On some subloops of the loop of norm one elements in the split Cayley-Dickson algebra

Evgenii L. Bashkirov

Belarussia State University of Informatics and Radioelectronics, Minsk, Belarus

June 28, 2005

Let F be a field. Then by O(F) one denotes the split Cayley-Dickson algebra over F. Recall that O(F) is the set of all "2×2-matrices"

$$\left(\begin{array}{cc} \alpha & a \\ b & \beta \end{array}\right)$$

such that $\alpha, \beta \in F$ and a, b are vectors in the three-dimensional F-vector space F^3 . The multiplication in O(F) is defined by

$$\left(\begin{array}{cc} \alpha & a \\ b & \beta \end{array}\right) \left(\begin{array}{cc} \gamma & c \\ d & \delta \end{array}\right) = \left(\begin{array}{cc} \alpha \gamma - a \cdot d & \alpha c + \delta a + b \times d \\ \gamma b + \beta d + a \times c & \beta \delta - b \cdot c \end{array}\right),$$

where \cdot and \times denote the usual "dot product" and "cross product" in F^3 respectively. If

$$x = \left(\begin{array}{cc} \alpha & a \\ b & \beta \end{array}\right) \in O(F)$$

then the norm N(x) of x is defined by $N(x) = \alpha\beta + a \cdot b$. Let $SLCD(F) = \{x \in O(F) : N(x) = 1\}$. Since the equality N(xy) = N(x)N(y) satisfies for any $x, y \in O(F)$, the set SLCD(F) formes a loop with respect to the multiplication defined in O(F). If $a, b, c \in F^3$, then the mixed product of a, b, c is designated by [abc], that is $[abc] = (a \times b) \cdot c$. Let us denote by $t_{12}(a)$ the element

$$\left(\begin{array}{cc} 1 & a \\ 0 & 1 \end{array}\right) \in O(F).$$

Theorem 1 Let F be a field of characteristic $\neq 2$ and k be a subfield of F such that the extension F/k is algebraic. Assume k contains more than three elements. Let a, b, c be linearly independent vectors in F^3 . The subloop of SLCD(F) generated by all the elements $t_{12}(ar), t_{12}(b), t_{12}(c)$ where r runs over k, is isomorphic to the loop SLCD($k(\alpha)$) with $\alpha = [abc]$.