z0〉 for A4, 〈x0, y0, u0〉 for Mo12, and 〈x0, z0, u1〉 for
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Mo24, where x0 = ((111, 111)), y0 = (((011, 110)))1, z0 = (((110, 100)))0, u0 = ((000, 110)),
u1 = ((001, 001)), and u2 = ((100, 010)). The subloop structure and Hasse constants for
M∗ are summarized in Figure 5.1.

For p = 2 and p = 3, the Sylow Theorems (A), (B), (C), (E) are true, whereas (F )
is false. For p = 5, (C), (D), (E), (F ) are true, whereas (A), (B) are false; as the
Sylow 5-subloop of M∗ is trivial.

5.4 Random Generators

As an application of Theorem 5.27 we calculate the probability that three randomly
chosen elements of M∗ generate M∗, and some refinements thereof. The technique we
are about to develop has wide applicability.

5.4.1 Random m-tuples

Let C be a universal algebra and m a positive integer. Given an m-tuple a = (a1, . . .,
am) of not necessarily distinct elements of C, let a∗ = {a∗i }m

i=0 be the sequence of nested
subalgebras a∗i ≤ C, such that a∗0 = {e} and a∗i+1 = 〈a∗i , ai〉. Clearly, a∗m does not
depend on the order of the elements a1, . . ., am in a.

Let Genm(C) be the set of all m-tuples a ∈ Cm with a∗m = C, and let genm(C) =
|Genm(C)|. Then the probability that m randomly chosen elements of C generate C is

γn(C) = |C|−m · genm(C). (5.9)

If Gen′m(C) ⊆ Genm(C) is the set of m-tuples a ∈ Cm with distinct elements, and
gen′m(C) = |Gen′m(C)|, then the probability that m randomly chosen distinct elements
of C generate C is

γ′m(C) = [|C| · (|C| − 1) · · · (|C| − (m− 1))]−1 · gen′m(C). (5.10)

We are now going to refine the above ideas.
Two m-tuples of integers r = (r1, . . ., rm) and s = (s1, . . ., sm) are said to be of the

same type if r1, · · ·, rm is a permutation of s1, · · ·, sm. We say that a ∈ Cm is of type s
if (|a1|, · · ·, |am|) is of the same type as s.

Let Gens(C) ⊆ Genm(C) be the set of all m-tuples of type s, and gens(C) =
|Gens(C)|. Similarly, let Gen′s(C) ⊆ Gen′m(C) be the set of all m-tuples of type s
with distinct entries, and gen′s(C) = |Gen′s(C)|. Then

γs(C) = |C|−m · gens(C)

is the probability that m randomly chosen elements a1, . . ., am ∈ C generate C and
a = (a1, . . ., am) is of type s. Similarly,

γ′s(C) = [|C| · (|C| − 1) · · · (|C| − (m− 1))]−1 · gen′s(C)

is the probability that m randomly chosen distinct elements a1, . . ., am ∈ C generate C
and a = (a1, . . ., am) is of type s.



CHAPTER 5. THE SMALLEST PAIGE LOOP M∗(2) 59

M∗(2)

M24(A4, 2) M12(S3, 2)

S3

C3

{e}

C2

V +
4 V −

4

A4E8

63:1 112:1

3:1

1:12

1:4

1:281:63

3:3

3:12 3:16

4:9

4:14

9:18

16:3

9:4

1:1

1:1

19:319:7

3:3

7:1

7:3

7:7

15:15

3:3

1

112

336

28

1

63

63 252

63 63

63

Figure 5.1: The subloop structure and Hasse constants in M∗(2). Two non-trivial
representatives A, B are connected by an edge if and only if HM∗(2)(A|B) > 0. If
A = {e} or B = M∗(2), the two representatives A, B are connected by an edge if and
only if a copy of A is maximal in B. The edge connecting A and B is thick if and only
if a copy of A is maximal in B. The constants |OA|, HB(A), HO

M∗(2)(A|B) are located
in the diagram as follows: |OA| next to A, HB(A) and HO

M∗(2)(A|B) along the edge
connecting A and B, separated by colon.
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5.4.2 Links in the Lattice of Subalgebras

For A, B ≤ C, let Γn(A, B) be the cardinality of the set of elements x ∈ C such that
|x| = n and 〈A, x〉 ∈ OB, where OB is the orbit of B under the action of Aut(C) on the
copies of B. Put

Γ(A, B) =
∞∑

n=1

Γn(A, B).

We are going to divide the set Genm(C) into certain equivalence classes. Two m-
tuples a, b ∈ Genm(C) are called orbit-equivalent if a∗i ∈ Ob∗i for every i, 0 ≤ i ≤ m.
We write a ∼ b.

The cardinality of the equivalence class [a]∼ is easy to calculate with the help of the
constants Γ(A, B).

Lemma 5.28 With the above notation,

|[a]∼| =
m−1∏

i=0

Γ(a∗i , a∗i+1). (5.11)

Proof. Given a∗0 = {e}, there are Γ(a∗0, a∗1) elements x1 such that 〈a∗0, x1〉 ∈ Oa∗1 . Once
we are in the orbit Oa∗i , we can continue on the way to Oa∗i+1

by adding one of the
Γ(a∗i , a∗i+1) elements xi+1 to 〈x1, . . . , xi〉. ¤

Since Genm(C) is a disjoint union of equivalence classes [a]∼ ∈ Genm(C)/ ∼, we
have

genm(C) =
∑

[a]∼∈(Genm(C)/∼)

|[a]∼|. (5.12)

Hence, combining (5.11), (5.12) and (5.9), we obtain a practical way of calculating the
probability γm(C).

Example 5.29 In order to illustrate the theoretical results, let us calculate the proba-
bility that two randomly chosen distinct elements of S3 generate S3. (It is easy to see
that the probability is (3 + 6)/15 = 3/5).

There are three subgroups isomorphic to C2 in S3 (all in one orbit of transitivity),
and a unique subgroup isomorphic to C3. Obviously, Γ({e}, C2) = 3, Γ({e}, C3) = 2,
Γ(C2, S3) = 4, Γ(C3, S3) = 3. Therefore, gen2(S3) = 3 · 4 + 2 · 3 = 18. Then γ2(S3) =
18/30 = 3/5, as expected.

From now on, we will assume that m is the minimal number of generators for C.
Allow us to recall that under this assumption Genm(C) = Gen′m(C) and Gens(C) =
Gen′s(C).

Let ∼s be the restriction of ∼ onto Gens(C)2. We can then refine Lemma 5.28 in an
obvious way:
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Proposition 5.30 With the above notation,

|[a]∼s | =
∑

k=(k1, ..., km)

m−1∏

i=1

Γki(a
∗
i , a∗i+1),

where the summation runs over all m-tuples k of the same type as s.

Again,
gens(C) =

∑

[a]∼s∈(Genm(C)/∼s)

|[a]∼s |

will be used to calculate γs(C).

5.4.3 The Constants Γn(A, B) for M∗

Let C = M∗. We are going to find the constants Γn(A, B) for A < B ≤ M∗.
Clearly, Γn(A, B) vanishes unless n = 2, 3. Assume that A is a maximal subloop of

B, and let rn the number of elements of order n contained in B \A. Then

Γn(A, B) = HO
M∗(A|B) · rn.

This is the connection between Hasse constants and the constants Γn(A, B).
All non-trivial constants Γn(A, B) are summarized in Figure 5.2, where two subloops

A < B are connected by a thick, straight edge if A is maximal in B, and by a curved,
thin edge when A is not maximal in B but still B = 〈A, x〉 for some x ∈ M∗. The
constants Γ2(A, B), Γ3(A, B) are located along the edges.

For instance, sinceHO
M∗(E8|Mo24) = 3 and Mo24 contains 8 involutions not contained

in E8, we have Γ2(E8, Mo24) = 24.
Counting in this way, we find all constants Γn(A, B) with A maximal in B (using

Figure 5.1). Apart from trivialities, the remaining constants to be calculated are

Γn(C2, A4), Γn(S3, M∗), Γn(A4, M∗), Γn(V −
4 , M∗)′

Γn(V −
4 , Mo24), Γn(V +

4 , Mo24), Γn(V +
4 , M∗), Γn(E8, M∗),

for n = 2, 3. Since some invention is needed here, we better show how to obtain all of
them.

Let us get started with Γn(S3, M∗). Let G be a copy of S3. For any element x 6∈ G,
we must have 〈G, x〉 ∼= Mo12, Mo24, or M∗. Therefore, for n = 2, 3,

Γn(S3, M∗) = (n− 1) · HM∗(Cn)− Γn(S3, Mo12)− Γn(S3, Mo24)− (n− 1) · HS3(Cn).

The terms (n − 1) · HM∗(Cn) and (n − 1) · HS3(Cn) count the number of elements of
order n in M∗ and S3, respectively. (The formula only works when n is a prime.) We
get

Γ2(S3, M∗) = 63− 6− 36− 3 = 18, Γ3(S3, M∗) = 56− 0− 18− 2 = 36.
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Figure 5.2: The constants Γn(A, B) for M∗(2). If A is maximal in a copy of B, then A
and B are connected by a thick, straight line; else by a thin, curved line. The constants
Γn(A, B) are located along the edges, separated by colon.
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Similarly,
Γ2(C2, A4) = 0, Γ3(C2, A4) = 24,

Γ2(A4, M∗) = 48, Γ3(A4, M∗) = 48,
Γ2(E8, M∗) = 32, Γ3(E8, M∗) = 32.

A more detailed analysis of the subloop lattice of M∗ allows us to calculate the
remaining eight constants.

Lemma 5.31 Let G ∈ OV −4
, and let M1, M2, M3 be the three copies of Mo24 containing

G. Then Mi ∩Mj contains no element of order 3, for i 6= j, and M1 ∩M2 ∩M3 is the
unique copy of E8 containing G. In particular,

Γ3(V −
4 , Mo24) = 24, Γ3(V −

4 , M∗) = 24, Γ2(V −
4 , Mo24) = 24, Γ2(V −

4 , M∗) = 8.

Proof. Assume there is x ∈ Mi ∩Mj , |x| = 3, for some i 6= j. Then Mi = 〈G, x〉 = Mj ,
because HM∗(V −

4 |A4) = 0, a contradiction. Thus M1 ∪ M2 ∪ M3 contains 3 · 8 = 24
elements x of order 3 such that 〈G, x〉 ∈ OMo24 .

Let H be the unique copy of E8 containing G. We must have H = M1 ∩M2 ∩M3,
since HM∗(E8|Mo24) = 3. Therefore M1∪M2∪M3 contains 3 · (12−4) = 24 involutions
x such that 〈G, x〉 ∈ OMo24 . The constants Γn(V −

4 , M∗) are then easy to calculate. ¤

It is conceivable that there is G ∈ OV +
4

and x ∈ M∗ such that 〈G, x〉 = M∗. It is
not so, though.

Lemma 5.32 In M∗, we have

Γ3(V +
4 , Mo24) = 48, Γ2(V +

4 , Mo24) = 48, Γ3(V +
4 , M∗) = 0, Γ2(V +

4 , M∗) = 0.

Proof. Pick G ∈ OV +
4

, and let M1, . . ., M7 be the seven copies of Mo24 containing
G. We claim that (Mi ∩ Mj)2 = e, for i 6= j. Assume it is not true, and let x be an
element of order 3 contained in Mi ∩ Mj . Then A4

∼= 〈G, x〉 ≤ Mi ∩ Mj shows that
HMo24(A4) ≥ 2, a contradiction. Thus

⋃7
i=1 Mi contains all 8 · 7 = 56 elements of order

3. In particular, for any element x of order 3, we have 〈G, x〉 6= M∗. This translates
into

Γ3(V +
4 , M∗) = 0, Γ3(V +

4 , Mo24) = 56− Γ3(V +
4 , A4) = 48.

