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Local algebras of a differentiable quasigroup
M. A. Akivis (Jerusalem Institute of Technology, Jerusalem, Israel)
V. V. Goldberg ∗ (New Jersey Institute of Technology, Newark, NJ, USA)

We study local differentiable quasigroups and their local algebras defined by the second and third orders
terms of Taylor’s decomposition of a function defining an operation in local loops. In local algebras,
we define the commutators and associators connected by a third-degree relation generalizing the Jacobi
identity in Lie algebras. Hofmann and Strambach named the local algebras mentioned above Akivis
algebras.

In general, an Akivis algebra does not uniquely determine a differentiable quasigroup, but for
Moufang and Bol quasigroup, it enjoys this property.

We consider also prolonged Akivis algebras and prove that a local algebra defined in a fourth-order
neighborhood uniquely determines a monoassociative quasigroup.

The last two results give a generalization of the classical converse third Lie theorem on determination
of a local Lie group by its Lie algebra.

As an illustration, we consider local differentiable quasigroups defined on the Grassmannian G(1, r+
1) by a triple of hypersurfaces in the projective space Pr+1.

On the existence of irreducible n-quasigroups (Solution of Belousov’s prob-
lem)
M. A. Akivis (Jerusalem Institute of Technology, Jerusalem, Israel)
V. V. Goldberg ∗ (New Jersey Institute of Technology, Newark, NJ, USA)

The authors prove that a local n-quasigroup defined by the equation

xn+1 = F (x1, . . . , xn) =
f1(x1) + . . . + fn(xn)

x1 + . . . + xn
,

where fi(xi), i, j = 1, . . . , n, are arbitrary functions, is irreducible if and only if any two functions
fi(xi) and fj(xj), i 6= j, are not both linear homogeneous, or these functions are linear homogeneous
but fi(xi)

xi
6= fj(xj)

xj
.

This gives a solution of Belousov’s problem to construct examples of irreducible n-quasigroups for
any n ≥ 3.

Finite loops and projective planes
Michael Aschbacher (California Institute of Technology, Pasadena, CA, USA)

Projective planes are coordinatized by ternary rings (R, T ) with an associated “ring” R = (R, +, ·),
such that (R, +) is a loop with identity 0, and (R#, ·) is a loop with identity 1, where R# = R−{0}. We
consider finite projective planes linearly coordinatized (ie. T (x, y, z) = xy + z) by a right distributive
(ie. (x + y)z = xz + yz) ring R. Most known finite planes are of this sort. We use techniques from
finite group theory and loop theory to study such planes and their associated rings and loops. Various
partial results suggest that possibly either (R, +) or (R#, ·) is a group. Much of the analysis involves
the following interesting class of loops: Loops (R, +) admitting a group of automorphisms transitive
on R#.
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Bol loops that are centrally nilpotent of class two
Orin Chein (Temple University, Philadelphia, PA, USA)

After considering the question Why nilpotence class 2? from both historical and practical perspectives,
I will investigate identities that hold in (right) Bol loops with this property and use these to create
some new constructions of such loops.

Abelian inner mappings and nilpotency class greater than two
Piroska Csörgő (Eotvos University, Budapest, Hungary)

By T. Kepka and M. Niemenmaa if the inner mapping group of a finite loop Q is abelian, then the loop
Q is centrally nilpotent. For a long time there was no example of a nilpotency degree greater than two.
In the nineties T. Kepka raised the following problem: whether every finite loop with abelian inner
mapping group is centrally nilpotent of class at most two. For many years the prevailing opinion has
been that all such loops have to be of nilpotency degree two. The converse is always true by Bruck, i.e.
the nilpotency class two of the loop Q implies the inner mapping group I(Q) is abelian.

After describing the problem in terms of transversals I tried to characterize by means of group theory
the least counterexample. I expected to find enough properties of the counterexample that would refute
its existence. By using these results, supposing special properties, I choose some parameters and finally
I constructed a conterexample loop Q of order 27, such that the multiplication group M(Q) is of order
213, the inner mapping group I(Q) is elementary abelian of order 26, for the normal closure M0 of
I(Q) in M(Q), M0 is of order 210 and the factor group M(Q)/M0 is elementary abelian of order 23,
furthermore the nilpotency class of this loop Q is greater than two.

