On some subloops of the loop of norm one elements in the split Cayley-Dickson algebra

Evgenii L. Bashkirov
Belarussia State University of Informatics and Radioelectronics, Minsk, Belarus

June 28, 2005

Let F be a field. Then by $O(F)$ one denotes the split Cayley-Dickson algebra over F. Recall that $O(F)$ is the set of all " 2×2-matrices"

$$
\left(\begin{array}{ll}
\alpha & a \\
b & \beta
\end{array}\right)
$$

such that $\alpha, \beta \in F$ and a, b are vectors in the three-dimensional F-vector space F^{3}. The multiplication in $O(F)$ is defined by

$$
\left(\begin{array}{ll}
\alpha & a \\
b & \beta
\end{array}\right)\left(\begin{array}{ll}
\gamma & c \\
d & \delta
\end{array}\right)=\left(\begin{array}{cc}
\alpha \gamma-a \cdot d & \alpha c+\delta a+b \times d \\
\gamma b+\beta d+a \times c & \beta \delta-b \cdot c
\end{array}\right)
$$

where \cdot and \times denote the usual "dot product" and "cross product" in F^{3} respectively. If

$$
x=\left(\begin{array}{cc}
\alpha & a \\
b & \beta
\end{array}\right) \in O(F)
$$

then the norm $N(x)$ of x is defined by $N(x)=\alpha \beta+a \cdot b$. Let $\operatorname{SLCD}(F)=$ $\{x \in O(F): N(x)=1\}$. Since the equality $N(x y)=N(x) N(y)$ satisfies for any $x, y \in O(F)$, the set $\operatorname{SLCD}(F)$ formes a loop with respect to the multiplication defined in $O(F)$. If $a, b, c \in F^{3}$, then the mixed product of a, b, c is designated by $[a b c]$, that is $[a b c]=(a \times b) \cdot c$. Let us denote by $t_{12}(a)$ the element

$$
\left(\begin{array}{ll}
1 & a \\
0 & 1
\end{array}\right) \in O(F) .
$$

Theorem 1 Let F be a field of characteristic $\neq 2$ and k be a subfield of F such that the extension F / k is algebraic. Assume k contains more then three elements. Let a, b, c be linearly independent vectors in F^{3}. The subloop of $\operatorname{SLCD}(F)$ generated by all the elements $t_{12}(a r), t_{12}(b), t_{12}(c)$ where r runs over k, is isomorphic to the loop $\operatorname{SLCD}(k(\alpha))$ with $\alpha=[a b c]$.

