Triality

Georgia Benkart
University of Wisconsin-Madison

(joint with S. Madariaga and J. Pérez-Izquierdo)

Third Mile High Conference on Nonassociative Mathematics
August 12, 2013
The Main Actor

symmetric group \(S_3 \)
The Main Actor

symmetric group S_3

generators: $\sigma = (1\ 2)$ $\rho = (1\ 2\ 3)$
symmetric group \(S_3 \)

generators: \(\sigma = (1\, 2) \quad \rho = (1\, 2\, 3) \)

relations:
The Main Actor

symmetric group S_3

generators: $\sigma = (1\ 2)$ \quad $\rho = (1\ 2\ 3)$

relations:

$\sigma^2 = 1$, \quad $\rho^3 = 1$, \quad $\sigma\rho\sigma = \rho^{-1} = \rho^2$
The Main Actor

symmetric group S_3

generators: $\sigma = (1\ 2)$ $\rho = (1\ 2\ 3)$

relations:

$\sigma^2 = 1, \quad \rho^3 = 1, \quad \sigma \rho \sigma = \rho^{-1} = \rho^2$

triality: There is an S_3-action and ...
Lie algebras with triality

(Mikheev '92) \(g \) is a Lie algebra with triality if
(Mikheev '92) \(g \) is a Lie algebra with \textit{triality} if

- \(\text{Aut}(g) \supseteq S = \langle \sigma, \rho \rangle \cong S_3 \)
Lie algebras with triality

(Mikheev '92) \(g \) is a Lie algebra with triality if

- \(\text{Aut}(g) \supseteq S = \langle \sigma, \rho \rangle \cong S_3 \)
- \(\sum_{\tau \in S} \text{sgn}(\tau) x^\tau = 0 \) for all \(x \in g \)
(Mikheev ’92) \(g \) is a Lie algebra with triality if

- \(\text{Aut}(g) \supseteq S = \langle \sigma, \rho \rangle \cong S_3 \)
- \(\sum_{\tau \in S} \text{sgn}(\tau)x^\tau = 0 \) for all \(x \in g \)

Equivalently:
Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with \textit{triality} if

- $\text{Aut}(\mathfrak{g}) \supseteq S = \langle \sigma, \rho \rangle \cong S_3$
- $\sum_{\tau \in S} \text{sgn}(\tau)x^\tau = 0$ for all $x \in \mathfrak{g}$

Equivalently:

$$\begin{align*}
(\ast) \quad (x^\sigma - x) + (x^\sigma - x)^\rho + (x^\sigma - x)^{\rho^2} &= 0 \\
\forall \ x \in \mathfrak{g}
\end{align*}$$
Lie algebras with triality

(Mikheev '92) \mathfrak{g} is a Lie algebra with triality if

- $\text{Aut}(\mathfrak{g}) \supseteq S = \langle \sigma, \rho \rangle \cong S_3$
- $\sum_{\tau \in S} \text{sgn}(\tau)x^\tau = 0$ for all $x \in \mathfrak{g}$

Equivalently:

$$(\ast) \quad (x^\sigma - x) + (x^\sigma - x)^\rho + (x^\sigma - x)^{\rho^2} = 0 \quad \forall x \in \mathfrak{g}$$

Ex: $\mathfrak{g} = \mathfrak{o}(\emptyset, n)$ type D$_4$
Lie algebras with triality

(Mikheev '92) \(\mathfrak{g} \) is a Lie algebra with triality if

- \(\text{Aut}(\mathfrak{g}) \supseteq S = \langle \sigma, \rho \rangle \cong S_3 \)
- \(\sum_{\tau \in S} \text{sgn}(\tau)x^\tau = 0 \) for all \(x \in \mathfrak{g} \)

Equivalently:

\[
(\star) \quad (x^\sigma - x) + (x^\sigma - x)^\rho + (x^\sigma - x)^{\rho^2} = 0 \quad \forall \ x \in \mathfrak{g}
\]

Ex: \(\mathfrak{g} = \mathfrak{o}(\mathbb{O}, n) \) type D\(_4\)

\(\mathfrak{o}(\mathbb{O}, n) = \text{Der}(\mathbb{O}) \oplus \{ L_a \mid a \in \mathbb{O}_0 \} \oplus \{ R_a \mid a \in \mathbb{O}_0 \} \).
Lie algebras with triality

(Mikheev '92) \(g \) is a Lie algebra with triality if

- \(\text{Aut}(g) \supseteq S = \langle \sigma, \rho \rangle \cong S_3 \)
- \(\sum_{\tau \in S} \text{sgn}(\tau)x^{\tau} = 0 \) for all \(x \in g \)

Equivalently:

\[
(\ast) \quad (x^\sigma - x) + (x^\sigma - x)^{\rho} + (x^\sigma - x)^{\rho^2} = 0 \quad \forall \ x \in g
\]

Ex: \(g = \mathfrak{o}(\mathbb{O}, n) \) type D\(_4\)

\(\mathfrak{o}(\mathbb{O}, n) = \text{Der}(\mathbb{O}) \oplus \{L_a \mid a \in \mathbb{O}_0\} \oplus \{R_a \mid a \in \mathbb{O}_0\} \).

