A Survey of Osborn Loops

Michael Kinyon Indiana University South Bend

Milehigh Conference on Loops, Quasigroups, & Nonassociative Systems

University of Denver, Denver, CO 8 July 2005, 9:00AM

Osborn's Paper

 $\mathbf{2}$

Osborn studied isotopy invariance of the *weak inverse property* (WIP):

$$x(yx)^{\rho} = y^{\rho}$$
 or $(xy)^{\lambda}x = y^{\lambda}$

He showed that if WIP is universal then this identity holds:

$$(*) \qquad x(yz \cdot x) = (x \cdot yE_x) \cdot zx$$

where E_x is a permutation.

Thm: If Q is a WIP loop satisfying (*), then Q/N is a Moufang loop.

Basarab Steps In

Basarab dubbed a loop satisfying any of the following equivalent identities an *Osborn loop*:

$$\begin{aligned} x(yz \cdot x) &= (x \cdot yE_x) \cdot zx \\ x(yz \cdot x) &= (x^{\lambda} \setminus y) \cdot zx \\ (x \cdot yz)x &= xy \cdot (zE_x^{-1} \cdot x) \\ (x \cdot yz)x &= xy \cdot (z/x^{\rho}) \end{aligned}$$

Here

$$E_x = R_x R_{x^{\rho}} = (L_x L_{x^{\lambda}})^{-1} = R_x L_x R_x^{-1} L_x^{-1}$$

Obviously every Moufang loop is an Osborn loop.

Autotopic Characterizations:

For each x, there is a permutation A_x such that

 $(A_x, R_x, R_x L_x)$

is an autotopism. (It follows that $A_x = E_x L_x$.)

OR

4

For each x, there is a permutation B_x such that

$$(L_x, B_x, L_x R_x)$$

is an autotopism. (It follows that $B_x = E_x^{-1} R_x$.)

Every CC-loop is Osborn

(Probably due to Basarab)

Prf: Multiply the CC autotopisms

$$RCC: (R_x, R_x L_x^{-1}, R_x) \\ LCC: (L_x R_x^{-1}, L_x, L_x)$$

to get

$$(R_x L_x R_x^{-1}, R_x, R_x L_x).$$

More generally:

Thm: Let Q be a G-loop, i.e., for each $x \in Q$, there is a left pseudoautomorphism F_x and a right pseudoautomorphism G_x , each with companion x. Suppose also that $F_xG_x = G_xF_x = I$ and $xF_x = xG_x = x$. Then Q is an Osborn loop.

VD: (Basarab)

(i) Each T_x is a *right* pseudoaut. with companion x. (ii) Each T_x^{-1} is a *left* pseudoaut. with comp. x.

Generalized Moufang: (Basarab) [equivalent to "Osborn and WIP"]

$$x(yz \cdot x) = (y^{\lambda}x^{\lambda})^{\rho} \cdot zx$$
 or $(x \cdot zy)x = xz \cdot (x^{\rho}y^{\rho})^{\lambda}$

Generalized Right & Left Bol: (Belousov)

 $zy \cdot x = zx^{\rho} \cdot (xy \cdot x)$ and $x \cdot yz = (x \cdot yx) \cdot x^{\lambda}z$

 \mathbf{M}_5 : (Pflugfelder) Moufang and each x^4 is nuclear.

Elementary Properties:

8

It does not take much to force an Osborn loop to be Moufang: LAlt, RAlt, Flex, LIP, RIP, AAIP, etc.

In particular, a commutative Osborn loop is a commutative Moufang loop.

By contrast, you cannot force an Osborn loop to be CC with a two variable identity. In other words, there is no identity φ in two variables such that:

 φ holds in all CC-loops, and

an Osborn loop satisfying φ is CC. This is because every identity in two variables holding in all CC-loops also holds in all Moufang loops.

More Elementary Properties:

Let Q be an Osborn loop.

• (Basarab) The three nuclei coincide, and the nucleus is normal.

• Every right inner mapping is a right pseudoautomorphism. The companion of $R(x, y) = R_x R_y R_{xy}^{-1}$ is $(xy)^{\lambda}(y^{\lambda} \setminus x)$. Similarly, left inner mappings are left pseudoautomorphisms.

• Coro: If Q is an $A_{r,l}$ Osborn loop, then Q/N is a commutative Moufang loop.

This gives us yet another proof of

Basarab's CC-loop Thm: The quotient of a CC-loop by its nucleus is an abelian group.

Still More Elementary Stuff:

• The left and right inner mapping groups coincide. Indeed,

 $R(x,y)^{-1} = [L_{y^{\rho}}^{-1}, R_x^{-1}] = L(y^{\lambda}, x^{\lambda})$

This is a triviality for Moufang loops. For CC-loops, it was first observed by Drápal.

Still mysterious are the *middle* inner mappings $T_x = R_x L_x^{-1}$.

In a Moufang loop, each T_x is a *right* pseudoaut. with companion x^{-3} .

In a CC-loop, each T_x is a *left* pseudoaut. with companion x.

Can one say something in arbitrary Osborn loops?

Basarab's Osborn Loop Thm:

Let Q be a *universal* Osborn loop, i.e., every isotope is Osborn.

Then Q/N has WIP.