The self-distributive structure of parenthesized braids
Patrick Dehornoy (Laboratoire de Mathematiques Nicolas Oresme, Universite de Caen,
Caen, France)

Artin’s braid group B∞ is equipped with a remarkable left self-distributive operation that reflects
a deep connection between braids and the self-distributive law. A similar connection exists between
R. Thompson’s group F and the associativity law. Mixing the two laws leads to introducing a new group
B• that extends both B∞ and F , and whose elements can be viewed as braids in which the distances
between the strands need not be uniform. Many properties of B∞ extend to B•, in particular the
connection with the fundamental group of a punctured surface, the embeddability in the automorphisms
of a free group, and the existence of a self-distributive structure. Now the most interesting algebraic
point is that B• comes equipped with a second operation compatible with the self-distributive operation
in a natural way (”augmented LD-system”), which cannot be the case for ordinary braids.

Conjugacy closedness and related matters
Aleš Drápal, Charles University, Prague, Czech Republic
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Every conjugacy closed loop Q(∗) with A(Q) ≤ Z(Q) has a subloop S such that Q/S is abelian of
exponent two, and S(∗) can be obtained from a group G = S(·) and a symmetric quadri-additive
mapping b : G×G → G so that x ∗ y = x · y · b(x, y).

What means quadri-additive? Let G and H be abelian groups. A mapping b : G×G → H is said
to be quadri-additive if

1. b(λx, µy) = λ2µb(x, y) for λ, µ ∈ Z;

2. b(x, y + z) = b(x, y) + b(x, z); and

3. (x, y) 7→ b(x + y, z)− b(x, z)− b(y, z) is a biadditive mapping G×G → H for every z ∈ G.

For nonabelian groups, we say that b : G×G → H is quadri-additive if b induces a quadri-additive
mapping G/G′ ×G/G′ → Z(H). (Other results will be discussed, too.)

Loops over nearfields
Clifton E. Ealy, Jr. (Western Michigan University, Kalamazoo, MI, USA)

(N, +, ◦) is a nearfield if (N, +) is an abelian group with identity 0, (N \ {0}, ◦) is a multiplicative
group with identity 1 not equal to 0, and there is only one distributive law. In this talk, I will define
matrix loops over nearfields and consider some of their properties.

Description of the subalgebras of Zorn’s algebra over Fq, q = 2, 3
Maria de Lourdes Merlini Giuliani (Universidade Federal de Santa Maria, Santa Maria,
Brazil)

In this talk I present the classification of all subalgebras of Zorn’s algebra Z(q) over Fq, where q = 2, 3;
and I present the number of subalgebras for each case. I show that the isomorphic subalgebras are
conjugate in respect to the automorphism group of Z(q). Furthermore, as a consequence I obtain
that the maximal subloops of the corresponding simple Moufang loops M(q) are conjugate in the
automorphism groups of Z(q).

Eigenvalues of generic adjoint maps in comtrans algebras of bilinear spaces
Bokhee Im ∗ (Chonnam National University, Kwangju, Korea)
Jonathan D. H. Smith (Iowa State University, Ames, IA, USA)

Comtrans algebras are unital modules over a commutative ring R, equipped with two basic trilinear
operations: a commutator [x, y, z] satisfying the left alternative identity

[x, x, y] = 0,

and a translator 〈x, y, z〉 satisfying the Jacobi identity

〈x, y, z〉+ 〈y, z, x〉+ 〈z, x, y〉 = 0,

such that together the commutator and translator satisfy the comtrans identity

[x, y, x] = 〈x, y, x〉.
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A long-term goal of the research effort devoted to comtrans algebras is to develop a general structure
theory. As a first step towards this goal, we focus on the eigenvalues of generic adjoint maps of comtrans
algebras CT (E, β) of bilinear spaces (E, β), and the extent to which knowledge of these eigenvalues
and their multiplicities serves to specify the algebras up to isomorphism within certain classes. Such a
comtrans algebra CT (E, β) has underlying module E and its algebra structure is defined by

[x, y, z] = yβ(x, z)− xβ(y, z)

and
〈x, y, z〉 = yβ(z, x)− xβ(y, z).