\[
\begin{align*}
 d^\sigma &= d, & L_a^\sigma &= -R_a, & R_a^\sigma &= -L_a \\
 d^{\rho} &= d, & L_a^{\rho} &= R_a, & R_a^{\rho} &= -L_a - R_a
\end{align*}
\]
(Mikheev '92) \(\mathfrak{g} \) is a Lie algebra with \textit{triality} if

- \(\text{Aut}(\mathfrak{g}) \supseteq S = \langle \sigma, \rho \rangle \cong S_3 \)
- \(\sum_{\tau \in S} \text{sgn}(\tau)x^\tau = 0 \) for all \(x \in \mathfrak{g} \)

Equivalently:

\[
(*) \quad (x^\sigma - x) + (x^\sigma - x)^\rho + (x^\sigma - x)^{\rho^2} = 0 \quad \forall x \in \mathfrak{g}
\]

Ex: \(\mathfrak{g} = \mathfrak{o}(\mathbb{O}, n) \) type D\(_4\)

\(\mathfrak{o}(\mathbb{O}, n) = \text{Der}(\mathbb{O}) \oplus \{ L_a \mid a \in \mathbb{O}_0 \} \oplus \{ R_a \mid a \in \mathbb{O}_0 \} \).

\[
\begin{align*}
 d^\sigma &= d, & L_a^\sigma &= -R_a, & R_a^\sigma &= -L_a \\
 d^\rho &= d, & L_a^\rho &= R_a, & R_a^\rho &= -L_a - R_a
\end{align*}
\]

Then \(L_a^\sigma - L_a = -R_a - L_a, \quad (L_a^\sigma - L_a)^\rho = L_a, \quad (L_a^\sigma - L_a)^{\rho^2} = R_a \)
so sum = 0.
Groups with triality

G is a group with triality if
Groups with triality

G is a group with triality if

- $\text{Aut}(G) \supseteq S = \langle \sigma, \rho \rangle \cong S_3$
Groups with triality

G is a group with **triality** if

- $\text{Aut}(G) \supseteq S = \langle \sigma, \rho \rangle \cong S_3$

- $(g^{-1}g^\sigma)(g^{-1}g^\sigma)^\rho(g^{-1}g^\sigma)^{\rho^2} = 1 \quad \forall \ g \in G$
Groups with triality

G is a group with triality if

- $\text{Aut}(G) \supseteq S = \langle \sigma, \rho \rangle \cong S_3$
- $(g^{-1}g^\sigma)(g^{-1}g^\sigma)^\rho(g^{-1}g^\sigma)^{\rho^2} = 1 \quad \forall \ g \in G$

Results on groups with triality via connections with loops:
Groups with triality

G is a group with **triality** if

- $\text{Aut}(G) \supseteq S = \langle \sigma, \rho \rangle \cong S_3$
- $(g^{-1}g^\sigma)(g^{-1}g^\sigma)\rho(g^{-1}g^\sigma)^{\rho^2} = 1 \ \forall \ g \in G$

Results on groups with triality via connections with loops:

- Glauberman ('68)
- Doro ('78)
- Grishkov-Zavarnitsine ('06)
- Hall ('10)
- B,M,P-I ('13)
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M \text{ so } ea = a = ae$
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M \text{ so } ea = a = ae$
- $L_a : b \rightarrow ab, \ R_b : a \rightarrow ab$ are bijective.
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M$ so $ea = a = ae$
- $L_a : b \mapsto ab$, $R_b : a \mapsto ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$
loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M$ so $ea = a = ae$
- $L_a : b \rightarrow ab, \ R_b : a \rightarrow ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$

Examples of Moufang loops:
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists e \in M$ so $ea = a = ae$
- $L_a : b \mapsto ab, R_b : a \mapsto ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$

Examples of Moufang loops:

1. any group
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M \ \text{so} \ ea = a = ae$
- $L_a : b \rightarrow ab, \ R_b : a \rightarrow ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under “·”
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M$ so $ea = a = ae$
- $L_a : b \mapsto ab$, $R_b : a \mapsto ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under “·”
3. octonions of norm 1 (7-sphere S^7) under “·”
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M \text{ so } ea = a = ae$
- $L_a : b \mapsto ab, \ R_b : a \mapsto ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under “·”
3. octonions of norm 1 (7-sphere S^7) under “·”
4. set of invertible elements in any alternative ring
Moufang Loops (Moufang ’35)

loop: A set M with a product $(a, b) \mapsto ab$ such that

- $\exists \ e \in M \text{ so } ea = a = ae$
- $L_a : b \rightarrow ab, \ R_b : a \rightarrow ab$ are bijective.

Moufang: $a(x(ay)) = ((ax)a)y \ \forall \ a, x, y \in M$

Examples of Moufang loops:

1. any group
2. nonzero octonions under “·”
3. octonions of norm 1 (7-sphere S^7) under “·”
4. set of invertible elements in any alternative ring
Groups with Triality and Moufang Loops

- G a group with triality \implies
Groups with Triality and Moufang Loops

- G a group with triality \implies

$$\mathcal{M}(G) := \{g^{-1}g^{\sigma} \mid g \in G\}$$

is a Moufang loop w.r.t.
Groups with Triality and Moufang Loops

- G a group with triality \Rightarrow

$\mathcal{M}(G) := \{g^{-1}g^\sigma \mid g \in G\}$ is a Moufang loop w.r.t.