We proceed carefully to show that Γ2(V +
4 , M∗) = 0. The group G is contained in

a single copy A of A4, that is in turn contained in a single copy of Mo24, say M1. Let
H1, H2, H3 ≤ M1 be the three copies of E8 containing G (see the proof of Proposition
4.12). It helps to visualize how the subgroups G, A, H1, H2 and H3 sit in M1. Observe
that H1 ∪H2 ∪H3 = G ∪ Au, where Au is the second coset of A in M1. The situation
must then look as in Figure 5.3.

Pick Mi, Mj , with 2 ≤ i < j ≤ 7. We want to show that Mi ∩Mj ⊆ M1. Thanks to
the first part of this Lemma, we know that Mi ∩Mj

∼= V4 or (C3
2 ). When Mi ∩Mj

∼= V4

then, trivially, Mi ∩Mj = G ≤ M1. When Mi ∩Mj
∼= E8 then Mi ∩Mj = Hk for some

k ∈ {1, 2, 3}, else HM∗(G|E8) ≥ 4, a contradiction.
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G A \G

H1 \G H2 \G H3 \G

Figure 5.3: The proof of Lemma 5.32

Consequently,
⋃7

i=1 Mi contains at least 15 + 6 · 8 = 63 involutions; 15 in M1, and
additional 8 in each Mi. In particular, 〈G, x〉 6= M∗ for every involution x. We get

Γ2(V +
4 , M∗) = 0, Γ2(V +

4 , Mo24) = 60− Γ2(V +
4 , E8) = 48.

This finishes the proof. ¤

All constants Γn(A, B) have now been calculated, and we can return to our original
question: What is the probability that three randomly chosen elements generate M∗?

5.4.4 Random Generators of Arbitrary Orders

We will use Lemma 5.28 and Equation (5.12) to find γ3(M∗). There are only five orbit-
non-equivalent sequences of subalgebras of length 4 in M∗. Namely (look at Figure
5.2),

A0 = {{e}, C2, A4, M∗},
A1 = {{e}, C2, V −

4 , M∗},
A2 = {{e}, C2, S3, M∗},
A3 = {{e}, C3, S3, M∗},
A4 = {{e}, C3, A4, M∗}.

These sequences and the related constants Γn(A, B) are visualized in Figure 5.4. Full
lines correspond to involutions (n = 2), dotted lines to elements of order 3 (n = 3).

Proposition 5.33 Let γ = γ3(M∗) (resp. γ′ = γ′3(M
∗)) be the probability that 3 ran-

domly chosen (distinct) elements of M∗ generate M∗. Then

γ =
955, 584

1203

.= 0.553, γ′ =
955, 584

120 · 119 · 118
.= 0.567.

Proof. By (5.12),

gen3(M
∗) = gen′3(M

∗) =
4∑

i=1

|[Ai]∼|.

By our previous calculation summarized in Figure 5.4, |[A0]∼| = 63 · 24 · (48 + 48),
|[A1]∼| = 63 · 24 · (8+24), |[A2]∼| = 63 · (32+32) · (18+36), |[A3]∼| = 56 · 36 · (18+36),
and |[A4]∼| = 56 · (54+27) · (48+48). Thus gen3(M∗) = 955, 584. We are done by (5.9)
and (5.10). ¤
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Figure 5.4: Sequences of Subloops in M∗

5.4.5 Random Generators of Given Orders

The only possible types of orders for three generators in M∗ are (2, 2, 2), (2, 2, 3),
(2, 3, 3), and (3, 3, 3). The sequences of subalgebras corresponding to each of these
types are depicted in Figure 5.5. We must be careful, though, since not all combinations
of lines in Figure 5.5 correspond to sequences with correct types of orders. We have
tried to make the possible continuations clear in Figure 5.5.

Proposition 5.34 Let s = (s1, s2, s3) be a 3-tuple of integers, s1 ≤ s2 ≤ s3, and let
γs = γs(M∗) (resp. γ′s = γ′s(M∗)) be the probability that 3 randomly chosen (distinct)
elements a1, a2, a3 of M∗ generate M∗ and (|a1|, |a2|, |a3|) is of type s. Then

γ(2, 2, 2) =
48, 384
1203

.= 0.028, γ(2, 2, 3) =
326, 592

1203

.= 0.189,

γ(2, 3, 3) =
435, 456

1203

.= 0.252, γ(3, 3, 3) =
145, 152

1203

.= 0.084,

γ′(2, 2, 2) =
48, 384

120 · 119 · 118
.= 0.029, γ′(2, 2, 3) =

326, 592
120 · 119 · 118

.= 0.194,

γ′(2, 3, 3) =
435, 456

120 · 119 · 118
.= 0.258, γ′(3, 3, 3) =

145, 152
120 · 119 · 118

.= 0.086.

Proof. Use Proposition 5.30 and Figure 5.5. ¤
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Figure 5.5: The shortest sequences of subloops in M∗

5.5 Combinatorial Structures Related to M ∗

We consider two combinatorial structures based on the lattice of subloops of M∗. They
further elucidate the complicated structure of the lattice.

5.5.1 A Strongly Regular Graph and its Hadamard Design

By a graph G = (V (G), E(G)) we mean an unoriented graph with no loops and no
multiple edges. The elements of V (G) are called vertices, the elements of E(G) are
called edges. Every edge is represented by a two-element subset of V (G). A vertex
y ∈ V (G) is a neighbor of x ∈ V (G) if {x, y} is an edge. Let Nbd x be the set of all
neighbors of x in G. The valency of x is the cardinality of Nbd x.

A graph G is said to be regular of degree n if the valency of each vertex is n. A regular
graph is strongly regular if there are two constants λ, µ such that |Nbd x ∩Nbd y| = λ
whenever {x, y} ∈ E(G), and |Nbd x ∩ Nbd y| = µ whenever {x, y} 6∈ E(G). Such a
strongly regular graph will be denoted by srg(v, n, λ, µ), where v = |V (G)|. (See van
Lint and Wilson [31].)

Lemma 5.35 Let V (G) be the set of all involutions of M∗, and declare {x, y} ⊆ V (G)
an edge if 〈x, y〉 ∼= S3 (equivalently, |xy| = 3). Then G = (V (G), E(G)) is a
srg(63, 32, 16, 16).
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Proof. Since Aut(M∗) acts transitively on the 63 involutions of M∗, G is a regular
graph of degree n = HM∗(C2|S3) · 2 = 32.

The proof of Proposition 5.12 in fact shows that Aut(M∗) acts transitively on the
edges of G. To calculate λ, it is then sufficient to count the common neighbors of x0 and
x1 = ((110, 100)). A quick inspection of Table B.2 yields λ = 16.

The group Aut(M∗) does not act transitively on the non-edges of G (i.e., on the
edges of the complement Gc of G), nonetheless, every edge of Gc can be transformed into
{x0, u1} or {x0, u2}, thanks to Lemma 5.18. Therefore, to verify that µ = 16, one only
has to check that |Nbd x0∩Nbd ui| = 16, for i = 1, 2. Table B.2 comes handy again. ¤

Remark 5.36 The following problem seems to be non-trivial: Construct a graph G
of diameter 2 such that Aut(G) acts transitively on the edges of G, but does not act
transitively on the non-edges of G. The graph constructed in Lemma 5.35 is such a
graph. (Every strongly regular graph with µ > 0 has diameter 2.)

When the diameter is bigger than 2, then there are at least 3 orbits of transitivity
under the action of Aut(G) on all pairs of vertices, since every automorphism preserves
distance. The simplest graph G such that Aut(G) acts transitively on the edges of G but
not on the non-edges of G is the hexagonal graph C6.

Every strongly regular graph with λ = µ gives rise to a combinatorial design. Recall
that a t-(v, k, λ) design is a collection B of subsets (called blocks) of a set P of v points,
such that every block contains k points, and every set of t points is contained in exactly
λ blocks.

For a strongly regular graph G = srg(v, n, λ, λ), let P = V (G), B = {Nbd x; x ∈
V (G)}. Then D = (P, B) is a 2-(v, n, λ) design. In our case, D is a 2-(63, 32, 16) design,
the complement of the 2-(63, 31, 15) Hadamard design constructed in [31, Example 19.3].
It is known that D is not a 3-design. (If it were a 3-(63, 32, λ) design, we would have,
by Theorem 19.3 [31],

16 = b2 = λ

(
62
2

)
/

(
31
2

)
,

i.e., λ = 3.93 . . . would not be an integer.)

5.5.2 Generalized Hexagons

The girth of a graph G is the length of the shortest cycle (polygon) in G. According
to [37], a generalized hexagon of order (s, t), s, t ≥ 1 is a 1-(v, s + 1, t + 1) design
D = (P, B) whose incidence graph has girth 12 and diameter 6. Up to duality, there
are only 2 known generalized hexagons for every prime power q; one of order (q, q), the
other of order (q, q3). When s = t, we speak simply of a generalized hexagon of order s.
A generalized hexagon of order s can be equivalently defined as follows (cf. [34, p. 42]).

It is an incidence structure S = (P, B, I) with a symmetric incidence relation satis-
fying

(i) each point (resp. line = block) is incident with s + 1 lines (resp. points),
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(ii) |P| = |B| = 1 + s + s2 + s3 + s4 + s5 = (s6 − 1)/(s− 1),

(iii) 6 is the smallest positive integer k such that S has a circuit consisting of k (distinct)
points and k (distinct) lines.

It is well known (cf. [13]) that the automorphism group of the generalized hexagon of
order q described above is the exceptional group G2(q). Since, as we will see in Chapter
6, Aut(M∗) = G2(2), it is natural to search for a generalized hexagon of order 2 in the
lattice of subloops of M∗. The aim of this subsection is to persuade the reader that,
indeed, there is a generalized hexagon H of order 2 embedded in the lattice. We will
construct H, verify axioms (i) and (ii), and leave the verification of (iii) to GAP. The
details can be found in Appendix A.

Let q = 2. A quick glance at Figure 5.1 shows that there are 3 good candidates for
H. Namely, one can see that

|OC2 | = |OV +
4
| = |OE8 | = |OMo24 | = 63 = 26 − 1,

and that

HV4(C2) = HO
M∗(C2|V +

4 ) = HA4(C2) = HM∗(C2|A4)
= HMo24(E8) = HM∗(E8|Mo24) = 3 = 2 + 1.

We focus on the incidence between OC2 and OV +
4

, however, we suspect that the incidence
between OC2 and OA4 , and between OE8 and OMo24 will yield additional two generalized
hexagons of order 2.

Proposition 5.37 Let P = OC2, B = OV +
4

, H = (P, B), where the incidence between
P and B is given by inclusion. Then H is a generalized hexagon of order 2.

Proof. Axioms (i) and (ii) are clearly satisfied. The author has verified by GAP that
(iii) is satisfied, too. See Appendix A for details. ¤



Chapter 6

Automorphism Groups of Paige
Loops

Theorem 3.1 claims that Aut(O(q)) is the exceptional group G2(q). Since G2(q) is a
subgroup of ≤ Aut(M(q)), by Lemma 3.4, it makes sense to ask whether the equality
G2(q) = Aut(M(q)) holds for some (and possibly all) values of q. Moreover, it is
tempting to approach the problem by extending (multiplicative) automorphisms of M(q)
into (linear) automorphisms of O(q).