The construction of loops by varying group tables
Kenneth Johnson (Penn State Abington, Abington, PA, USA)

The object of this talk is a discussion of the ways in which loops can be constructed from groups
by using combinatorial ideas and symmetry. The starting point is the observation by the presenter
and P. Vojtechovsky that the multiplication tables of groups with respect to right division are much
more symmetrical than the ordinary tables, in that they can be written as block circulants with further
symmetry properties. A weakening of the strong symmetry of these tables produces tables corresponding
to loops. For example, there is a nice construction for the Moufang loop of order 12 (using the right
division operation) as

1 3 2 4 5 6 7 8 9 10 11 12
2 1 3 6 4 5 9 7 8 12 10 11
3 2 1 5 6 4 8 9 7 11 12 10
4 6 5 1 2 3 10 12 11 7 9 8
5 4 6 3 1 2 12 11 10 9 8 7
6 5 4 2 3 1 11 10 12 8 7 9
7 9 8 10 12 11 1 2 3 4 6 5
8 7 9 12 11 10 3 1 2 6 5 4
9 8 7 11 10 12 2 3 1 5 4 6
10 12 11 7 9 8 4 6 5 1 2 3
11 10 12 9 8 7 6 5 4 3 1 2
12 11 10 8 7 9 5 4 6 2 3 1

This can be written more briefly as

C(1, 3, 2) C(4, 5, 6) C(7, 8, 9) C(10, 11, 12)
C(4, 6, 5) C(1, 2, 3) RC(10, 12, 11) RC(7, 9, 8)
C(7, 9, 8) RC(10, 12, 11) C(1, 2, 3) RC(4, 6, 5)

C(10, 12, 11) RC(7, 9, 8) RC(4, 6, 5) C(1, 2, 3)

where C(i, j, k) denotes a circulant and RC(i, j, k) a reverse circulant i.e. each row is obtained from
the previous by a left shift. Diassociativity more or less fixes all the blocks except for those in the
(2, 3), (2, 4) and (3, 4) positions, together with their reflections in the diagonal, and in these positions
the reverse circulants appear. The loops from the Chein construction based on dihedral groups can be
presented in an analogous way. It is an interesting question as to whether the Moufang condition may
be verified by showing the closure of the corresponding diagrams in web geometry, which of course can
be translated into the conditions on the tables.
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Although it is unlikely that simple loops of an interesting nature may be produced by some vari-
ations of symmetry as above, (for example it does not seem possible to construct the simple Moufang
loop of order 120 in a similar way to that above) this naive approach can produce loops which automat-
ically satisfy certain conditions, for example having a composition series of a certain type. Moreover,
by varying tables coming from groups we can produce tables which automatically correspond to non-
associative loops and which have character tables which are specified. The following example illustrates.
The table (under right multiplication) for any dihedral group of order 2n may be written

C(1, n, . . . , 2) C(n + 1, n + 2, . . . , 2n)
C(n + 1, 2n, . . . , n + 2) C(1, 2, . . . , n)

If σ is any non-identity permutation on {2, . . . , n} the table

C(1, n, . . . , 2) C(n + 1, n + 2, . . . , 2n)
C(n + 1, 2n, . . . , n + 2) C(1, σ(2), . . . , σ(n))

corresponds to a non-associative loop. Question: how many distinct isomorphism classes of loops can
be produced in this way and what identities do they satisfy?

If time permits I will also indicate other symmetrical constructions which produce families of loops.

A survey of Osborn loops
Michael K. Kinyon (Indiana University South Bend, South Bend, IN, USA)

The study of Moufang loops is a time-honored tradition within loop theory, and connects to many
different areas of mathematics. The study of CC-loops has taken off in the last few years because of
the dissemination of Basarab’s theorem (the quotient of a CC-loop by its nucleus is an abelian group).
This talk will mostly consist of a mini-course in a common generalization of the two varieties, namely
the variety of Osborn loops. The picture to have in mind is the following, although I will show a much
more elaborate one in the talk.