$m \cdot n = m^{-\rho} nm^{-\rho^2} = n^{-\rho^2} mn^{-\rho} \ \forall \ m, n \in \mathcal{M}(G)$
Groups with Triality and Moufang Loops

• G a group with triality \implies

\[\mathcal{M}(G) := \{ g^{-1}g^\sigma \mid g \in G \} \text{ is a Moufang loop w.r.t.} \]

\[m \cdot n = m^{-\rho} nm^{-\rho^2} = n^{-\rho^2} mn^{-\rho} \quad \forall \quad m, n \in \mathcal{M}(G) \]

• M a Moufang loop \implies
Groups with Triality and Moufang Loops

- G a group with triality \implies

 $\mathcal{M}(G) := \{g^{-1}g^\sigma \mid g \in G\}$ is a Moufang loop w.r.t.

 \[m \cdot n = m^{-\rho} nm^{-\rho^2} = n^{-\rho^2} mn^{-\rho} \quad \forall \ m, n \in \mathcal{M}(G) \]

- M a Moufang loop \implies

 $\mathcal{D}(M) := \langle L_m, R_m, P_m := R_m^{-1}L_m^{-1} \mid m \in M \rangle$
Groups with Triality and Moufang Loops

* G a group with triality \implies

$M(G) := \{g^{-1}g^\sigma \mid g \in G\}$ is a Moufang loop w.r.t.

$m \cdot n = m^{-\rho}nm^{-\rho^2} = n^{-\rho^2}mn^{-\rho} \quad \forall \quad m, n \in M(G)$

* M a Moufang loop \implies

$D(M) := \langle L_m, R_m, P_m := R_m^{-1}L_m^{-1} \mid m \in M\rangle$

is a group with triality w.r.t.
Groups with Triality and Moufang Loops

- G a group with triality \implies

$$\mathcal{M}(G) := \{g^{-1}g^\sigma \mid g \in G\} \text{ is a Moufang loop w.r.t.}$$

$$m \cdot n = m^{-\rho} nm^{-\rho^2} = n^{-\rho^2} mn^{-\rho} \quad \forall \quad m, n \in \mathcal{M}(G)$$

- M a Moufang loop \implies

$$\mathcal{D}(M) := \langle L_m, R_m, P_m := R_m^{-1} L_m^{-1} \mid m \in M \rangle$$

is a group with triality w.r.t.

$$L_m \xrightarrow{\rho} R_m \xrightarrow{\rho} P_m \xrightarrow{\rho} L_m$$
Groups with Triality and Moufang Loops

• G a group with triality \Rightarrow

$$\mathcal{M}(G) := \{ g^{-1}g^\sigma \mid g \in G \}$$

is a Moufang loop w.r.t.

$$m \cdot n = m^{-\rho}nm^{-\rho^2} = n^{-\rho^2}mn^{-\rho} \quad \forall \ m, n \in \mathcal{M}(G)$$

• M a Moufang loop \Rightarrow

$$\mathcal{D}(M) := \langle L_m, R_m, P_m := R_m^{-1}L_m^{-1} \mid m \in M \rangle$$

is a group with triality w.r.t.

$$L_m \xrightarrow{\rho} R_m \xrightarrow{\rho} P_m \xrightarrow{\rho} L_m$$

$$P_m^\sigma = P_m^{-1}, \quad L_m^\sigma = R_m^{-1}, \quad R_m^\sigma = L_m^{-1}$$
Groups with Triality and Moufang Loops

• \(G \) a group with triality \(\Rightarrow \)

\[M(G) := \{ g^{-1} g^\sigma \mid g \in G \} \]

is a Moufang loop w.r.t.

\[m \cdot n = m^{-\rho} n m^{-\rho^2} = n^{-\rho^2} m n^{-\rho} \quad \forall \ m, n \in M(G) \]

• \(M \) a Moufang loop \(\Rightarrow \)

\[D(M) := \langle L_m, R_m, P_m := R_m^{-1} L_m^{-1} \mid m \in M \rangle \]

is a group with triality w.r.t.

\[L_m \xrightarrow{\rho} R_m \xrightarrow{\rho} P_m \xrightarrow{\rho} L_m \]

\[P_m^\sigma = P_m^{-1}, \quad L_m^\sigma = R_m^{-1}, \quad R_m^\sigma = L_m^{-1} \]

J. Hall, *Moufang Loops and Groups with Triality are Essentially the Same Thing*
Lie algebras with triality

Groups with triality $\xrightarrow{\mathcal{M}(G)}$ Moufang loops $\xleftarrow{\mathcal{D}(M)}$
A Malcev algebra is a vector space m with
A Malcev algebra is a vector space m with a bilinear map $[\cdot, \cdot] : m \times m \rightarrow m$ s.t.
• A Malcev algebra is a vector space m with a bilinear map $[\cdot, \cdot] : m \times m \to m$ s.t.

- $[x, y] = -[y, x]$,
- $[J(x, y, z), x] = J(x, y, [x, z])$
A Malcev algebra is a vector space m with a bilinear map $[\cdot, \cdot] : m \times m \to m$ s.t.

- $[x, y] = -[y, x]$,
- $[J(x, y, z), x] = J(x, y, [x, z])$

where $J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]$
A Malcev algebra is a vector space m with a bilinear map $[\cdot, \cdot] : m \times m \to m$ s.t.