The additive operation is not well-defined on M∗(q) when q is odd (an element
a ∈ M∗(q) is identified with −a, but a + a = 2a in O(q), whereas a + (−a) = 0). Hence,
it is not obvious how to extend an automorphism of M∗(q) onto M(q). Nevertheless,
when q is even, the two Moufang loops M∗(q) and M(q) coincide, and that is why the
investigation of Aut(M(q)) applies to Aut(M∗(q)), too, in such a case.

We prove in two ways that Aut(M∗(2)) = G2(2), and offer several results for the
general case. We will take advantage of both Zorn’s construction of O(q) and the well-
known, clever construction described below.

6.1 Extending Automorphisms from the First Shell

Pick an automorphism g of the (not necessarily simple) Moufang loop M(q). Our
ultimate goal is to construct h ∈ Aut(O(q)) such that h ¹ M(q) = g. If this can be
done, we immediately conclude that Aut(M(q)) = G2(q) for every q. We like to think
of the problem as a notion “orthogonal” to Witt’s lemma. Roughly speaking, Witt’s
lemma deals with extensions of partial isometries from subspaces onto finite-dimensional
vector spaces, whereas we are attempting to extend a multiplicative, norm-preserving
map from the first shell M(q) into an automorphism (= isometry, by [41, Corollary
1.2.4]) of O(q). Naturally, g ∈ Aut(M(q)) is not linear because M(q) is not even closed
under addition, however, the analogy with Witt’s lemma will become more apparent
once we prove that g is, in a sense, additive (cf. Proposition 6.14).

69
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6.1.1 A One-step Construction

There is a remarkably compact way of constructing the standard real octonion algebra
O that avoids the iterative Cayley-Dickson process. As in [15], let B = {e = e0, e1, . . .,
e7} be a basis whose vectors are multiplied according to

e2
r = −1, er+7 = er, eres = −eser,

er+1er+3 = er+2er+6 = er+4er+5 = er,

for r, s ∈ {1, . . . , 7}, r 6= s. (Alternatively, see [14, p. 122].) The norm N(u) of a vector
u =

∑7
i=0 aiei ∈ O is given by

∑7
i=0 a2

i .
Importantly, all the structural constants γijk, defined by ei · ej =

∑7
k=0 γijkek, are

equal to ±1, and therefore the construction can be imitated over any field k. For
k = GF (q), let us denote the ensuing algebra by O(q). There is no danger of confusion
with our previous notation because all octonion algebras over GF (q) are isomorphic.

We now use the basis B of O(q) to construct a mapping h : O(q) −→ O(q) from g.
First of all, B is a subset of M(q), so the values g(ei) are known for i = 0, . . ., 7. Define
h : O(q) −→ O(q) by

h(
7∑

i=0

aiei) =
7∑

i=0

aig(ei),

where ai are coefficients from GF (q), for i = 0, . . ., 7. Clearly, h is linear. We claim
that h is multiplicative.

Using the linearity of h and the multiplicativity of g, we can write

h(
∑

i

aiei ·
∑

j

bjej) = h(
∑

i, j

aibjeiej)

=
∑

i, j

aibjh(
∑

k

γijkek) =
∑

i, j

aibj

∑

k

γijkg(ek),

and

h(
∑

i

aiei) · h(
∑

j

bjej) =
∑

i

aig(ei)
∑

j

bjg(ej)

=
∑

i, j

aibjg(ei)g(ej) =
∑

i, j

aibjg(
∑

k

γijkek).

Thus h is multiplicative if and only if
∑

k

γijkg(ek) = g(
∑

k

γijkek) (6.1)

holds for every i, j.
Trivially, g(e) = e. Then g(−e) = −e, because {e, −e} is the center of M(q). (We

have to use this argument, since we do not assume anything about the linearity of g.)
For every i, j, only one out of the 8 structural constants γijk, 0 ≤ k ≤ 7, is nonzero,
and it is equal to ±1. Therefore (6.1) is satisfied, and h is multiplicative.
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By the construction, h coincides with g on B. However, we do not know whether
h bijects, and whether it is an extension of g. The fact that h ¹ B = g ¹ B does not
guarantee that h ¹ M(q) = g, since B does not need to generate M(q) by multiplication.
Interestingly enough, it seems to never be the case! The key to answering these questions
is to look at the additive properties of g (cf. Section 6.2). Apparently, h bijects once we
prove that h ¹ M(q) = g.

6.1.2 Multiplication versus Orthogonality

Perhaps the single most important feature of composition algebras is the existence of the
minimal equation 2.11. It can be used to establish a beautiful relation between norms
of elements in O(q) and their multiplicative orders.

Lemma 6.1 Let C be a composition algebra, x, y ∈ C. Then

N(xy, y) = N(x, e)N(y). (6.2)

When N(y) 6= 0, we have

(xy−1)2 −N(x, y)N(y)xy−1 + N(xy−1)e = 0. (6.3)

In particular,
(xy−1)2 −N(x, y)xy−1 + e = 0 (6.4)

whenever N(x) = N(y) = 1. In such a case, (xy−1)2 = −e if and only if N(x, y) = 0.

Proof. We have N(xy, y) = N(xy + y)−N(x)N(y)−N(y), and N(xy + y) = N(x +
e)N(y) = (N(x, e) + N(x) + N(e))N(y) = N(x, e)N(y) + N(x)N(y) + N(y). Equation
(6.2) follows.

Substitute xy−1 for x into (6.2) to obtain N(x, y) = N(xy−1, e)N(y). The minimal
equation

(xy−1)2 −N(xy−1, e)xy−1 + N(xy−1)e = 0

for xy−1 can then be written as (6.3), provided N(y) 6= 0. The rest is easy. ¤

Lemma 6.2 Let C be a division composition algebra or C = O(q). Assume that x,
y ∈ C satisfy N(x) = N(y) = 1, x 6= y. The following conditions are equivalent:

(i) |xy−1| = 3,

(ii) (xy−1)2 + xy−1 + e = 0,

(iii) N(x, y) = −1,

(iv) N(x + y) = 1.
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Proof. The equivalence of (ii) and (iii) follows from the uniqueness of the minimal
equation (2.11) and from (6.4). Condition (iii) is equivalent to (iv) since N(x) = N(y) =
1. It suffices to prove the equivalence of (i) and (ii).

As (a3 − e) = (a − e)(a2 + a + e), there is nothing to prove when C has no zero
divisors. The implication (ii) ⇒ (i) is obviously true in any (composition) algebra. Let
us prove (i) ⇒ (ii).

Assume that C = O(q), |xy−1| = 3, x 6= y, and

x =
(

a α
β b

)
, y =

(
c γ
δ d

)
.

We prove that N(x + y) = 1. Direct computation yields N(x + y) = 2 + r + s, where
r = ad− α · δ, s = bc− β · γ. Also,

xy−1 =
(

r ε
ϕ s

)

for some ε, ϕ ∈ k3. Since (xy−1)3 = e, we have either ((ε, ϕ) = (0, 0), s = r−1, and
r3 = 1), or ((ε, ϕ) 6= (0, 0), and s = −1 − r), by Lemma 3.8. If the latter is true, we
immediately get N(x + y) = 1. Assume the former is true. Then r + s = r + r−1. Also,
r3 = 1 implies r = 1 or r2 + r + 1 = 0. But r = 1 leads to x = y, a contradiction.
Therefore r2 + r + 1 = 0, i.e., r + r−1 = −1, and we get N(x + y) = 1 again. ¤

There is a strong bound between the additive and multiplicative structures in com-
position algebras.

Lemma 6.3 Let C, x, and y be as in Lemma 6.2. Then N(x + y) = 1 if and only if
x + y = −xy−1x.

Proof. The indirect implication is trivial. Assume that N(x + y) = 1. Then (xy−1)2 +
xy−1 + e = 0, and (xy−1)3 = e. Thus yx−1 = (xy−1)2 = −xy−1 − e. Multiplying this
equality on the right by x yields y = −xy−1x− x. ¤

6.1.3 A Construction using Doubling Triples

Allow us to offer another construction of a possible extension of g. The reader who
wishes to arrive at the main results as fast as possible can skip this subsection.

For every q, we find three elements a, b, c ∈ M(q) such that e0 = e, e1 = a, e2 = b,
e3 = ab, e4 = c, e5 = ac, e6 = bc, e7 = ab · c is a (vector space) basis for O(q). Using
this basis, we define h : O(q) −→ O(q) that agrees with g on a, b, c. We prove that h is
linear, and that h is multiplicative if and only if g satisfies a weak form of orthogonality.
We then proceed to prove that g satisfies this weak orthogonality. As before, it will not
be clear, however, whether h extends g, i.e., whether h ¹ M(q) = g ¹ M(q).

We have seen in Subsection 2.3.1 how composition algebras can be constructed by
doubling. In fact, every composition algebra of dimension 4 and 8 can be constructed
by doubling. Proposition 6.4 [41, Proposition 1.5.1] and Lemma 6.5 [41, Lemma 1.6.1]
tell us how to do it.
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Proposition 6.4 Let C be a composition algebra and D a finite-dimensional composi-
tion subalgebra, D 6= C. If a is chosen in D⊥ with N(a) 6= 0, then D1 = D ⊕ Da is
a composition subalgebra of C. Product, norm and conjugation on D1 are given by the
formulas

(x + ya)(u + va) = (xu−N(a)vy) + (vx + yu)a,

N(x + ya) = N(x) + N(a)N(y),
x + ya = x− ya,

where x, y, u, v are elements of D.

Lemma 6.5 Let C be a composition algebra over a field k of characteristic 2. If a ∈ C
with N(a, e) 6= 0, the linear space ke⊕ ka is a two-dimensional composition subalgebra
of C.

Lemma 6.5 is needed because ke is a composition subalgebra of C if and only if the
characteristic of k is not 2. (Remember, we require the norm N of any composition
algebra to be non-degenerate.)

So, when the characteristic is even, one can construct C by taking a with N(a) 6= 0
and N(a, e) 6= 0, thus obtaining the two-dimensional algebra A = ke⊕ ka, then taking
b ∈ A⊥ with N(b) 6= 0, thus obtaining the four-dimensional algebra B = A ⊕ Ab, and
than taking c ∈ B⊥ with N(c) 6= 0 to construct C = B⊕Bc. When the characteristic is
odd, it suffices to take a ∈ e⊥, b ∈ A⊥, c ∈ B⊥ with nonzero norms. We will call such a
triple (a, b, c) a doubling triple. Additional conditions are usually imposed on doubling
triples. For instance, (a, b, c) is called a basic triple in [41] if the basis X = {e, a, b, ab,
c, ac, bc, ab · c} of C has the following properties:

- if the characteristic is odd, X is an orthogonal basis and N(a)N(b)N(c) 6= 0,

- if the characteristic is even, N(e, a) = 1, N(b, ab) = N(b), N(c, ac) = N(c),
N(bc, ab · c) = N(b)N(c), all other inner products between distinct basis vectors
are zero, and N(a)N(b)N(c) 6= 0.

Basic triples exist in every octonion algebra (cf. [41, Corollary 1.6.3]). Our requirement
on (a, b, c) is different. We want to find a doubling triple (a, b, c) satisfying

N(a) = N(b) = N(c) = 1. (6.5)

This is not always possible, nevertheless, when C = O(q), it can be done, as we have
already seen (recall the basis B). However, we do not wish to use the compact construc-
tion of O(q). Instead, we will construct an explicit doubling triple using the original
Zorn’s construction.