Osborn

Moufang

ooooooooooo
CC

JJJJJJJJJJ

Extra

OOOOOOOOOOO

tttttttttt

Groups

The definition of Osborn loops is quite natural, and a surprising amount of the basic structure of both
Moufang and CC-loops is already present in Osborn loops. I will survey published results (mostly due
to Basarab) and some new ones as well. Interestingly, one can even generalize some of the basic results
in the theory of commutative Moufang loops to a certain class of Osborn loops.

I will also address those in the audience who prefer quasigroups to loops. There is a conjectural
relationship between Osborn loops and the (as yet) unstudied class of conjugacy closed quasigroups, that
is, quasigroups in which the sets of left and right translations are each closed under self-conjugation.
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If there is time (though I doubt there will be), I will briefly discuss the one-sided case, namely
common generalizations of Bol loops and RCC-loops.

Linear balanced quasigroup identities
Aleksandar Krapež (Matematički institut SANU, Beograd, Serbia and Montenegro)

We consider quasigroup identities which contain only the multiplication symbol ·. Such an identity is
linear if every variable appears at most once in s(t) and is balanced if the set var(s) of variables of s is
equal to var(t).

Every linear balanced quasigroup identity is either Belousov (i.e. a consequence of commutativity)
or non–Belousov (i.e. implying group isotopy). A. Krapež and M. A. Taylor (Czechoslovak Math. J.
43 (118), (1993)) proved that every set of Belousov identities is equivalent to a single normal Belousov
identity. Consequently the lattice of nontrivial Belousov varieties is isomorphic to the lattice of odd
numbers under divisibility.

Non–Belousov identities are more difficult to handle. W. Förg–Rob and A. Krapež defined height–
preserving identities (s = t is height–preserving if every variable x is of equal height in s and t)
and proved that a quasigroup satisfying such an identity is a T–quasigroup in which branch(x, s) =
branch(x, t) for all x ∈ var(s). Height–preserving identities can be understood as permutations trans-
forming the tree of s to that of t. Belousov identities then correspond to isomorphisms of trees of s and
t.

Varieties of quasigroups satisfying height–preserving identities of height up to h can be related to
special subgroups of the group S2h .

Reflection quasigroups: Algebraic models for symmetric spaces with mid-
points
Jimmie Lawson ∗ (Louisiana State University, Baton Rouge, LA, USA)
Yongdo Lim (Kyungpook National University, Taegu, Korea)

A reflection quasigroup (Q, ·) is an idempotent quasigroup for which each left translation is an involutive
automorphism. We give a geometric interpretation to such structures by viewing p · x = y to mean
that the point reflection through p carries x to y. (The operation of point reflection in a vector space,
p ·x := 2p−x, 2 6= 0, is a basic example.) From this perspective the unique solution x = b/a of x ·a = b
yields the unique “midpoint” between a and b; this midpoint plays a crucial role in the theory. These
structures turn out to have characterizations in terms of, or even categorical equivalences with, a variety
of other algebraic structures: uniquely 2-divisible twisted subgroups, transversal twisted subgroups of
involutive groups, a special class of loops called B-loops, and uniquely 2-divisible gyrocommutative
gyrogroups.

We consider reflection quasigroups arising from a general class of symmetric spaces called lineated
symmetric spaces. Our primary interest is the case that these symmetric spaces are (differentiable)
Banach manifolds, in which case they exhibit an interesting geometric structure, and particularly in
the metric case, where it is assumed the symmetric space carries a convex metric, an invariant complete
metric contracting the square root function. One major result is that the distance function between
points evolving over time on two geodesics is a convex function. Primary examples arise from involutive
Banach-Lie groups (G, σ) admitting a polar decomposition G = P ·K, where K is the subgroup fixed by
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σ and P is the associated symmetric space. We consider an appropriate notion of seminegative curvature
for such symmetric spaces endowed with an invariant Finsler metric and prove that the corresponding
length metric must be a convex metric. The preceding results provide a general framework for the
interesting Finsler geometry of the space of positive Hermitian elements of a C∗-algebra that has
emerged in recent years.