- $[x, y] = -[y, x],$
- $[J(x, y, z), x] = J(x, y, [x, z])$

where $J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]$

Examples:
Malcev Algebras (Malcev ’55)

- A Malcev algebra is a vector space m with a bilinear map $[·, ·] : m \times m \to m$ s.t.
 - $[x, y] = -[y, x],$
 - $[J(x, y, z), x] = J(x, y, [x, z])$

where $J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]$

- Examples:
 1. any Lie algebra
Malcev Algebras (Malcev '55)

• A Malcev algebra is a vector space m with a bilinear map $[\cdot, \cdot] : m \times m \rightarrow m$ s.t.

 ▶ $[x, y] = -[y, x],$

 ▶ $[J(x, y, z), x] = J(x, y, [x, z])$

where $J(x, y, z) = [[x, y], z] + [[y, z], x] + [[z, x], y]$

• Examples:

 (1) any Lie algebra

 (2) any alternative algebra under $[x, y] = xy - yx$
A Malcev algebra is a vector space \(m \) with a bilinear map \([\cdot, \cdot] : m \times m \to m\) s.t.

\[
\begin{align*}
[x, y] &= -[y, x], \\
[J(x, y, z), x] &= J(x, y, [x, z])
\end{align*}
\]

where \(J(x, y, z) = [[[x, y], z] + [[y, z], x] + [[z, x], y] \)

Examples:

1. any Lie algebra
2. any alternative algebra under \([x, y] = xy - yx\)
3. imaginary octonions under \([x, y] = xy - yx\)
\(m: \) a Malcev algebra of characteristic \(\neq 2,3 \)
m: a Malcev algebra of characteristic $\neq 2,3$

(Pérez-Izquierdo, Shestakov ’04)
\(m: \) a Malcev algebra of characteristic \(\neq 2, 3 \)

(Pérez-Izquierdo, Shestakov '04)

\(\mathcal{L}(m): \) Lie algebra generated by symbols \(\ell_x, r_x, \) for \(x \in m \) s.t. \(x \mapsto \ell_x, \ x \mapsto r_x \) are bilinear and
\(m: \) a Malcev algebra of characteristic \(\neq 2, 3 \)

(Pérez-Izquierdo, Shestakov '04)

\(\mathcal{L}(m): \) Lie algebra generated by symbols \(\ell_x, r_x, \) for \(x \in m \) s.t. \(x \mapsto \ell_x, \ x \mapsto r_x \) are bilinear and

\[
\begin{align*}
(\text{a}) & \quad [\ell_x, \ell_y] = \ell_{[x,y]} - 2[\ell_x, r_y], \\
(\text{b}) & \quad [r_x, r_y] = -r_{[x,y]} - 2[\ell_x, r_y], \\
(\text{c}) & \quad [\ell_x, r_y] = [r_x, \ell_y].
\end{align*}
\]
Lie Algebras with Triality and Malcev Algebras

\(m \): a Malcev algebra of characteristic \(\neq 2, 3 \)

(Pérez-Izquierdo, Shestakov '04)

\(\mathcal{L}(m) \): Lie algebra generated by symbols \(\ell_x, r_x \), for \(x \in m \) s.t. \(x \mapsto \ell_x, x \mapsto r_x \) are bilinear and

\[
\begin{align*}
(a) \quad [\ell_x, \ell_y] &= \ell_{[x,y]} - 2[\ell_x, r_y], \\
(b) \quad [r_x, r_y] &= -r_{[x,y]} - 2[\ell_x, r_y], \\
(c) \quad [\ell_x, r_y] &= [r_x, \ell_y].
\end{align*}
\]

Thm. \(\mathcal{L}(m) \) is a Lie algebra with triality w.r.t

- \(\ell^\sigma_x = -r_x, \quad r^\sigma_x = -\ell_x \)
- \(\ell^\rho_x = r_x, \quad r^\rho_x = -\ell_x - r_x \).
m: a Malcev algebra of characteristic $\neq 2, 3$

(Pérez-Izquierdo, Shestakov '04)

$L(m)$: Lie algebra generated by symbols ℓ_x, r_x, for $x \in m$ s.t. $x \mapsto \ell_x$, $x \mapsto r_x$ are bilinear and

(a) $[\ell_x, \ell_y] = \ell_{[x,y]} - 2[\ell_x, r_y]$,
(b) $[r_x, r_y] = -r_{[x,y]} - 2[\ell_x, r_y]$,
(c) $[\ell_x, r_y] = [r_x, \ell_y]$.

Thm. $L(m)$ is a Lie algebra with triality w.r.t

- $\ell_x^\sigma = -r_x$, $r_x^\sigma = -\ell_x$
- $\ell_x^\rho = r_x$, $r_x^\rho = -\ell_x - r_x$.
The Map II

Lie algebras with triality $\mathcal{L}(m) \leftrightarrow m$ Malcev algebras

Groups with triality $G \mapsto \mathcal{M}(G)$ Moufang loops $\mathcal{D}(M) \leftrightarrow M$
Cocommutative Hopf Algebras

► \((H, \Delta, \epsilon, S)\): a unital (cocommutative) Hopf algebra
Cocommutative Hopf Algebras

- \((H, \Delta, \epsilon, S)\): a unital (cocommutative) Hopf algebra

- \(\Delta(u) = \sum u_{(1)} \otimes u_{(2)} = \sum u_{(2)} \otimes u_{(1)} \quad \forall \ u \in H\)
(H, Δ, ε, S): a unital (cocommutative) Hopf algebra