From now on, we will always assume that N(a, e) = −1 when q is even and (a, b, c)
is a doubling triple.

Before we start, note that two elements a, b of unit norm are orthogonal if and only
if N(a + b) = 2, since N(a, b) = N(a + b)−N(a)−N(b).
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Lemma 6.6 In O(q),

e⊥ ∩M(q) =
{(

a α
β −a

)
; a ∈ k, α, β ∈ k3

}
∩M(q).

Proof. Let

x =
(

a α
β b

)

be an element of M(q). Then x ⊥ e if and only if

N(x + e) = N

(
1 + a α

β 1 + b

)
= 1 + a + b + ab− α · β = 2 + a + b

equals 2, which happens if and only if a + b = 0. ¤

Proposition 6.7 If q is even, then

a =
(

0 e1

e1 1

)
, b =

(
0 e2

e2 0

)
, c =

(
0 e3

e3 0

)

is a doubling triple for O(q) such that N(a) = N(b) = N(c) = 1.

Proof. Check that N(a, e) = −1. By Lemma 6.6, a 6∈ e⊥, and b, c ∈ e⊥. Also,
N(a + b) = N(a + c) = N(b + c) = 0, so b, c ∈ a⊥, and c ∈ b⊥. It remains to prove that
c is orthogonal to ab. Since

ab =
(

0 e3

e2 + e3 0

)
,

we have N(c + ab) = 0, and we are done. ¤

The situation in odd characteristic is more complicated. Since a, b, c must belong
to e⊥, we can assume that

a =
(

x α1

α2 −x

)
, b =

(
y β1

β2 −y

)
, c =

(
z γ1

γ2 −z

)
, (6.6)

for some x, y, z ∈ k, α1, α2, β1, β2, γ1, γ2 ∈ k3, by Lemma 6.6.

Lemma 6.8 Let a, b be as in (6.6). Then N(a) = 1 if and only if α1 · α2 = x2 − 1. If
both a, b belong to M(q), then a ⊥ b if and only if α1 · β2 + β1 · α2 = −2xy.

Proof. By definition, N(a) = −x2 − α1 · α2. Assume that a, b ∈ M(q). Then
N(a+ b) = −x2−2xy−y2−α1 ·α2−α1 ·β2−β1 ·α2−β1 ·β2 = 2−2xy−α1 ·β2−β1 ·α2.
We have already observed that a ⊥ b if and only if N(a + b) = 2. ¤

A field element ρ ∈ k is said to be a square if there is σ ∈ k such that ρ = σ2. The
following number theoretical result proves to be quite useful:
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Lemma 6.9 If q = 2 or q is odd then every element of k = GF (q) is a sum of two
squares.

Proof. The lemma is obviously true when q = 2. Assume that q = 2n + 1 is odd, and
pick ρ ∈ k. If ρ is a square, there is nothing to prove, so we may assume that ρ is not a
square. In particular, ρ 6= 0. Let S be the set of the n squares contained in k \ {0, ρ}.
The set S′ = {ρ− s; s ∈ S} is contained in k \{0, ρ}, since ρ− s = 0 leads to ρ = s ∈ S,
and ρ− s = ρ to s = 0. But |S|+ |S′| = 2n > 2n− 1 = |k \ {0, ρ}| and, by the pigeon
hole principle, there is r ∈ S ∩S′. Then r = ρ− s for some s ∈ S, and ρ = r + s follows.
¤

Remark 6.10 As Clifford Bergman pointed out to me, Lemma 6.9 cannot be extended
to include the case q = 2n, n > 1. In even characteristic (r + s)2 = r2 + s2, so an
element of GF (2n) is a sum of two squares if and only if it is a square.

Proposition 6.11 If q is odd, there is a doubling triple (a, b, c) in O(q) such that
N(a) = N(b) = N(c) = 1.

Proof. Let ρ ∈ k be such that −1− ρ2 is a square. Such an element exists by Lemma
6.9, because −1 is a sum of two squares. Put α1 = e1, α2 = −e1, β1 = e2, β2 = −e2,
γ1 = ρe1 = γ2, x = 0, y = 0, and let z be a square root of −1− ρ2. Define a, b, c as in
(6.6), and observe that 1 = N(a) = N(b) = N(c) = −(−1− ρ2)− ρ2.

By Lemma 6.8, a ⊥ b, a ⊥ c, and b ⊥ c. It remains to verify that ab ⊥ c. Since

ab =
(

0 e1

−e1 0

) (
0 e2

−e2 0

)
=

(
0 −e3

e3 0

)
,

we have

ab + c =
(

z (ρ, 0, −1)
(ρ, 0, 1) −z

)
,

and therefore N(ab + c) = −(−1− ρ2)− ρ2 + 1 = 2. ¤

We now embark on the construction of h—a possible extension of g ∈ Aut(M(q)).

Proposition 6.12 Let (a, b, c), (a′, b′, c′) be two doubling triples of a composition al-
gebra C. Then there is an automorphisms of C mapping (a, b, c) onto (a′, b′, c′) if and
only if N(x) = N(x′), for x = a, b, c.

Proof. The necessity is obvious since every automorphism is an isometry. Let us proof
the sufficiency. Let A = ke ⊕ ka, B = A ⊕ Ab, C = B ⊕ Bc, and define ψX : X −→
X ′ = ψX(X) (for X = A, B, C) by

ψA(x + ya) = x + ya′, for x, y ∈ k,
ψB(x + yb) = ψA(x) + ψA(y)b′, for x, y ∈ A,
ψC(x + yc) = ψB(x) + ψB(y)c′, for x, y ∈ B.

We claim that ψX : X −→ X ′ is an isomorphism. In particular, ψX(z) = ψX(z) for
every z ∈ X. The case X = A is slightly different from X = B, C, because ke does not
need to be a composition subalgebra of C, nevertheless the idea is the same.
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Every ψX is linear by definition. If we prove that ψX is multiplicative then ψC will
automatically be an automorphism, since both (a, b, c) and (a′, b′, c′) give rise to a basis
for C.

Let X = A. Since N(a) = N(a′), the minimal equations for a and a′ have the
same coefficients (we have N(a, e) = N(a′, e) because (a, b, c), (a′, b′, c′) are doubling
triples). Routine computation shows that

ψA(x + ya)ψA(u + va) = ψA((x + ya)(u + va))

for every x, y, u, v ∈ k. Thus ψA is an isomorphism.
Let X = B. The four-dimensional algebra B is constructed from A by doubling.

Therefore, the product on B is defined by

(x + yb)(u + vb) = (xu− vy) + (vx + yu)b,

for x, y, u, v ∈ A. Similarly, the product on B′ is given by

(x + yb′)(u + vb′) = (xu− vy) + (vx + yu)b′,

for x, y, u, v ∈ A′. One routinely checks that ψB is multiplicative, using the fact that
the coefficients of the minimal equations for b and b′ are the same, and the fact that ψA

is an isomorphism.
The case X = C is analogous to X = B. ¤

Proposition 6.12 leads us to the following definition. Let (a, b, c) be a doubling triple
for O(q) such that N(a) = N(b) = N(c) = 1. We say that g ∈ Aut(M(q)) is weakly
orthogonal on (a, b, c) if (g(a), g(b), g(c)) is a doubling triple for O(q), too.

Let a′ = g(a), b′ = g(b), c′ = g(c), and construct ψC as in Proposition 6.12. As
N(g(x)) = N(x) for x = a, b, c, we see that ψC ∈ Aut(O(q)) if and only if g is weakly
orthogonal on (a, b, c).

Corollary 6.13 Let g ∈ Aut(M(q)), and let (a, b, c) be a doubling triple for O(q) with
N(a) = N(b) = N(c) = 1. Then g is weakly orthogonal on (a, b, c).

Proof. Since (a, b, c) is a doubling triple, we have N(b, e) = N(c, e) = N(a, b) =
N(a, c) = N(b, c) = 0. When q is odd, we also have N(a, e) = 0. When q is even, we
have N(a, e) = 1. Be Lemmas 6.1 and 6.2, this is equivalent to b2 = c2 = (ab−1)2 =
(ac−1)2 = (bc−1)2 = −e, and a2 = −e (resp. |a| = 3) if q is odd (resp. even). Because g ∈
Aut(M(q)), we have g(b)2 = g(c)2 = (g(a)g(b)−1)2 = (g(a)g(c)−1)2 = (g(b)g(c)−1)2 =
−e, and g(a)2 = −e (resp. |g(a)| = 3) if q is odd (resp. even). Then, in turn, N(g(b), e) =
N(g(c), e) = N(g(a), g(b)) = N(g(a), g(c)) = N(g(b), g(c)) = 0, and N(g(a), e) = 0
(resp. N(g(a), e) = 1) if q is odd (resp. even). Thus (g(a), g(b), g(c)) is a doubling triple
(with N(g(a)) = N(g(b)) = N(g(c)) = 1). ¤

In particular, the mapping ψ = ψO(q) constructed from g and (a, b, c) is an auto-
morphism of O(q) satisfying ψ(x) = g(x), for x = a, b, c. Thus ψ agrees with g on a
basis for O(q), and it is therefore the only possible candidate for the extension of g into
an automorphism of O(q).
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6.2 The Automorphism Group of M ∗(2)

Finally, we are going to investigate the additive properties of g ∈ Aut(M(q)).

Proposition 6.14 Let C be a division composition algebra or C = O(q), and let M ⊆ C
be the set of all elements of norm 1. Assume that x, y ∈ M are such that x + y ∈ M .
Then g(x + y) = g(x) + g(y) for every g ∈ Aut(M).

Proof. If x = y, we have 1 = N(x + y) = N(2x) = 4N(x) = 4. Therefore the
characteristic is 3, and g(x) + g(x) = −g(x) = g(−x) = g(x + x).

Assume that x 6= y. By Lemma 6.2, |xy−1| = 3, and so |g(x)g(y)−1| = |g(xy−1)| = 3
as well. Then N(g(x) + g(y)) = 1, again by Lemma 6.2. Consequently, we use Lemma
6.3 twice to obtain g(x) + g(y) = −g(x)g(y)−1g(x) = g(−xy−1x) = g(x + y). ¤

We now specialize to q = 2, and proceed to prove by the induction on the number
of summands that

g(
n∑

i=1

xi) =
n∑

i=1

g(xi)

for every g ∈ Aut(M∗(2)) and x1, . . ., xn ∈ M∗(2) such that x1 + · · ·+ xn ∈ M∗(2).

Lemma 6.15 Suppose that x, y ∈ M∗(2), x 6= y, are such that none of x+e, y+e, x+y
belongs to M∗(2). Then 〈x, y〉 ∼= V4, and there are a, b ∈ M∗(2) such that a + b = e,
and x + a, y + b ∈ M∗(2).

Proof. We have N(x + e) = 0, i.e., N(x, e) = 0 − 1 − 1 = 0. Then, by Lemma 6.1,
x2 = (xe−1)2 = −e = e. Similarly, y2 = (xy−1)2 = e.

Since 〈x, y〉 ∼= V4, we may assume that (x, y) = (x0, u1) or (x, y) = (x0, u2), where
x0, u1, u2 are as in Lemma 5.18. When (x, y) = (x0, u1), let a = (((011, 010)))1, else put
a = (((110, 100)))1. In both cases, let b = e− a, and verify that x + a, y + b ∈ M∗(2). ¤

Proposition 6.16 Let x1, . . ., xn ∈ M∗(2) be such that x =
∑n

i=1 xi belongs to M∗(2).
Then

g(
n∑

i=1

xi) =
n∑

i=1

g(xi).