Release of Prover9
William McCune (Mathematics and Computer Science Division, Argonne National Lab-
oratory, IL, USA)

This talk marks the release of Prover9, a new theorem prover for first-order and equational logic.
Prover9 has a fully automatic mode, but difficult problems frequently require some human guidance,
which will be a focus of the talk. Mace4, a program that searches for finite counterexamples, will
also be covered. Example problems in nonassociative algebras will be presented, and the conference
participants will be invited and encouraged to challenge Prover9 and Mace4 with new problems. At the
time of the conference, Prover9 will be available from http://www.mcs.anl.gov/∼mccune/prover9/.

Planes, nets and webs
G. Eric Moorhouse (University of Wyoming, Laramie, WY, USA)

The main open questions in the study of finite projective planes concern the possible orders of finite
planes, and the question of whether planes of prime order are necessarily the classical ones. A promising
approach to both questions relies on conjectured bounds for ranks of finite nets (i.e. rank of the incidence
matrix over a field of positive characteristic). The conjectured rank bounds for (finite) nets agree with
the known rank bounds for (infinite) webs, but different mathematical tools are required in the finite
case.

In 1991 I verified the conjectured rank bounds for 3-nets (those having 3 parallel classes of lines)
using loop theory. I will describe recent progress in the case of 4-nets, using the method of exponential
sums.

Quasigroups, bigroups and local bigroups
Yuri M. Movsisyan (Yerevan State University, Yerevan, Armenia)

In this talk the concepts of bigroups and local bigroups will be discussed, and quasigroups in local
bigroups of operations will be characterized. The obtained results are applied in Steiner, Stein and
Belousov quasigroups.

On nilpotent Moufang loops
Gábor P. Nagy (University of Szeged, Bolyai Institute, Szeged, Hungary)
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Despite the importance of Moufang loops in the theory of quasigroups and loops, there are aston-
ishingly few general constructions for nilpotent Moufang loops. The only exceptions are the classes of
commutative Moufang loops and Moufang 2-loops (due to Chein’s construction and its generalizations).
Together with M. Valsecchi, we proved the following.

Theorem 1 Let M be a group and k a positive integer. Let f : M → Z(M) and g : M ×M → Z(M)
be maps with the following properties:

1. f and g vanish on f(M) ∪ g(M,M), that is,

f(f(m)) = f(g(m1,m2)) = g(f(m1),m2) = g(g(m1, m2),m3) = 1

for each m,m1,m2,m3 ∈ M .

2. g is bilinear and alternating, which means

g(m1m2,m3) = g(m1,m3)g(m2, m3),
g(m1,m2) = g(m2,m1)−1,

g(m,m) = 1

for each m,m1,m2,m3 ∈ M .

3. f satisfies
f(m1m2) = f(m1)f(m2)g(m1, m2)3 (1)

for all m1,m2 ∈ M and f(m)k = 1 for all m ∈ M .

Define the operation

(i1,m1) · (i2,m2) = (i1 + i2,m1m2f(m1)i2g(m1,m2)i1+2i2) (2)

on the set L = Zk ×M . Then, (L, ·) is a Moufang loop with unit (0, 1).

It turns out that these loops can be very effectively used in the following areas:
1) Classification of Moufang loops of order p5, p > 3.
2) Structural properties and examples of Moufang loops with central associators.
3) Minimally nonassociative Moufang p-loops.

Powers and alternative laws
Nicholas Ormes (University of Denver, Denver, CO, USA)

A groupoid is alternative if it satisfies the alternative laws: x(xy) = (xx)y and x(yy) = (xy)y. Let
A be the free alternative groupoid with generator x. An nth power of x is an element of A which is
obtained by multiplying x with itself n times. Of course, nth powers of x need not be unique since
there are many ways to parenthesize the multiplication. Each application of an alternative law passes
from one nth power of x to another and a basic question is - for which values of n are nth powers of x
unique? We show that the answer is only when n ≤ 5.