Δ(u) = \sum u_{(1)} \otimes u_{(2)} = \sum u_{(2)} \otimes u_{(1)} \quad \forall \ u \in H

(Sweedler notation)
Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra

- $\Delta(u) = \sum u_{(1)} \otimes u_{(2)} = \sum u_{(2)} \otimes u_{(1)} \quad \forall \ u \in H$

 (Sweedler notation)

- $(\Delta \otimes \text{id})\Delta(u) = (\text{id} \otimes \Delta)\Delta(u) = \sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}$
(H, Λ, ε, S): a unital (cocommutative) Hopf algebra

\[\Delta(u) = \sum u_{(1)} \otimes u_{(2)} = \sum u_{(2)} \otimes u_{(1)} \quad \forall \ u \in H \]

(Sweedler notation)

\[(\Delta \otimes \text{id})\Delta(u) = (\text{id} \otimes \Delta)\Delta(u) = \sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}\]

Ex: \(U = U(\mathfrak{g}) \) (universal enveloping algebra of \(\mathfrak{g} \)):
Cocommutative Hopf Algebras

- \((H, \Delta, \epsilon, S)\): a unital (cocommutative) Hopf algebra

- \(\Delta(u) = \sum u(1) \otimes u(2) = \sum u(2) \otimes u(1) \quad \forall \ u \in H\)

 \((\text{Sweedler notation})\)

 \((\Delta \otimes \text{id})\Delta(u) = (\text{id} \otimes \Delta)\Delta(u) = \sum u(1) \otimes u(2) \otimes u(3)\)

- Ex: \(U = U(g)\) (universal enveloping algebra of \(g\)):

 \((a)\) \(\Delta : U \rightarrow U \otimes U, \quad \Delta(x) = x \otimes 1 + 1 \otimes x\)
Cocommutative Hopf Algebras

- \((H, \Delta, \epsilon, S)\): a unital (cocommutative) Hopf algebra

- \(\Delta(u) = \sum u_{(1)} \otimes u_{(2)} = \sum u_{(2)} \otimes u_{(1)} \quad \forall \ u \in H\)

 \((\text{Sweedler notation})\)

 \((\Delta \otimes \text{id})\Delta(u) = (\text{id} \otimes \Delta)\Delta(u) = \sum u_{(1)} \otimes u_{(2)} \otimes u_{(3)}\)

- Ex: \(U = U(\mathfrak{g})\) (universal enveloping algebra of \(\mathfrak{g}\)):

 \((a)\) \(\Delta : U \rightarrow U \otimes U, \quad \Delta(x) = x \otimes 1 + 1 \otimes x\)

 \((b)\) \(\epsilon : U \rightarrow \mathbb{F}, \quad \epsilon(x) = 0,\)
Cocommutative Hopf Algebras

- (H, Δ, ϵ, S): a unital (cocommutative) Hopf algebra

- $\Delta(u) = \sum u(1) \otimes u(2) = \sum u(2) \otimes u(1) \quad \forall \ u \in H$
 (Sweedler notation)

- $(\Delta \otimes \text{id})\Delta(u) = (\text{id} \otimes \Delta)\Delta(u) = \sum u(1) \otimes u(2) \otimes u(3)$

- **Ex:** $U = U(\mathfrak{g})$ (universal enveloping algebra of \mathfrak{g}):

 (a) $\Delta : U \rightarrow U \otimes U, \quad \Delta(x) = x \otimes 1 + 1 \otimes x$

 (b) $\epsilon : U \rightarrow \mathbb{F}, \quad \epsilon(x) = 0,$

 (c) $S : U \rightarrow U, \quad S(x) = -x,$

 for all $x \in \mathfrak{g}$
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a Hopf algebra with triality if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a \textbf{Hopf algebra with triality} if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.

$$\sum T(u_1) T(u_2)^\rho T(u_3)^{\rho^2} = \epsilon(u)1$$
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a Hopf algebra with triality if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.

$$
\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u)1
$$

where $T(v) = \sum v_{(1)}^\sigma S(v_{(2)})$.
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a Hopf algebra with triality if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.

$$\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u)1$$

where $T(v) = \sum v_{(1)}^\sigma S(v_{(2)})$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \text{Aut}(G)$
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a Hopf algebra with triality if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.

$$\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u) 1$$

where $T(v) = \sum v_{(1)}^\sigma S(v_{(2)})$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \text{Aut}(G)$

$\mathbb{F}G$: group algebra with
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a Hopf algebra with triality if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.

$$\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u)1$$

where $T(v) = \sum v_{(1)}^\sigma S(v_{(2)})$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \text{Aut}(G)$

$\mathbb{F}G$: group algebra with

$$\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1}$$
Defn. (B,M,P-I) A cocommutative Hopf algebra H is a Hopf algebra with triality if there exist $S_3 \cong \langle \sigma, \rho \rangle \subseteq \text{Aut}(H)$ s.t.

$$\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u)1$$

where $T(v) = \sum v_{(1)}^{\sigma} S(v_{(2)})$.

Ex. G: a group with triality w.r.t. $\sigma, \rho \in \text{Aut}(G)$

$\mathbb{F}G$: group algebra with

$$\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1}$$

$\mathbb{F}G$ is a Hopf algebra with triality with $T(g) = g^\sigma g^{-1}$.