Proof. The case n = 1 is trivial, and n = 2 is just Proposition 6.14. Assume that
n ≥ 3 and that the Proposition holds for all m < n. We can assume that at least two
summands xi are different, say xn−2 6= xn−1. Since g(xx−1

n ) = g(x)g(xn)−1, we can
furthermore assume that xn = e. When at least one of xn−2 + e, xn−1 + e, xn−2 + xn−1

belongs to M∗(2), we are done by the induction hypothesis. Otherwise, Lemma 6.15
applies, and there are a, b ∈ M∗(2) such that a+xn−2, b+xn−1 ∈ M∗(2), and a+b = e.
Therefore,

g(x) = g(x1 + · · ·+ xn−3 + (xn−2 + a) + (xn−1 + b))
= g(x1) + · · ·+ g(xn−3) + g(xn−2 + a) + g(xn−1 + b)
= g(x1) + · · ·+ g(xn−1) + g(a) + g(b)
= g(x1) + · · ·+ g(xn−1) + g(a + b),
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and we are through. ¤

Theorem 6.17 (Automorphism Group of M∗(2)) Every automorphism of M∗(2)
can be uniquely extended into an automorphism of O(2). In particular, Aut(M∗(2)) is
isomorphic to G2(2).

Proof. Pick g ∈ Aut(M∗(2)). Whichever of the two constructions of h do you prefer and
use, let e0, . . ., e7 be the basis on which g and h ∈ Aut(O(q)) coincide. Every element
of M∗(2) is a sum of some of the basis elements e0, . . ., e7. Hence, by Proposition 6.16,
g and h coincide of M∗(2).

This extension is unique, and thus Aut(M∗(2)) = Aut(O(2)). Now, Aut(O(2)) is
isomorphic to G2(2), by Theorem 3.1. ¤

6.2.1 Combinatorial Proof of Aut(M∗(2)) = G2(2)

We will establish the equality Aut(M∗(2)) = G2(2) again, purely on the grounds of
cardinality. The proof is direct, but requires deep knowledge of the lattice of subloops
of M∗(2).

Lemma 6.18 |Aut(M∗(2))| ≤ 12, 096.

Proof. Recall the constants Γn(A, B) from Section 5.4. Since x = Γ2({e}, C2) = 63,
y = Γ2(C2, V −

4 ) = 24, z = Γ2(V −
4 , M∗(2)) = 8, there are elements a, b, c ∈ M∗(2) such

that 〈a〉 ∈ OC2 , 〈a, b〉 ∈ OV −4
, 〈a, b, c〉 = M∗(2).

For S ⊆ M∗(2), denote by GS = {f ∈ Aut(M∗(2)); f(s) = s, s ∈ S} the pointwise
stabilizer of S, and, for x ∈ M∗(2), let OS, x be the orbit of x under the action of GS .
We have

|Aut(M∗(2))| = |Oe, a| · |Ga| = |Oe, a| · |Oa, b| · |G〈a, b〉| = |Oe, a| · |Oa, b| · |O〈a, b〉, c|,

since 〈a, b, c〉 = M∗(2). Now, |Oe, a| ≤ x, |Oa, b| ≤ y, and |O〈a, b〉, c| ≤ z. Hence
|Aut(M∗(2))| ≤ 63 · 24 · 8 = 12, 096. ¤

Corollary 6.19 Aut(M∗(2)) ∼= G2(2).

Proof. By Lemma 3.4 and Theorem 3.1, Aut(M∗(2)) ≥ G2(2). But |G2(2)| = 12, 096
(see [13]). ¤



Chapter 7

Subloops

The lattice of subloops of M∗(q) is very complicated. We elucidate a small, but impor-
tant portion of it.

7.1 Subgroups of type (3, 3 | 3, p)

We have shown in Theorem 2.8, that every M∗(q) is 3-generated, and if q 6= 9 is an odd
prime power, or if q = 2, then the generators can be chosen as

g1 =
(

1 e1

0 1

)
, g2 =

(
1 e2

0 1

)
, g3 =

(
0 ue3

−u−1e3 1

)
, (7.1)

where u is a primitive element of k = GF (q). In particular, note that g1, g2 and g3

generate M∗(p) for every prime p. We find it more convenient to use another set of
generators.

Proposition 7.1 Let q 6= 9 be an odd prime power or q = 2. Then M∗(q) is generated
by three elements of order three.

Proof. Let us introduce

g4 = g3g1 =
(

0 (0, 0, u)
(0, u,−u−1) 1

)
,

g5 = g3g2 =
(

0 (0, 0, u)
(−u, 0,−u−1) 1

)
.

It follows from (7.1) that M∗(q) is generated by g3, g4, and g5. These elements are of
order 3, by Lemma 3.8. ¤

The groups 〈g3, g4〉, 〈g3, g5〉 and 〈g4, g5〉 play therefore a prominent role in the
subloop lattice. As we prove in Subsection 7.1.2, each of them is isomorphic to the
group (3, 3 | 3, p), defined below.
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7.1.1 The Abstract Groups (3, 3 | 3, p)

The two-generated abstract groups (l, m | n, k) defined by presentations

(l, m | n, k) = 〈x, y | xl = ym = (xy)n = (x−1y)k〉 (7.2)

were first studied by Edington [21], for some small values of l, m, n and k. The notation
we use was devised by Coxeter [16] and Moser [17], and has a deeper meaning that we
will not discuss here. From now on, we will always refer to presentation (7.2) when
speaking about (l, m | n, k).

The starting point for our discussion is Theorem 7.2, due to Edington (Theorem IV,
and pages 208–210 [21]. Notice that there is a typo concerning the order of (3, 3 | 3, n),
and a misprint claiming that (3, 3 | 3, 3) is isomorphic to A4.). For the convenience of
the reader, we give a short, modern proof.

Theorem 7.2 (Edington) The group G = (3, 3 | 3, n) exists for every n ≥ 1, is
of order 3n2, and is non-abelian when n > 1. It contains a normal subgroup H =
〈x2y, xy2〉 ∼= Cn × Cn. In particular, G ∼= C3 when n = 1, G ∼= A4 when n = 2, and G
is the unique non-abelian group of order 27 and exponent 3 when n = 3.

Proof. Verify that (3, 3 | 3, 1) is isomorphic to C3. Let n > 1. Since x(x2y)x−1 =
yx−1 = y(x2u)y−1 ∈ H, and x−1(xy2)x = y2x = y−1(xy2)y ∈ H, the subgroup H is
normal in G. It is an abelian group of order at most n2 since x2y · xy2 = x(xy)2y =
x(xy)−1y = xy2 ·x2y. Clearly, G/H ∼= C3 (enumeration of cosets works fine), and hence
|G| = 3|H| ≤ 3n2.

Let N = 〈a〉 × 〈b〉 ∼= Cn × Cn, and K = 〈f〉 ≤ Aut(N), where f is defined by
f(a) = a−1b, f(b) = a−1. Let E be the semidirect product of N and K via the natural
action of K on N . We claim that E is non-abelian, and isomorphic to (3, 3 | 3, n)
with generators x = (1, f) and y = (a, f). We have (a, f)2 = (af(a), f2) = (b, f2),
(b, f2)(1, f) = (b, id), and (1, f)(b, f2) = (a−1, id). Thus E is non-abelian, and
generated by (1, f), (a, f). A routine computation shows that (1, f)3 = (a, f)3 =
((1, f)(a, f))3 = ((1, f)−1(a, f))n = 1.

The group E proves that |G| = 3|H| = 3n2. In particular, H ∼= Cn × Cn. ¤

We would like to give a detailed description of the lattice of subgroups of (3, 3 | 3, p)
in term of generators x and y. From a group-theoretical point of view, the groups are
rather boring, nevertheless, the lattice can be nicely visualized. The cases p = 2 and
p = 3 cause troubles, and we exclude them from our discussion for the time being.

Lemma 7.3 Let G and H be defined as before. Then H is the Sylow p-subgroup of G,
and contains p + 1 subgroups H(i) = 〈h(i)〉, for 0 ≤ i < p, or p = ∞, all isomorphic to
Cp. We can take

h(i) = x2y(xy2)i, for 0 ≤ i < p, and h(∞) = xy2.

There are p2 Sylow 3-subgroups G(k, l) = 〈g(k, l)〉, for 0 ≤ k, l < p, all isomorphic to
C3. We can take

g(k, l) = (x2y)−k(xy2)−lx(x2y)k(xy2)l.
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Proof. The subgroup structure of H is obvious. Every element of G\H has order 3, so
there are p2 Sylow 3-subgroups of order 3 in G. The subgroup H acts transitively on the
set of Sylow 3-subgroups. (By Sylow theorems, G acts transitively on the copies of C3.
As |G| = 3p2, the stabilizer of each C3 under this action is isomorphic to C3. Since p
and 3 are relatively prime, no element of H can be found in any stabilizer.) This shows
that our list of Sylow 3-subgroups is without repetitions, thus complete. ¤

For certain values of p (see below), there are no other subgroups in G. For the
remaining values of p, there are additional subgroups of order 3p.

If K ≤ G has order 3p, it contains a unique normal subgroup of order p, say L ≤ H.
Since L is normalized by both K and H, it is normal in G. Then G/L is a non-abelian
group of order 3p, and has therefore p subgroups of order 3. Using the correspondence
of lattices, we find p subgroups of order 3p containing L (the group K is one of them).

Lemma 7.4 The group H(i) is normal in G if and only if

i2 + i + 1 ≡ 0 (mod p). (7.3)

If p ≡ 1 (mod 3), there are two solutions to (7.3). For other values of p, there is no
solution.

Proof. We have

x−1h(i)x = x−1x2y(xy2)ix = xy2y2(xy2)ix

= (xy2)(y2x)i+1 = (x2y)−(i+1)(xy2).

Thus x−1h(i)x belongs to H(i) if and only if (x2y)−(i+1)i(xy2)i = (x2y)(xy2)i, i.e., if
and only if i satisfies (7.3). Similarly,

y−1h(i)y = y−1x2y(xy2)iy = (y2x)(xy2)y2(xy2)iy

= (y2x)(xy2)(y2x)i = (x2y)−(i+1)(xy2).

Then y−1h(i)y belongs to H(i) if and only if i satisfies (7.3).
The quadratic congruence (7.3) has either two solutions or none. Pick a ∈ GF (p)∗,

a 6= e. Then a2 + a + e = 0 if and only if a3 = e, since a3− e = (a− e)(a2 + a + e). This
simple argument shows that (7.3) has a solution if and only if 3 divides p−1 = |GF (p)∗|.
¤

Theorem 7.5 (The Lattice of Subgroups of (3, 3 | 3, p)) For a prime p > 3, let
G = (3, 3 | 3, p), H = 〈x2y, xy2〉, h(i) = x2y(xy2)i for 0 ≤ i < p, h(∞) = xy2, H(i) =
〈h(i)〉, g(k, l) = (x2y)−k(xy2)−lx(x2y)k(xy2)l for 0 ≤ k, l < p, and G(k, l) = 〈g(k, l)〉.

Then H(∞) ∼= Cp, H(i) ∼= Cp, G(k, l) ∼= C3 are the minimal subgroups of G, and
H(i)∨H(j) = H ∼= Cp×Cp for every i 6= j. When 3 does not divide p− 1, there are no
other subgroups in G. Otherwise, there are additional 2p non-abelian maximal subgroups
of order 3p; p for each 1 < i < p satisfying i3 ≡ 1 (mod p). These subgroups can be
listed as K(i, l) = H(i) ∨G(0, l), for 0 ≤ l < p. Then H(i) ∨G(k′, l′) = K(i, l) if and
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Figure 7.1: The lattice of subgroups of (3, 3 | 3, 7)

only if l′− l ≡ ik′ (mod p); otherwise H(i)∨G(k′, l′) = G. Finally, let (k, l) 6= (k′, l′).
Then G(k, l) ∨ G(k′, l′) = H(i) ∨ G(k, l) if and only if there is 1 < i < p satisfying
i3 ≡ 1 (mod p) such that l′− l ≡ (k′−k)i (mod p); otherwise G(k, l)∨G(k′, l′) = G.

