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—–

Let Q be a loop.
La : x 7→ ax is called the left translation.
Ra : x 7→ xa is called the right translation.
Left and right translations are permutations and the group they generate is

called the multiplication group, and will be denoted by MltQ.
The left multiplication group L = L(Q), and the right multiplication group

R = R(Q) generate together the full multiplication group MltQ.
Some, while not all, properties of loops can be expressed by means of trans-

lations and multiplication groups.

—–

Left translations can be closed under composition:

LaLb is a left translation for all a, b ∈ Q.

or closed under conjugation:

LaLbL
−1
a is a left translation for all a, b ∈ Q.

This corresponds to the associative law

(xy) · z = x · (yz)

and the left conjugacy law (LCC law)

((xy)/x) · (xz) = x(yz)

Conjugacy closed loops are LCC and RCC, i.e. CC = LCC+RCC

—–
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CC loops have tight structure and seem to be much more accessible than
general LCC loops. The connection of CC loops to groups looks to be rather
direct, as illustrated by the famous theorem of Basarab [1991]:

If Q is a CC-loop, then Q/N is an abelian group.
Here N = N(Q) stands for the nucleus, the set of elements a ∈ Q which

associate with every other two elements of Q.
a ∈ N ⇔ ax · y = a · xy, xa · y = x · ay, xy · a = x · ay
The most accessible CC-loops are those with Z(Q) ≤ A(Q). Here Z(Q) =

{a ∈ N(Q); ax = xa for all x ∈ Q} and A(Q) is the least normal subloop with
Q/A(Q) a group.

—–

[Drápal 2005] Every CC-loop Q(∗) with
A(Q) ≤ Z(Q) possesses a normal subloop S such that Q/S is an abelian
group of exponent two, and S(∗) can be obtained from a group G = S(·)
and a symmetric quadri-additive mapping b : G×G → G so that

x ∗ y = x · y · b(x, y).

What means quadri-additive? For abelian groups the definition can be ex-
pressed by:

b(x, y) : G×G → H is quadri-additive ⇔
quadratic in x, additive in y.

—–

More formally:
Let G and H be Abelian groups. A mapping b : G × G → H is said to be

quadri-additive if

1. b(λx, µy) = λ2µb(x, y) for λ, µ ∈ Z;

2. b(x, y + z) = b(x, y) + b(x, z); and

3. (x, y) 7→ b(x + y, z)− b(x, z)− b(y, z) is a biadditive mapping G×G → H
for every z ∈ G.

For nonabelian groups practically the same definition holds. We say that
b : G×G → H is quadri-additive if b induces a quadri-additive mapping G/G′×
G/G′ → Z(H).

The fact that b can be factorized over the commutant can be expressed as
Rad(b) ≥ G′, where Rad(b) = {a ∈ G; b(x + a, y) = b(x, y) = b(x, y + a) for all
x, y ∈ G}. The other condition states Im(b) ≤ Z(H).

If b : G × G → G is symmetric quadri-additive, and Rad(b) ≥ Im(b), then
x ∗ y = xyb(x, y) gives a CC loop, and all CC loops with A(Q) ≤ Z(Q) can be
obtained in this way.
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The loop will be denoted by G[b].

—–

Recall that nonassociativity in loops is measured by associators [x, y, z],
defined by

(x · yz)[x, y, z] = xy · z.

Note that A(Q) ≤ Z(Q) is equivalent to [x, y, z] ∈ Z(Q), for all x, y, z ∈ Q.
If B and C are abelian groups, then a mapping f : B × B × B → C is said

to be triadditive, if it is additive in each variable. Call it symmetric, if it is
invariant under permutation of variables.

For a nonabelian group call f : G × G × G → G triadditive if it induces a
triadditive mapping G/G′ ×G/G′ ×G/G′ → Z(G).

—–

If b : G×G → G is quadri-additive, then
f : G×G×G → G, defined by

f(x, y, z) = b(xy, z)b(x, z)−1b(y, z)−1

is triadditive. The corresponding additive formula, which is more natural, has
the form

f(x, y, z) = b(x + y, z)− b(x, z)− b(y, z).

Call b symmetric quadri-additive if f is symmetric. (The notion is related to
Aschbacher’s 3-form.)

Let Q = Q(·) = G[b], where b : G×G → G is quadri-additive. Then

f(x, y, z) = [x, y, z].

When Z(G) is of odd order, one can extract b from f by setting

b(x, y) =
1
2
f(x, x, y).

—–

Hence all odd order CC-loops Q with A(Q) ≤ Z(Q) can be obtained from
groups and symmetric trilinear mappings in the form of operations xyh(x, x, y),
where h (the half of f) is trilinear symmetric.