* Replace T with $T'(g) = T(\sigma(g^{-1})) = g^{-1}g^\sigma$ to get earlier defn.
Thm. \(\mathfrak{g} \) is a Lie algebra with triality w.r.t. \(\sigma, \rho \) \(\implies \)
\(U(\mathfrak{g}) \) is a Hopf algebra with triality w.r.t. \(\sigma, \rho \).

Proof. \(T(\nu) = \sum \nu_{(1)}^\sigma S(\nu_{(2)}) \) where \(\Delta(\nu) = \sum \nu_{(1)} \otimes \nu_{(2)} \).
The Lie and Hopf Connection

Thm. \(\mathfrak{g} \) is a Lie algebra with triality w.r.t. \(\sigma, \rho \) \(\implies \)
\(\mathcal{U}(\mathfrak{g}) \) is a Hopf algebra with triality w.r.t. \(\sigma, \rho \).

Proof. \(T(v) = \sum v_1^{\sigma} S(v_2) \) where \(\Delta(v) = \sum v_1 \otimes v_2 \).

Now \(\Delta(x) = x \otimes 1 + 1 \otimes x, \) \(\epsilon(x) = 0, S(x) = -x \) for all \(x \in \mathfrak{g}, \)
and \(\Delta(1) = 1 \otimes 1, \) \(\epsilon(1) = 1, S(1) = 1. \)
Thm. \(g \) is a Lie algebra with triality w.r.t. \(\sigma, \rho \) \(\implies \)
\(U(g) \) is a Hopf algebra with triality w.r.t. \(\sigma, \rho \).

Proof. \(T(v) = \sum v^\sigma_{(1)} S(v_{(2)}) \) where \(\Delta(v) = \sum v_{(1)} \otimes v_{(2)} \).

Now \(\Delta(x) = x \otimes 1 + 1 \otimes x, \epsilon(x) = 0, S(x) = -x \) for all \(x \in g \), and \(\Delta(1) = 1 \otimes 1, \epsilon(1) = 1, S(1) = 1 \).

\[
T(x) = x^\sigma S(1) + 1^\sigma S(x) = x^\sigma - x
\]
\[
T(1) = 1.
\]
The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \implies U(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v) = \sum v_{(1)}^{\sigma} S(v_{(2)})$ where $\Delta(v) = \sum v_{(1)} \otimes v_{(2)}$.

Now $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\epsilon(x) = 0$, $S(x) = -x$ for all $x \in \mathfrak{g}$, and $\Delta(1) = 1 \otimes 1$, $\epsilon(1) = 1$, $S(1) = 1$.

$$T(x) = x^{\sigma} S(1) + 1^{\sigma} S(x) = x^{\sigma} - x$$
$$T(1) = 1.$$

Relation we want is $\sum T(u_{(1)}) T(u_{(2)})^{\rho} T(u_{(3)})^{\rho^2} = \epsilon(u)1$.
The Lie and Hopf Connection

Thm. \mathfrak{g} is a Lie algebra with triality w.r.t. $\sigma, \rho \implies U(\mathfrak{g})$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v) = \sum v_{(1)}^\sigma S(v_{(2)})$ where $\Delta(v) = \sum v_{(1)} \otimes v_{(2)}$.

Now $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\epsilon(x) = 0$, $S(x) = -x$ for all $x \in \mathfrak{g}$, and $\Delta(1) = 1 \otimes 1$, $\epsilon(1) = 1$, $S(1) = 1$.

$$T(x) = x^\sigma S(1) + 1^\sigma S(x) = x^\sigma - x$$

$$T(1) = 1.$$

Relation we want is $\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u)1$. Now

$$(\Delta \otimes \text{id})(\Delta(x)) = (\Delta \otimes \text{id})(x \otimes 1 + 1 \otimes x)$$

$$= x \otimes 1 \otimes 1 + 1 \otimes x \otimes 1 + 1 \otimes 1 \otimes x$$
The Lie and Hopf Connection

Thm. g is a Lie algebra with triality w.r.t. $\sigma, \rho \implies U(g)$ is a Hopf algebra with triality w.r.t. σ, ρ.

Proof. $T(v) = \sum v_{(1)}^\sigma S(v_{(2)})$ where $\Delta(v) = \sum v_{(1)} \otimes v_{(2)}$.

Now $\Delta(x) = x \otimes 1 + 1 \otimes x$, $\epsilon(x) = 0$, $S(x) = -x$ for all $x \in g$, and $\Delta(1) = 1 \otimes 1$, $\epsilon(1) = 1$, $S(1) = 1$.

$$T(x) = x^\sigma S(1) + 1^\sigma S(x) = x^\sigma - x$$

$$T(1) = 1.$$

Relation we want is $\sum T(u_{(1)}) T(u_{(2)})^\rho T(u_{(3)})^{\rho^2} = \epsilon(u)1$. Now

$$\left(\Delta \otimes \text{id}\right)(\Delta(x)) = \left(\Delta \otimes \text{id}\right)(x \otimes 1 + 1 \otimes x)$$

$$= x \otimes 1 \otimes 1 + 1 \otimes x \otimes 1 + 1 \otimes 1 \otimes x$$

$$(x^\sigma - x) + (x^\sigma - x)^\rho + (x^\sigma - x)^{\rho^2} = 0 = \epsilon(x)1. \quad \Box$$
Thm. H a Hopf algebra with triality w.r.t. \(\sigma, \rho \implies \)
Getting Some Arrows

Thm. H a Hopf algebra with triality w.r.t. $\sigma, \rho \Rightarrow$

(a) the primitive elements of H form a Lie algebra with triality w.r.t. σ, ρ.
Theorem H. A Hopf algebra with triality w.r.t. σ, ρ implies:

(a) the primitive elements of H form a Lie algebra with triality w.r.t. σ, ρ.