The group (3, 3 | 3, 2) is isomorphic to A4, the alternating group on 4 points, and
(3, 3 | 3, 3) is the unique non-abelian group of order 27 and exponent 3.

Proof. Check that h(i)−1g(k, l)h(i) = g(k+1, l+i), and conclude that H(i)∨G(k, l) =
H(i) ∨ G(k′, l′) if and only if l′ − l ≡ i(k′ − k) (mod p). This also implies that, for
some 1 < i < p, H(i) ∨ G(k′, l′) equals K(i, l) if and only if l′ − l ≡ ik′ (mod p) and
i3 ≡ 1 (mod p).

Finally, if S = G(k, l) ∨ G(k′, l′) 6= G, it contains a unique H(i) E G. Moreover,
we have S = H(i) ∨G(k, l) = H(i) ∨G(k′, l′) solely on the grounds of cardinality, and
everything follows. ¤

We illustrate Theorem 7.5 with p = 7. The congruence (7.3) has two solutions,
i = 2 and i = 4. The subgroup lattice of (3, 3 | 3, 7) is depicted in the 3D Figure
7.1. The 49 subgroups G(k, l) are represented by a parallelogram that is thought to be
in a horizontal position. All lines connecting the subgroups G(k, l) with K(2, 0) and
K(4, 0) are drawn. The lines connecting the subgroups G(k, l) with K(2, j), K(4, j),
for 1 ≤ j < p, are omitted for the sake of transparency. The best way to add these
missing lines is by the means of affine geometry of GF (p)×GF (p). To determine which
groups G(k, l) are connected to the group K(i, j), start at G(0, j) and follow the line
with slope i, drawn modulo the parallelogram.

The group A4 fits the description of Theorem 7.5, too, as can be seen from its lattice
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(12)(34) (13)(24) (14)(23) (123) (124) (134) (234)

1

C2 × C2

A4

Figure 7.2: The subgroup structure of A4

of subgroups in Figure 7.2. So does the group (3, 3 | 3, 3).

7.1.2 Three Subgroups

We promised to show that each of the subgroups 〈g3, g4〉, 〈g3, g5〉, 〈g4, g5〉 of M∗(q) is
isomorphic to (3, 3 | 3, p).

Proposition 7.6 Let g3, g4, g5 be defined as above, q = 2r. Then the three subgroups
〈g3, g4〉, 〈g3, g5〉, 〈g4, g5〉 of M∗(q) are isomorphic to (3, 3 | 3, p), if q 6= 9 is odd or
q = 2.

Proof. We prove that G1 = 〈g3, g4〉 ∼= (3, 3 | 3, p); the argument for the other two
groups is similar. By Lemma 3.8, we have g3

3 = g3
4 = (g3g4)3 = (g4g3)3 = (g−1

3 g4)p =
(g2

3g4)p = e. Thus G1 ≤ (3, 3 | 3, p). Also, H1 = 〈g2
3g4, g3g

2
4〉 ∼= Cp × Cp. When p 6= 3,

we conclude that |G1| = 3p2, since G1 contains an element of order 3. When p = 3, we
check that g3 6∈ H1, and reach the same conclusion. ¤

We finish this section with a now obvious observation, that in order to describe all
subloops of M∗(q), one only has to study the interplay of the isomorphic subgroups
〈g3, g4〉, 〈g3, g5〉, and 〈g4, g5〉.

7.2 Note on Permutation Representation of Quasigroups

The generalization of representation theory from groups to quasigroups was initiated by
J. D. H. Smith in [38]. Without recalling the notation, we work out two examples. We
rely heavily on the computer computations in GAP.

Example 7.7 Let Q = M∗(2). We have seen in Chapter 5 that Q contains a maximal
subloop P isomorphic to M12(S3, 2). Since Aut(M∗(2)) acts transitively on the copies
of M12(S3, 2), we do not need to specify P .

The group LMltQ(P ) has 648 elements. It acts on Q. There are two orbits of
transitivity. One of them contains 12 elements, of course. The other orbit contains
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120− 12 = 108 elements. The transition matrices (see [38]) on P \Q have then a quite
simple form. Namely,

RP\Q(q) =
(

1 0
0 1

)

if q ∈ P , and

RP\Q(q) =
(

1 0
1/9 8/9

)
,

if q 6∈ P . This is not surprising. Whenever there are just two orbits of transitivity, the
corresponding transition matrices will be of the form

RP\Q(q) =
(

1 0
0 1

)
,

if q ∈ P , and

RP\Q(q) =
(

1 0
|P |/|Q \ P | (1− |P |)/|Q \ P |

)
,

if q 6∈ P .

Example 7.8 Let again Q = M∗(2). This time, pick P to be a maximal subloop of type
A4. Since Aut(M∗(2)) acts transitively on the copies of A4, we do not need to specify
P .

Computation reveals that LMltQ(P ) has 9216 elements, and that there are two orbits
of transitivity. Hence, the discussion from Example 7.7 applies.



Chapter 8

Open Problems and
Acknowledgement

Some question were answered, many more remain open, yet other came into existence
through this work. Let us list some of them now.

1) Does every (finite) Moufang loop have the strong Lagrange property ? The answer
is positive if every Paige loop does (see [11]).

2) Is there a finite simple Bol loop that is not Moufang? Assuming all Moufang loops
have the strong Lagrange property, there is a non-Moufang finite simple Bol loop
if and only if there is a Bol loop that does not have the strong Lagrange property.
(Right) Bol loop is a loop satisfying (xy · z)y = x(yz · y).

3) What are the automorphism groups Aut(M∗(q)) for q > 2 ? In particular, is it
true that Aut(M∗(q)) = G2(q) for every q? The author suspects that the answer
to the latter question is negative.

4) We now know that Aut(M∗(q)) does not have to be simple (since G2(2) is not).
However, G2(q) is simple for every q > 2, and the following question comes in-
evitably into mind. Is Aut(M∗(q)) simple for every q > 2?

5) We have in fact shown that Aut(O(2)) = G2(2) is generated by all permutations
(considered as diagonal automorphisms of O(2)), a few conjugations, and by the
automorphism ∂. Now, the group G2(2) is 3-generated. Find three automorphisms
of O(2) generating Aut(O(2)).

6) In order to disprove the equality G2(q) = Aut(M(q)), it suffices to find an automor-
phism f ∈ Aut(M(q)) and three elements a, b, c ∈ M(q) such that a+b+c ∈ M(q)
and f(a) + f(b) + f(c) 6= f(a + b + c). Find them, it they exist. Recall that
f(a) + f(b) = f(a + b) for every a, b ∈ M(q) such that a + b ∈ M(q).

7) Is it always the case that if B ⊆ M(q) is a (vector space) basis for O(q), then
B does not generate M∗(q) by multiplication only? If yes, what does it mean
geometrically?
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8) Find a simple proof that (C2)4 is not a subgroup of M∗(2). This will furnish a
quick proof of the strong Lagrange property for M∗(2).

9) Find a presentation for every Paige loop, or at least for M∗(2).

10) Is is possible to generalize the presentation from Theorem 4.13 for all loops
M2n(G, 2)?

11) Is the presentation for M2n(G, 2) found in Theorem 4.13 a minimal presentation?
By minimal presentation we mean a presentation 〈X; R〉 such that 〈X; S〉 is a
bigger algebra than 〈X; R〉 for every proper subset S of R.

12) Are all Sylow 2-subloops of M2n(G, 2) conjugate?

13) Is it possible to generalize the visual description of M2n(S3, 2) for an infinite class
of Moufang loops ?

14) Is there a simple argument proving that the map ψ from Theorem 2.10 is an
isomorphism?

15) Show by hand that the incidence structure defined by OC2 and OV +
4

is a generalized
hexagon of order 2. What about the other two candidates? A more ambitious goal
would be to construct a generalized hexagon of order q based on M∗(q), for every
q.

16) Are there three elements g1, g2, g3 such that 〈g1, g2, g3〉 = M∗(q) for every q?
(I.e., using the Zorn’s vector matrix notation, all entries of every gi must belong
to {0, 1, −1}.)

17) We have found formulas counting the elements of order 2 and 3 for both M∗(q)
and M(q). Extend this result to elements of other orders.

18) The character tables for Paige loops are known, cf. [4]. Are they of some use in
the investigation of the subloop structure of M∗(q)?
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Appendix A

GAP Libraries

These are some of the GAP 4.1 [22] libraries developed by the author while
working on the thesis. All of them, and more, are available electronically at
www.math.iastate.edu/~petr. All libraries are well documented within the source
files.

Representation of Paige Loops in GAP

The finite Zorn vector matrix algebras are implemented in file paigerep.g.

###############################################################################
# REPRESENTATION OF SIMPLE MOUFANG LOOPS, version 1.1
# (set of macros for GAP 4.1)
# written by Petr Vojtechovsky, September 2000
#
# the representation is based on L.Paige: A Class of Simple Moufang Loops
###############################################################################

# MATHEMATICAL BACKGROUND
# An element of a simple Moufang loop over field F=GF(q) can be represented as
# a 2x2 matrix whose diagonal entries are elements of F, and whose antidiagonal
# entries are elements of F^3, with "determinant" = 1.
# The operation is written multiplicatively. It does not coincide with the
# usual matrix multiplication. See Paige’s article for details.

# DESCRIPTION OF MACROS
# The macros work properly for all Galois fields GF(q). Specify the
# field with function SetFieldSize(q).
# The matrices representing the elements are called "PaigeObj".
# Basic arithmetic operations are defined. The list of methods follows.