And so (Q/N)/N(Q/N) is Moufang (by Osborn).

Thus if N_2 is the second nucleus of Q, then Q/N_2 is a Moufang loop.

Coro: A simple universal Osborn loop is Moufang.

Open Problem:

12

Is every Osborn loop universal?

If not, does there exist a proper Osborn loop with trivial nucleus?

If not every Osborn loop is universal, does there exist a "nice" identity characterizing universal Osborn loops? Trivial Nuclei:

$$\mathcal{A} := \left\langle \left(L_{x^{\lambda}}^{-1}, R_x, R_x L_x \right) : x \in Q \right\rangle.$$

Group epimorphisms:

$$\mathcal{A} \to \operatorname{RMlt}(Q) : (\alpha, \beta, \gamma) \mapsto \beta$$
$$\mathcal{A} \to \operatorname{LMlt}(Q) : (\alpha, \beta, \gamma) \mapsto \alpha$$
$$\mathcal{A} \to \operatorname{PMlt}(Q) : (\alpha, \beta, \gamma) \mapsto \gamma$$

The kernels are isomorphic to subgroups of the nucleus. So if the nucleus is trivial, then

 $\operatorname{RMlt}(Q) \cong \operatorname{LMlt}(Q) \cong \operatorname{PMlt}(Q).$ On generators,

$$R_x \leftrightarrow L_{x^\lambda}^{-1} \leftrightarrow R_x L_x.$$

If the isomorphisms extended to automorphisms of Mlt(Q), we would have some ingredients of triality.

Examples:

The smallest order for which proper (nonMoufang, nonCC) Osborn loops with nontrivial nucleus exist is 16. There are two such loops.

• Each of the two is a G-loop, i.e., isomorphic to all isotopes.

• Each contains as a subgroup the dihedral group of order 8.

• For each loop, the center coincides with the nucleus and has order 2. The quotient by the center is a nonassociative CC-loop of order 8.

• The second center is $\mathbb{Z}_2 \times \mathbb{Z}_2$, and the quotient is \mathbb{Z}_4 .

• One loop satisfies $L_x^4 = R_x^4 = I$, the other does not.

14

Miscellanea:

• In an Osborn loop Q, the semicenter/commutant/centrum/etc.

 $C(Q) = \{a \in Q : ax = xa, \, \forall x \in Q\}$

is a subloop. It is not necessarily normal, of course. (Recall that an open problem in Moufang loops is to exhibit explicitly a Moufang loop in which C(Q) is not normal.)

• If T_a is an automorphism, then $a \cdot aa = aa \cdot a \in N$. Thus for every $a \in C(Q)$, we have $a^3 \in Z(Q)$.

• If $(xx)^{\rho} = x^{\rho}x^{\rho}$ holds, then $x^{\rho\rho\rho\rho\rho\rho} = x$.

Osborn Loops with AIP:

Automorphic Inverse Property (AIP):

$$(xy)^{\rho} = x^{\rho}y^{\rho}$$
 or $(xy)^{\lambda} = x^{\lambda}y^{\lambda}$

AIP Osborn loops include:

- commutative Moufang loops
- AIP CC-loops

The smallest AIP CC-loops have order 9. So the smallest *known* proper AIP Osborn loops have order 729.

The smallest AIP PACC-loops have order 27. So the smallest *known* proper AIP PA Osborn loops have order 2187.

Surely there are smaller examples.

AIP Osborn Loops II:

Thm: In an AIP Osborn loop, the cubing maps

 $x \mapsto x \cdot xx$ and $x \mapsto xx \cdot x$ are centralizing endomorphisms.

This generalizes the classic foundational result of CML theory:

Coro: In a CML, the cubing map $x \mapsto x^3$ is a centralizing endomorphism.

Coro: If Q is an AIP CC-loop, then Q/Z is an elementary abelian 3-group.

AIP Osborn Loops III:

18

Coro: If Q is an AIP, universal Osborn loop, then Q/Z is a commutative Moufang loop of exponent 3.

Coro: If Q is a finitely generated, AIP, universal Osborn loop, then Qis centrally nilpotent. If a minimal generating set for Q has n > 1elements, then the nilpotence class of Q is at most n.

New Quasigroups

The new variety of quasigroups is defined by the equations

$$(x\cdot yz)(zx\cdot y)=z$$

and

$$x(x \cdot xy) = y(y \cdot yx)$$

(or its mirror).

Properties:

Idempotence: xx = x

$$L_x^2 R_x^2 = L_x^6 = R_x^6 = I$$
$$(L_x L_y)^3 = (R_x R_y)^3 = I$$
$$L_x^2, R_x^2 \in \operatorname{Aut}(Q)$$

So the multiplication group is some sort of generalized Fisher group.

20

Conjugacy Closed Quasigroups

A quasigroup is *conjugacy closed* if the sets of left and right translations are each closed under self-conjugation: for each x, y, there exist u, v such that

$$L_x^{-1}L_yL_x = L_u \quad \text{and} \\ R_x^{-1}R_yR_x = R_v$$

CC-quasigroups include:

- CC-loops
- Quasigroups isotopic to groups
- Trimedial quasigroups

Conjecture: Every CC-quasigroup is isotopic to an Osborn loop.