The technique used is to study the action of multiplication by 2 modulo n. In dynamical terms,
this is a quotient of the original action of application of an alternative law (or the inverse of such an
application), but is much simpler. In particular, if we show that this map has orbits which are not
complete, we show that powers cannot be unique. We also use this action to say something about the
problem of finding alternative loops without two-sided inverses.
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Operads and derivations
Eugen Paal ∗ (Tallinn University of Technology, Tallinn, Estonia)
Peeter Puusemp (Tallinn University of Technology, Tallinn, Estonia)

(See the electronic abstract posted online.)

On C-loops
J. D. Phillips (Wabash College, Crawfordsville, IN, USA)

There are relatively few papers in the literature about C-loops in spite of the fact that they are loops of
so-called Bol-Moufang type and have very rich structure. This talk outlines some of the basic structural
features of C-loops and shows where they fit into the larger hierarchy of loops of Bol-Moufang type.

Greedy quasigroups
T. A. Rice (Iowa State University, Ames, IA, USA)

A greedy quasigroup Qs, is a quasigroup structure on the natural numbers generated by fixing 0 · 0 = s.
The number s is called the seed. The rest of the multiplication table is filled in using a greedy algorithm.
For example, Q0 is an elementary 2-group. I will discuss algebraic properties, including whether the Qs

are isomorphic to each other, and properties of the multiplication groups. Finally I will briefly discuss
applications to the theory of combinatorial games.

Varieties of binary modes
Anna Romanowska (Warsaw University of Technology, Warsaw, Poland)

A binary mode or groupoid mode is a set with a binary operation that is idempotent and entropic. An
identity is regular if the same sets of variables appear on each side. A variety is irregular if it is specified
by at least one irregular identity. The regularization of a variety is the class of models of the regular
identities satisfied by each member of the variety.

We describe a lower part of the lattice of varieties of binary modes. The lower part of the lattice
splits naturally into two subparts. One consists of irregular varieties. The other consists of their
regularizations. The regularized varieties are easily described. The irregular varieties split further into
two parts. One consists of idempotent and entropic quasigroups. The other consists of varieties of
so-called reductive groupoid modes (including for example the variety of differential groupoids).

On the theory of smooth M-loops
Liudmila Sabinina (Facultad de Ciencias, UAEM, Cuernavaca, Mexico)

The smooth CC-loops are considered in the context of the theory of smooth M -loops. We would like
to discuss some properties of these loops.

A loop < Q, ·, \, /, e > with the identity
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x · (y · z) = (x · (y · φ(x))(Jφ(x) · z)

where φ(x) : Q → Q, J : Q → Q are maps, and x · Jx = e, is called an M -loop.

Right versus Left: Relativistic dynamics in the Einstein velocity loop
Tzvi Scarr (Jerusalem College of Technology, Jerusalem, Israel)

We explore the loop (D,⊕E) of Einstein velocity addition on the ball D = {v ∈ R3 : |v| ≤ c} of rela-
tivistically admissible velocities. This loop, which is also a gyrocommutative gyrogroup, can be used
to derive the relativistic dynamics equation that describes, for example, the evolution of the velocity
of a charged particle in an electromagnetic field.

The natural first step in developing dynamics from the loop (D,⊕E) is to look at the translations
of the loop. However, since the addition ⊕E is, in general, not commutative (in fact, it is commutative
only for parallel velocities), one must decide whether to use the right or the left translations. There
seems to be no a priori preference for either one. Indeed, one can ask whether it makes a difference.
Is the dynamics which stems from the left translations different from the dynamics of the right trans-
lations? If so, which dynamics does nature choose?

We will show how the left translations ϕa : D → D, ϕa(v) = a ⊕E v lead to the usual relativistic
dynamics equation. The development here is straightforward, due mainly to two facts:

• the left translations of (D,⊕E) are projective automorphisms of D
• the inverse of the left translation ϕa is again a left translation, namely ϕ−a.

In contrast, the right translations φa : D → D, φa(v) = v ⊕E a are problematic. They are not
projective maps. They’re not even analytic! And the inverse of a right translation is not a right
translation. A closer look at the physical meaning of right and left translations reveals that there is an
inherent difference between them. We will explain this asymmetry and discuss possible directions for
developing the ”right” dynamics.

On identities of isotopy closure of variety of groups
Khalil Shahbazpour (Urmia University, Urmia, Iran)

In this talk we will dicuss the following result.