# THE LIST OF AUXILIARY FUNCTIONS
# function VectorProduct (x, y)
# returns the vector product of 3-vectors x and y in the chosen field
# function Det (x)
# returns the "determinant" of PaigeObj x
# function IsRegularPaige(x)
# returns TRUE when Det(x)=One(F)
# function SetFieldSize(c)
# sets the field size to c. c must be a prime power
# function GetFieldSize()
# returns the field size

q:=2; F:=GF(q);

VectorProduct := function (x, y)
return [x[2]*y[3]-x[3]*y[2], x[3]*y[1]-x[1]*y[3], x[1]*y[2]-x[2]*y[1]];
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end;

Det := function (x)
return x![1]*x![4] - x![2]*x![3];

end;

IsRegularPaige := function (x)
return Det(x)=One(F);

end;

###############################################################################
# DECLARATION PART

F_000:=[Zero(F),Zero(F),Zero(F)];
DeclareCategory("IsPaigeObj",
IsScalar); DeclareCategoryCollections("IsPaigeObj");
DeclareRepresentation("IsPaigeRep", IsPositionalObjectRep, [1, 2, 3, 4]);
DeclareGlobalFunction("PaigeObj");

###############################################################################
# IMPLEMENTATION PART

InstallTrueMethod(IsMultiplicativeElementWithInverse, IsPaigeObj);

InstallGlobalFunction(PaigeObj, function(a,b,c,d)
return Objectify( NewType( FamilyObj([Zero(F),F_000, F_000,Zero(F)]),

IsPaigeObj and IsPaigeRep), [a, b, c, d]);
end);

# neutral element
P_1:=PaigeObj(One(F), F_000, F_000, One(F));

InstallMethod( PrintObj,
"for a paige",
true,
[ IsPaigeObj and IsPaigeRep],
0,
function( x )

Print("(", x![1], ", ", x![2], ")\n");
Print("(", x![3], ", ", x![4], ")\n");

end );

InstallMethod( ViewObj,
"for a paige",
true,
[ IsPaigeObj and IsPaigeRep],
0,
function( x )

Print( "Paige(", x![1], ", ", x![2], ", ",
x![3], ", ", x![4], ")");

end);

InstallMethod( \+,
"for two paiges",
IsIdenticalObj,
[IsPaigeObj and IsPaigeRep, IsPaigeObj and IsPaigeRep],
0,
function(A, B)

return PaigeObj(A![1]+B![1], A![2]+B![2],
A![3]+B![3], A![4]+B![4]);

end);

InstallMethod( \-,
"for two paiges",
IsIdenticalObj,
[IsPaigeObj and IsPaigeRep, IsPaigeObj and IsPaigeRep],
0,
function(A, B)

return PaigeObj(A![1]-B![1], A![2]-B![2],
A![3]-B![3], A![4]-B![4]);

end);

InstallMethod( \*,
"for two paiges",
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IsIdenticalObj,
[IsPaigeObj and IsPaigeRep, IsPaigeObj and IsPaigeRep],
0,
function(x, y)

local a, b, c, d;
a := x![1]*y![1] + x![2]*y![3];
b := x![1]*y![2] + x![2]*y![4] - VectorProduct(x![3], y![3]);
c := x![3]*y![1] + x![4]*y![3] + VectorProduct(x![2], y![2]);
d := x![3]*y![2] + x![4]*y![4];

return PaigeObj(a, b, c, d);

end);

InstallMethod( \=,
"for two paiges",
true,
[IsPaigeObj and IsPaigeRep, IsPaigeObj and IsPaigeRep],
0,
function (x, y)
return (x![1]=y![1] and x![2]=y![2] and x![3]=y![3] and x![4]=y![4])
or (x![1]=-y![1] and x![2]=-y![2] and x![3]=-y![3] and x![4]=-y![4]);

end);

InstallMethod( \<, #lexicographical ordering
"for two paiges",
true,
[IsPaigeObj and IsPaigeRep, IsPaigeObj and IsPaigeRep],
0,
function (x, y)
return x![1]<y![1] or (x![1]=y![1] and x![2]<y![2]) or

(x![1]=y![1] and x![2]=y![2] and x![3]<y![3]) or
(x![1]=y![1] and x![2]=y![2] and x![3]=y![3] and x![4]<y![4]);

end);

InstallMethod( OneOp,
"for a paige",
true,
[IsPaigeObj and IsPaigeRep],
0,
a -> P_1

);

InstallMethod( InverseOp,
"for a paige",
true,
[IsPaigeObj and IsPaigeRep],
0,
a -> PaigeObj(a![4], -a![2], -a![3], a![1])

);

InstallMethod( \*,
"for rational and paige",
true,
[IsRat, IsPaigeObj and IsPaigeRep],
0,
function(x, y) return PaigeObj( x*y![1], x*y![2], x*y![3], x*y![4]);

end);

InstallMethod( \*,
"for paige and rational",
true,
[IsPaigeObj and IsPaigeRep, IsRat],
0,
function(x, y) return PaigeObj( y*x![1], y*x![2], y*x![3], y*x![4]);

end);

InstallMethod( Order,
"for paige",

true,
[IsPaigeObj and IsPaigeRep],
0,
function (x)

local n, y;
n:=1; y:=x;
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while not y=P_1 do
n:=n+1;
y:=y*x;

od;
return (n);

end);

#changing field size

SetFieldSize := function(c)
q:=c;
F:=GF(q);
P_1:=PaigeObj(One(F),[Zero(F),Zero(F),Zero(F)],

[Zero(F), Zero(F), Zero(F)], One(F));
end;

GetFieldSize := function()
return q;

end;

File m2.g builds the smallest Paige loop M∗(2).

###############################################################################
# THE SMALLEST PAIGE LOOP
# (set of macros for GAP 4.1)
# written by Petr Vojtechovsky, September 2000
#
# requires paigerep.g. See paigerep.g for mathematical background.
###############################################################################

f0:=Zero(F);
f1:=One(F);

M2:=Set([]); #smallest non-associative Moufang loop
M22:=Set([]); #elements of order 2 in M2
M23:=Set([]); #elements of order 3 in M2

InitM2:= function()
local i1, i2, i3, i4, i5, i6, i7, i8, P;
for i1 in F do for i2 in F do for i3 in F do for i4 in F

do for i5 in F do for i6 in F do for i7 in F do for i8 in F do
P:=PaigeObj(i1,[i2,i3,i4],[i5,i6,i7],i8);
if IsRegularPaige(P) then

AddSet(M2, P);
if not i1+i8=f0 then AddSet(M23,P);

else if not P=P_1 then AddSet(M22,P); fi;
fi;

fi;
od; od; od; od;

od; od; od; od;
end;

InitM2();

Generalized Hexagon of Order Two

Files genhex.g and circuit.g are used to verify that H introduced in subsection 5.5.2 is a
generalized hexagon of order 2. H is constructed in genhex.g. It is checked in circuit.g
that the shortest circuit starting at x0 has length 6. Since Aut(M∗(2)) acts transitively
on the involutions of M∗(2), this means that axiom (iii) of generalized hexagons is
satisfied.

###############################################################################
# GENERALIZED HEXAGON OF ORDER TWO
# (set of macros for GAP 4.1)
# written by Petr Vojtechovsky, April 2001
###############################################################################
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# requires paigerep.g, m2.g
###############################################################################

#MATHEMATICAL BACKGROUND
#See section Generalized Hexagons of my thesis for a definition of a
#generalized hexagon of order q.

#DESCRIPTION OF MACROS
#We construct a generalized hexagon of order two as an incidence structure.
#There are 63 points numbered 1..63, and 63 blocks. The blocks are stored
#in list "block".
#We construct the hexagon in three steps:
#(1) for every involution x we find an automorphism mapping x to x_0
#(2) we identify the three copies of V_4 containing x_0 and belonging to the
# orbit called V_4^+ in the thesis. We use automorphisms from step (1)
# to obtain all copies of V_4 in the orbit V_4^+
#(3) using the list of all involutions M22 and the list of the groups in the
# orbit V_4^+ we construct the incidence structure "block". This strucure
# turns out to be a generalized hexagon of order 2. We verify this in
# file circuit.g.
#
#We represent the automorphisms of M^*(2) in a symbolic way as follows:
#Each automorphism is of the form f=[t,F], where t is in [0..4] and F is a list
#of needed data. The meaning of t as is follows:
# t=0: f is specified point by point, F consists of pairs of elements of
# M^*(2).
# t=1: f is a "permutation" as defined in section Diagonal Automorphisms, F
# contains permuted numbers 1, 2, 3.
# t=2: f is a conjugation, F contains the element by which we conjugate.
# t=3: f is a diagonal switch d as described in section Diagonal
# Automorphisms, F is an empty list
# t=4: f is a composition of automorphisms, F is the list of factors of f,
# the first item of F is the automorphism that applies first.

#THE LIST OF FUNCTIONS
#function Weight(w)
# returns the number of non-zero coordinates of vector w
#function Map(a,f)
# returns the image of a under f
#function InvertMap(f)
# returns the inverse mapping to f
#function FindAutomorphism(a)
# returns an automorphism mapping a to x_0

#SOME GLOBAL VARIABLES
#x_0 : selected involution
#ort : orthonormal basis of GF(2)^3
#V4p : the list of members of the orbit V_4^+
#block: blocks of the generalized hexagon of order 2 on points 1..63
#above: above[i] is the list of blocks containing the involution i

Weight :=function(w)
local i,j;
j:=0;
for i in [1..Length(w)] do if not w[i]=f0 then j:=j+1; fi; od;
return j;

end;

Map := function(a,f)
local t, F, g, i;
t:=f[1]; F:=f[2];
if t=0 then #mapping by images

i:=0;
repeat i:=i+1;
until F[i][1]=a;
return F[i][2];

elif t=1 then #permutation
return PaigeObj(a![1],[a![2][F[1]],a![2][F[2]],a![2][F[3]]],

[a![3][F[1]],a![3][F[2]],a![3][F[3]]],a![4]);
elif t=2 then #conjugation

return F[1]^(-1)*a*F[1];
elif t=3 then #diagonal switch

return PaigeObj(a![4],a![3],a![2],a![1]);
else #composition
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for g in F do a:=Map(a,g); od;
return a;

fi;
end;

InvertMap := function(f)
local t,F,G,x;
t:=f[1]; F:=f[2]; G:=[];
if t=0 then

for x in F do Add(G,[x[2],x[1]]); od;
elif t=1 then

G:=[Position(F,1), Position(F,2), Position(F,3)];
elif t=2 then

G:=[F[1]^(-1)];
elif t=3 then

G:=F;
else

for x in F do Add(G,InvertMap(x)); od;
G:=Reversed(G);

fi;
return [f[1],G];

end;

x_0:=PaigeObj(f0,[f1,f1,f1],[f1,f1,f1],f0);
ort:=[[f1,f0,f0],[f0,f1,f0],[f0,f0,f1]];

FindAutomorphism := function(a)
#follows Proposition 5.9
local F, i, b, r, s, x_1, x_2, x_3, perm;
F:=[];
#making sure that a has zeros on the diagonal
if a![1]=f1 then

i:=0;
repeat i:=i+1;
until (i>3) or (not a![2][i]=a![3][i]);
if i>3 then #one of three bad elements: a![2]=a![3], |a![2]|=2

if a![2][1]=f0 then b:=PaigeObj(f0,[f1,f1,f1],[f0,f1,f0],f0);
else b:=PaigeObj(f0,[f1,f1,f1],[f1,f0,f0],f0);

fi;
else b:=PaigeObj(f0,ort[i],ort[i],f0);
fi;
#now <a,b> is isomorphic to S_3. Permute involutions of S_3
if b=Map(a,[2,[a*b]]) then Add(F,[2,[a*b]]);

else Add(F,[2,[b*a]]);
fi;
a:=b;

fi;
#making sure that r>=s
r:=Weight(a![2]); s:=Weight(a![3]);
if r<s then

Add(F,[3,[]]);
a:=Map(a,[3,[]]);

fi;
#last part of Proposition 5.9
x_1:=PaigeObj(f0,[f1,f0,f0],[f1,f0,f0],f0);
x_2:=PaigeObj(f0,[f1,f1,f0],[f0,f1,f1],f0);
x_3:=PaigeObj(f0,[f1,f1,f1],[f0,f0,f1],f0);
perm:=[[1,[1,2,3]],[1,[1,3,2]],[1,[2,1,3]],

[1,[2,3,1]],[1,[3,1,2]],[1,[3,2,1]]];
if (r mod 2=s mod 2) and (not a=x_0) and (not a=x_1) then

i:=0;
repeat

i:=i+1;
b:=Map(a,perm[i]);

until b=x_1 or b=x_2 or b=x_3;
Add(F,perm[i]);
a:=b;
#now a=x_1 or <a,x_1> is isomorphic to S_3
if not a=x_1 then

if Map(a,[2,[a*x_1]])=x_1 then Add(F,[2,[a*x_1]]);
else Add(F,[2,[x_1*a]]);

fi;
a:=x_1;

fi;
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elif not a=x_0 and not a=x_1 then
if Map(a,[2,[a*x_0]])=x_0 then Add(F,[2,[a*x_0]]);

else Add(F,[2,[x_0*a]]);
fi;
a:=x_0;

fi;
if a=x_1 then Add(F,[2,[PaigeObj(f1,[f0,f0,f1],[f1,f0,f1],f0)]]); fi;
return [4,F];

end;