Let p be a prime and put F = Zp. Up to isomorphism there are exactly
three nonassociative CC-loops of order p2 [Kunen, 2000]. Fix κ ∈ F to be
a nonsquare. Formulas for these CC-loops can be given as follows [Csörgő &
Drápal, 2004]:
(x, y)(u, v) = (x + y, u + v + x2y)
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xy = x + y + px2y
xy = x + y + κpx2y.
The trilinear mappings are just the products xyz (or pxyz).

These are the simplest nonassociative odd order CC-loops.

—–

The simplest generic example of this class is obtained from an elementary
abelian group V (which we regard as a vector space over F ) and a trilinear
symmetric mapping h : V × V × V → F . Let V (h) be the loop on V × F with

(x, i)× (y, j) = (x + y, i + j + h(x, x, y)).

In this way one gets odd code loops defined by Richardson [1995]. Essentially
he takes a linear [n, k] code C of over F and defines on C × F operation
(x1, x2, . . . , xn; i)(y1, y2, . . . , yn; j) =
(x1 + y1, . . . , xn + yn; i + j +

∑
x2

i yi).
It is not difficult to show the equivalence of the two notions [Drápal & Vojtěchovský,
2005].

—–

(In fact Richardson’s definition is slightly more complicated—when trans-
lated to abstract settings he requires an existence of a pointed nontrivial element
u ∈ V with h(u, u, u) = 0. For p = 3 all elements must have this property.)

—–

In V (h) one easily observes that x = (u, i) associates with itself (i.e. x ·xx =
xx · x) if and only h(u, u, u) = 0. By a result of [Kunen 2000] if an element
associates with itself, then it is mono-associative and power-associative, in every
CC-loop. Call h diagonal, when h(3)(u) = h(u, u, u) = 0 for all u ∈ V . If h is
nontrivial diagonal, then p = 3 since for p > 3 we get

h(x, y, z) =
1
6
[h(3)(x + y + z)

− h(3)(x + y)− h(3)(y + z)− h(3)(x + z)

+ h(3)(x) + h(3)(y) + h(3)(z)].

This is in accordance with general theory of power-associative CC loops as
developed by K&K.

—–

Diagonal symmetric trilinear forms over Z3 call for classification! Nearly all
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of symmetric trilinear forms over Z3 are of this kind because of the following
easy observation [Drápal, 2005] — make me aware of an earlier reference!

Let h : V ×V ×V → Z3 be a symmetric trilinear form, which is not
diagonal. Then {u ∈ V ; h(3)(u) = 0} is a hyperplane of V .

—–

There are several papers on (even) code loops (Griess, Chein & Goodaire,
Aschbacher, Hsu). These loops are exactly those that can be expressed as V (b),
V a vector space over {0, 1}, b : V × V → {0, 1} symmetric quadri-additive (or
quadrilinear). Hence a code loop is always a CC-loop (more generally: Moufang
CC loops are exactly extra loops, and that is the same as Moufang loops with
squares in the nucleus).

Beware! Extraspecial groups are code loops in the even case, but not in the
odd case.

—–

Can the described construction of CC loops be extended beyond the case
A(Q) ≤ Z(Q)? I have reasons to believe so. One needs to start again from
symmetric mappings f : B ×B ×B → A, where B and A are abelian.

Assume that B acts upon A, a 7→ ax, and that the following equality

f(x + y, u, v) = f(x, u, v)y + f(y, u, v)
= f(x, u, v) + f(y, u, v)x

holds for all x, y, u, v ∈ B. One might speak about skew triadditivity or semitri-
additivity. I think that eventually the structure of all CC-loops will be derived
from such mappings.

—–

To prove it we shall need also skew quadri-additive mappings b : B×B → A
that fulfill

b(u, v + w) = b(u, v)w + b(u,w)
= b(u, v) + b(u,w)v

for all u, v and w, and yield f by f(u, v, w) = b(u + v, w) − b(u, v) − b(u,w).
One then defines a new operation from a group G(·) by

(x, y) 7→ xyb(x, y)

where R = Rad(b) contains G′ and Im(b) ≤ Z(R). The mapping b is thus
induced by a mapping B ×B → A, where B = G/R and A = Z(R).
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—–

To give an example, let A = Zp(+) and B = Z∗p(·), with B acting on A
multiplicatively. We are looking for f with

f(xy, u, v) = yf(x, u, v) + f(y, u, v)
= xf(y, u, v) + f(x, u, v).

The simplest way to prescribe f seems to be

f(x, y, z) = (x− 1)(y − 1)(z − 1).

By setting
b(x, y) = (x− 1)(y − 1)

we fulfill the needed relation

f(x, y, z) = b(uv, w)− b(u, v)− b(u,w).

—–

The holomorph of A = Zp(+) is the group on B ×A,

(α, i) · (β, j) = (αβ, βi + j).

The modification by b yields the operation

(α, i) · (β, j) = (αβ, βi + j + (α− 1)(β − 1)).

We have reconstructed the loop V. D. Belousov found when searching for an
example of a G-loop that would not be a WIP-loop.
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