Theorem. A quasigroup G(· ) is an isotope of group if and only if one of the following identities
holds for G(· ).

(a) x{z\[(z/u)v]} = {[x(z\z)]/u}v
(b) x{u\[(z/u)v]} = {[x(u\z)]/u}v
(c) x{z\[(u/u)v]} = {[x(z\u)]/u}v
(d) x[y\{[(yy)/z]u}] = [{x[y\(yy)]}/z]u

(e) x[y\{[(yz)/y]u}] = [{x[y\(yz)]}/y]u
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(f) x[z\{[(yy)/y]u}] = [{x[z\(yy)]}/y]u

References
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tities, Yerevan State University Press, Yerevan, 1986.

Loop-based identities in the double of a central pique
Jonathan D. H. Smith (Iowa State University, Ames, IA, USA)

A pique is a quasigroup with a pointed idempotent. A central pique is a principal isotope of an abelian
group, its corresponding loop or cloop, the components of the isotopy being automorphisms of the
cloop. The characters of a central pique’s cloop form a dual pique. The conjugacy classes of the dual
correspond to the characters of the primal; indeed the unitary character table of the dual is the inverse
of the unitary character table of the primal. Together with its dual, a central pique forms a structure
known as the double.

In what may well be the first application of one part of quasigroup theory to another, it is shown
that the double of a central pique satisfies identities indexed by loops of 2-power order. These identities
project onto the unit circle to yield identities involving character values.

Introduction to Evolution Algebra
Jianjun Paul Tian (The Ohio State University, Columbus, OH, USA)

Behind the phenomena of genetics and stochastic processes, we find there is an intrinsic algebraic
structure. We call it — evolution algebra. Evolution algebras are non-associative, non-power-associative
Banach algebras and have many connections with other mathematical fields including graph theory,
group theory, Markov chains, dynamic systems, knot theory, 3-manifolds and the study of the Riemann-
zeta function. In the present talk, we will introduce the basic concepts of evolution algebras and
hierarchical structure theory. One of the unusual features of of an evolution algebra is that it possesses
an evolution operator. This evolution operator reveals the dynamic information of an evolution algebra.
What makes the theory of evolution algebras different from the classical theory of algebras is that in
evolution algebras, we can have two different types of generators: algebraically persistent generators and
algebraically transient generators. The basic notions of algebraic persistency and algebraic transiency,
and their relative versions, lead to a hierarchical structure on an evolution algebra. Dynamically, this
hierarchical structure displays the direction of the flow induced by the evolution operator. Algebraically,
this hierarchical structure is given in the form of a sequence of semi-direct-sum decompositions of a
general evolution algebra. The dynamic nature of this hierarchical structure is what makes the notion of
an evolution algebra applicable to the study of stochastic processes and many other objects in different
fields.
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Code loops of both parities
Petr Vojtěchovský (University of Denver, Denver, CO, USA)

Even code loops introduced by Griess are well known. Less known are odd code loops defined by
Richardson. We show that Richardson’s definition can be generalized so that the code loops of both
parities can be characterized in a uniform way. We therefore argue that the generalized definition is
more natural. This is joint work with Aleš Drápal.

When is an n-ary quasigroup an iterated group isotope?
Thomas Zaslavsky (Binghamton University (SUNY), Binghamton, NY, USA)

Rumor has it that Belousov conjectured that an n-ary quasigroup is isotopic to an iterated group if its
factorization graph is 3-connected. I have proved this conjecture by a new method employing a kind
of branched covering of the factorization graph.

Belousov et al. reportedly also proved that an n-ary quasigroup (Q, f), with n > 2, is an iterated
group isotope if |Q| ≤ 3; but for |Q| = 3 the proof was too long to publish. (I have not been able to
find a published proof.) I have a short proof based on the concept of a residual quasigroup of f , that
is, a k-ary quasigroup obtained by fixing n − k independent variables in f . If every residual ternary
quasigroup is isotopic to an iterated group, then f is isotopic to an iterated group (but that conclusion
does not follow if every residual binary quasigroup is an iterated group isotope).
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