#Construct all copies of V4^+
V4p:=Set([]);
v:=[PaigeObj(f0,ort[1],ort[1],f0),PaigeObj(f0,ort[2],ort[2],f0),

PaigeObj(f0,ort[3],ort[3],f0)];
for x in M22 do

f:=FindAutomorphism(x);
f:=InvertMap(f);
for i in [1..3] do

AddSet(V4p,Set([Map(x_0,f),Map(v[i],f),Map(x_0*v[i],f)]));
od;

od;

#Construct an abstract incidence structure, generalized hexagon of order 2
block:=[];
for x in V4p do

Add(block,[Position(M22,x[1]),Position(M22,x[2]),Position(M22,x[3])]);
od;
above:=[];
for i in [1..63] do Add(above,[]); od;
for i in [1..63] do for j in [1..3] do

Add(above[block[i][j]],i);
od; od;

At this moment, we have constructed an incidence structure H. It has blocks

1, 11, 42 1, 18, 50 1, 28, 58 2, 8, 46 2, 17, 50 2, 24, 63
3, 9, 42 3, 16, 53 3, 22, 63 4, 6, 46 4, 14, 53 4, 25, 58
5, 12, 38 5, 22, 49 5, 28, 54 6, 20, 62 6, 21, 49 7, 10, 38
7, 16, 57 7, 18, 52 8, 15, 57 8, 26, 54 9, 20, 59 9, 26, 51
10, 24, 55 10, 25, 51 11, 15, 61 11, 21, 55 12, 14, 61 12, 17, 59
13, 20, 37 13, 24, 41 13, 28, 45 14, 23, 41 15, 19, 37 16, 27, 45
17, 27, 43 18, 23, 47 19, 22, 47 19, 25, 43 21, 27, 39 23, 26, 39
29, 40, 41 29, 48, 49 29, 56, 57 30, 36, 37 30, 48, 50 30, 52, 53
31, 44, 45 31, 48, 51 31, 60, 61 32, 36, 38 32, 40, 42 32, 44, 46
33, 40, 43 33, 52, 54 33, 60, 32 34, 36, 39 34, 56, 58 34, 60, 63
35, 44, 47 35, 52, 55 35, 56, 59

We proceed to verify that H is a generalized hexagon of order 2.

###############################################################################
# CIRCUIT
# (set of macros for GAP 4.1)
# written by Petr Vojtechovsky, April 2001
###############################################################################
# requires genhex.g
###############################################################################

#MATHEMATICAL BACKGROUND
#A circuit is a path in a graph with no repeated edges and only one repeated
#vertex, the starting=terminating vertex.

#DESCRITPION OF MACROS
#We check rather brutally that the shortest circuit consist of 6 points and
#6 edges. We start with a degenerated path consisting of x_0 and keep enlarging
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#it in all possible ways until we reach x_0 again.
#
#Every path is represented as a list [v,e], where v is a list of points
#[v_1,...v_n] and e is a list of blocks (=lines) [e_1,...e_{n-1}]. We always
#have v_i, v_{i+1} in e_i.

#Finding the shortest circuit starting at x_0
posx_0:=Position(M22,x_0);
paths:=[[[posx_0],[]]];
circuit:=false;
length:=0;
repeat

extpaths:=[];
for x in paths do #path to be extended

y:=x[1][Length(x[1])]; #last point in the path
for z in above[y] do #possible line for extension

if not z in x[2] then #good line for extension
for v in block[z] do #possible new endpoints

if (not v in x[1]) or (v=posx_0 and not v=y) then
w:=StructuralCopy(x);
Add(w[1],v);
Add(w[2],z);
Add(extpaths, w);
if v=posx_0 then circuit:=true; fi;

fi;
od;

fi;
od;

od;
length:=length+1;
paths:=StructuralCopy(extpaths);

until circuit=true;
Print(length);

GAP prints 6.



Appendix B

Tables

The following tables can be used to simplify computation. None of them was constructed
with aid of computers, and the reader can therefore verify the tables for accuracy easily.

e x y xy yx xyx u xu yu (xy)u (yx)u (xyx)u

e e x y xy yx xyx u xu yu (xy)u (yx)u (xyx)u
x x e xy y xyx yx xu u (yx)u (xyx)u yu (xy)u
y y yx e xyx x xy yu (xy)u u xu (xyx)u (yx)u
xy xy xyx x yx e y (xy)u yu (xyx)u (yx)u u xu
yx yx y xyx e xy x (yx)u (xyx)u xu u (xy)u yu
xyx xyx xy yx x y e (xyx)u (yx)u (xy)u yu xu u
u u xu yu (yx)u (xy)u (xyx)u e x y yx xy xyx
xu xu u (xy)u (xyx)u yu (yx)u x e yx y xyx xy
yu yu (yx)u u xu (xyx)u (xy)u y xy e xyx x yx

(xy)u (xy)u (xyx)u xu u (yx)u yu xy y xyx e yx x
(yx)u (yx)u yu (xyx)u (xy)u u xu yx xyx x xy e y
(xyx)u (xyx)u (xy)u (yx)u yu xu u xyx yx xy x y e

Table B.1: Multiplication table for M12(S3, 2) presented by 〈x, y, u; x2 = y3 = (xy)2 =
u2 = e, xu = ux, yu = uy−1, xy · u = u · (xy)−1, yx · u = u · (yx)−1〉

96
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S1 ((111, 111))0
S2

S2(0, 2) ((000, 011))1 ((000, 101))1 ((000, 110))1
S2(1, 1) ((001, 001))∗0 ((001, 010))1 ((001, 100))1

((010, 001))1 ((010, 010))∗0 ((010, 100))1
((100, 001))1 ((100, 010))1 ((100, 100))∗0

S2(1, 3) ((001, 111))0 ((010, 111))0 ((100, 111))0
S2(2, 0) ((011, 000))1 ((101, 000))1 ((110, 000))1
S2(2, 2) ((011, 011))∗1 ((011, 101))0 ((011, 110))0

((101, 011))0 ((101, 101))∗1 ((101, 110))0
((110, 011))0 ((110, 101))0 ((110, 110))∗1

S2(3, 1) ((111, 001))0 ((111, 010))0 ((111, 100))0
S3

S3(0, 1) ((000, 001))1 ((000, 010))1 ((000, 100))1
S3(0, 3) ((000, 111))1
S3(1, 0) ((001, 000))1 ((010, 000))1 ((100, 000))1
S3(1, 2) ((001, 011))0 ((001, 101))0 ((001, 110))1

((010, 011))0 ((010, 101))1 ((010, 110))0
((100, 011))1 ((100, 101))0 ((100, 110))0

S3(2, 1) ((011, 001))0 ((011, 010))0 ((011, 100))1
((101, 001))0 ((101, 010))1 ((101, 100))0
((110, 001))1 ((110, 010))0 ((110, 100))0

S3(2, 3) ((011, 111))1 ((101, 111))1 ((110, 111))1
S3(3, 0) ((111, 000))1
S3(3, 2) ((111, 011))1 ((111, 101))1 ((111, 110))1

Table B.2: Involutions of M∗(2) in relation to x0 = ((111, 111)). The involutions are
divided into three sets Si = {y; |x0y| = i}, i = 1, 2, 3. For i = 2, 3, the sets Si are
further subdivided into Si(r, s) = {y ∈ Si; y = ((α, β)), w(α) = r, w(β) = s}. An
involution y is denoted by asterisk if and only if 〈x0, y〉 is in the orbit V +

4
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000 001 010 011 100 101 110 111
000 000 000 000 000 000 000 000 000
001 000 100 100 010 010 110 110
010 000 100 001 101 001 101
011 000 011 100 111 011
100 000 010 001 011
101 000 111 101
110 000 110
111 000

Table B.3: The cross product in GF (2)3

q even yes yes no no no no no no
q mod 3 1 2 0 1 2 0 1 2

4 | (q − 1) no no yes yes yes no no no
min 4 2 9 13 5 3 19 7
π 3 1 1 3 1 1 3 1
ρ 1 1 2 2 2 0 0 0
σ 2 0 1 2 0 1 2 0
τ 2 0 1 2 0 1 2 0

Table B.4: The constants ρ∗, σ∗, τ , ρ and σ for non-equivalent classes of prime powers
q, as defined in Section 3.2. The first three rows define the equivalence class. The row
labeled min contains the smallest representative from each class.

e x y y−1 xy y−1x xy−1 yx yxy−1 xyx yxy y−1xy

e e x y y−1 xy y−1x xy−1 yx yxy−1 xyx yxy y−1xy

x x e xy xy−1 y yxy y−1 xyx y−1xy yx y−1x yxy−1

y y yx y−1 e yxy x yxy−1 y−1x xyx xy−1 y−1xy xy

y−1 y−1 y−1x e y y−1xy yx xyx x xy−1 yxy−1 xy yxy

xy xy xyx xy−1 x y−1x e y−1xy yxy yx y−1 yxy−1 y

y−1x y−1x y−1 y−1xy xyx e xy y yxy−1 yxy x yx xy−1

xy−1 xy−1 yxy x xy yxy−1 xyx yx e y−1 y−1xy y y−1x

yx yx y yxy yxy−1 y−1 y−1xy e xy−1 xy y−1x x xyx

yxy−1 yxy−1 y−1xy yx yxy xyx xy−1 y−1x y e xy y−1 x

xyx xyx xy y−1x y−1xy xy−1 yxy−1 x y−1 y yxy e yx

yxy yxy xy−1 yxy−1 yx x y xy y−1xy y−1x e xyx y−1

y−1xy y−1xy yxy−1 xyx y−1x yx y−1 yxy xy x y xy−1 e

Table B.5: Multiplication table for A4 = 〈x, y; x2 = y3 = (xy)3 = e〉
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e x y x−1 y−1 xy yx xy−1 yx−1 x−1y y−1x xy−1x

e e x y x−1 y−1 xy yx xy−1 yx−1 x−1y y−1x xy−1x

x x x−1 xy e xy−1 x−1y y−1 yx y−1x y xy−1x yx−1

y y yx y−1 yx−1 e x−1 y−1x x−1y xy xy−1x x xy−1

x−1 x−1 e x−1y x yx y xy−1 y−1 xy−1x xy yx−1 y−1x

y−1 y−1 y−1x e xy y yx−1 x xy−1x x−1 xy−1 yx x−1y

xy xy y−1 xy−1 y−1x x e xy−1x y x−1y yx−1 x−1 yx

yx yx yx−1 x−1 y x−1y xy−1x e y−1x x y−1 xy−1 xy

xy−1 xy−1 xy−1x x x−1y xy y−1x x−1 yx−1 e yx y−1 y

yx−1 yx−1 y xy−1x yx y−1x y−1 x−1y e xy−1 x−1 xy x

x−1y x−1y xy−1 yx xy−1x x−1 x yx−1 xy y y−1x e y−1

y−1x y−1x xy yx−1 y−1 xy−1x xy−1 y x yx e x−1y x−1

xy−1x xy−1x x−1y y−1x xy−1 yx−1 yx xy x−1 y−1 x y e

Table B.6: Multiplication table for A4 = 〈x, y; x3 = y3 = (xy)2 = e〉
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