(Recall y is primitive if $\Delta(y) = y \otimes 1 + 1 \otimes y$.)
Thm. \(H \) a Hopf algebra with triality w.r.t. \(\sigma, \rho \) \(\implies \)

(a) the primitive elements of \(H \) form a Lie algebra with triality w.r.t. \(\sigma, \rho \).

(Recall \(y \) is primitive if \(\Delta(y) = y \otimes 1 + 1 \otimes y \).)

(b) the group-like elements of \(H \) form a group with triality w.r.t. \(\sigma, \rho \).

(Recall \(g \) is group-like if \(\Delta(g) = g \otimes g \).)
Thm. \(H \) a Hopf algebra with triality w.r.t. \(\sigma, \rho \)

(a) the primitive elements of \(H \) form a Lie algebra with triality w.r.t. \(\sigma, \rho \).

(Recall \(y \) is primitive if \(\Delta(y) = y \otimes 1 + 1 \otimes y \).)

(b) the group-like elements of \(H \) form a group with triality w.r.t. \(\sigma, \rho \).

(Recall \(g \) is group-like if \(\Delta(g) = g \otimes g \).)
The Map III

Lie algebras with triality \[\mathcal{L}(m) \leftrightarrow m \]

Malcev algebras

Hopf algebras with triality

\[g \mapsto U(g) \]

primitive elts.

Groups with triality

\[G \mapsto \mathcal{M}(G) \]

Moufang loops

\[D(M) \leftrightarrow M \]
Moufang-Hopf Algebras

- (U, Δ, ϵ): a (cocommutative) coassociative unital bialgebra s.t. for all $u, v, w \in U,$
(U, Δ, ε): a (cocommutative) coassociative unital bialgebra s.t. for all $u, v, w \in U$,

$$\sum u_{(1)} (v(u_{(2)} w)) = \sum ((u_{(1)} v)u_{(2)}) w$$
Moufang-Hopf Algebras

\[(U, \Delta, \epsilon) : \text{ a (cocommutative) coassociative unital bialgebra} \]
s.t. for all \(u, v, w \in U \),

\[
\sum u_{(1)} (v (u_{(2)} w)) = \sum ((u_{(1)} v) u_{(2)}) w
\]

and there exists a linear map \(S : U \rightarrow U \) s.t.
(U, Δ, ε): a (cocommutative) coassociative unital bialgebra s.t. for all \(u, v, w \in U \),

\[
\sum u_{(1)} (v(u_{(2)}w)) = \sum ((u_{(1)}v)u_{(2)})w
\]

and there exists a linear map \(S: U \rightarrow U \) s.t.

\[
\sum S(u_{(1)}) (u_{(2)}v) = \varepsilon(u)v = \sum u_{(1)} (S(u_{(2)})v)
\]

\[
\sum (vu_{(1)}) S(u_{(2)}) = \varepsilon(u)v = \sum (vS(u_{(1)})) u_{(2)}.
\]
Moufang-Hopf Algebras

- (U, Δ, ϵ): a (cocommutative) coassociative unital bialgebra s.t. for all $u, v, w \in U$,

$$
\sum u_{(1)} (v (u_{(2)} w)) = \sum ((u_{(1)} v) u_{(2)}) w
$$

and there exists a linear map $S : U \rightarrow U$ s.t.

$$
\sum S(u_{(1)}) (u_{(2)} v) = \epsilon(u) v = \sum u_{(1)} (S(u_{(2)}) v)
$$

$$
\sum (vu_{(1)}) S(u_{(2)}) = \epsilon(u) v = \sum (vS(u_{(1)})) u_{(2)}.
$$

- In this case, say (U, Δ, ϵ) is a Moufang-Hopf algebra.
Hopf Algebras With Triality & Moufang Hopf Algebras, the Map $U \mapsto \mathcal{O}(U)$

U: cocommutative Moufang-Hopf algebra
Hopf Algebras With Triality & Moufang Hopf Algebras, the Map $U \mapsto \mathfrak{D}(U)$

U: cocommutative Moufang-Hopf algebra

$\mathfrak{D}(U)$: unital associative algebra generated by $\{L_u, R_u, P_u \mid u \in U\}$
U: cocommutative Moufang-Hopf algebra

\(D(U) \): unital associative algebra generated by \(\{L_u, R_u, P_u \mid u \in U\} \)
where \(P_1 = 1 \), \(P_{\alpha u + \beta v} = \alpha P_u + \beta P_v \) and
Hopf Algebras With Triality & Moufang Hopf Algebras, the Map \(U \mapsto \mathfrak{D}(U)\)

\(U\): cocommutative Moufang-Hopf algebra

\(\mathfrak{D}(U)\): unital associative algebra generated by \(\{L_u, R_u, P_u \mid u \in U\}\)

where \(P_1 = 1\), \(P_{\alpha u + \beta v} = \alpha P_u + \beta P_v\) and

\[
\sum P_{u(1)} L_{u(2)} R_{u(3)} = \epsilon(u)1, \quad \sum R_{u(1)} P_v L_{u(2)} = P S(u)v
\]

\[
\sum L_{u(1)} P_v R_{u(2)} = P v S(u), \quad \sum P_{u(1)} P_v P_{u(2)} = \sum P_{u(1)} v u(2)
\]

& cyclic permutations of them \(P_u \xrightarrow{\rho} L_u \xrightarrow{\rho} R_u \xrightarrow{\rho} P_u\)
Hopf Algebras With Triality & Moufang Hopf Algebras, the Map $U \mapsto \mathcal{D}(U)$

U: cocommutative Moufang-Hopf algebra

$\mathcal{D}(U)$: unital associative algebra generated by $\{L_u, R_u, P_u \mid u \in U\}$

where $P_1 = 1$, $P_{\alpha u + \beta v} = \alpha P_u + \beta P_v$ and

\[
\sum P_{u_1} L_{u_2} R_{u_3} = \epsilon(u)1, \quad \sum R_{u_1} P_v L_{u_2} = P S(u) v
\]

\[
\sum L_{u_1} P_v R_{u_2} = P v S(u), \quad \sum P_{u_1} P_v P_{u_2} = \sum P_{u_1} v u_{(2)}
\]

& cyclic permutations of them $P_u \xrightarrow{\rho} L_u \xrightarrow{\rho} R_u \xrightarrow{\rho} P_u$

Thm. (B,M,P-I) $\mathcal{D}(U)$ with ρ (above) and σ given by $P_u \xrightarrow{\sigma} P S(u)$, $L_u \xrightarrow{\sigma} R S(u)$, $R_u \xrightarrow{\sigma} L S(u)$ is a Hopf algebra with triality.
The Map IV

Lie algebras with triality

$\mathfrak{g} \mapsto U(\mathfrak{g})$ primitive elts.

Hopf algebras with triality

$H \mapsto \mathcal{M}(H)$

Moufang-Hopf algebras

$G \mapsto \mathcal{M}(G)$

Moufang loops

Groups with triality

$\mathcal{L}(m) \leftrightarrow m$

Malcev algebras

$\mathcal{D}(U) \leftrightarrow U$

group algebra

$\mathcal{D}(M) \leftrightarrow M$

group-likes
Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set
Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

$$T(x) = \sum x_{(1)}^\sigma S(x_{(2)})$$

for $x \in H$.
Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

$$T(x) = \sum x_{(1)}^\sigma S(x_{(2)}) \quad \text{for } x \in H.$$

Then $\mathcal{M}(H) = \{ T(x) \mid x \in H \}$ is a Moufang-Hopf algebra with the coproduct, counit, and antipode inherited from H and with product:
Thm. (B,M,P-I) Let H be cocommutative Hopf algebra with triality w.r.t. σ, ρ. Set

$$T(x) = \sum x_1^\sigma S(x_2) \quad \text{for } x \in H.$$

Then $\mathcal{M}(H) = \{ T(x) \mid x \in H \}$ is a Moufang-Hopf algebra with the coproduct, counit, and antipode inherited from H and with product:

$$u \ast v = \sum S(u_1)^\rho v S(u_2)^\rho = \sum S(v_1)^\rho u S(v_2)^\rho$$

for all $u, v \in \mathcal{M}(H)$.

The Map V

Lie algebras with triality \(\mathcal{L}(m) \leftrightarrow m \)

Malcev algebras

Hopf algebras with triality

primitive elts. \(g \mapsto U(g) \)

Malcev-Hopf algebras

primitive elts. \(m \mapsto U(m) \)

Moufang-Hopf algebras

group algebra

Moufang loops

group-likes

loop algebra

D(U) \leftarrow U

D(M) \leftarrow M

G \mapsto \mathcal{M}(G)

H \mapsto \mathcal{M}(H)
Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,
Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$\iota : U \rightarrow \mathcal{M}(\mathcal{D}(U)), \quad (\iota(u) = P_u)$
Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

\[\iota : U \to M(D(U)), \quad \iota(u) = P_u \]

is an isomorphism of Moufang-Hopf algebras.
Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

\[\iota : U \to \mathcal{M}(\mathcal{D}(U)), \quad (\iota(u) = P_u) \]

is an isomorphism of Moufang-Hopf algebras.

Thm. (B,M,P-I) Let \(\mathfrak{m} \) be a Malcev algebra of char. \(\neq 2, 3 \) (so \(\mathcal{U}(\mathfrak{m}) \) is a cocommutative Moufang-Hopf algebra). Then
Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

\[\iota : U \to \mathcal{M}(\mathcal{O}(U)), \quad (\iota(u) = P_u) \]

is an isomorphism of Moufang-Hopf algebras.

Thm. (B,M,P-I) Let m be a Malcev algebra of char. $\neq 2, 3$ (so $\mathcal{U}(m)$ is a cocommutative Moufang-Hopf algebra). Then

\[\mathcal{O}(\mathcal{U}(m)) \cong \mathcal{U}(\mathcal{L}(m)) \]
Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

$$i : U \to M(D(U)), \quad (i(u) = Pu)$$

is an isomorphism of Moufang-Hopf algebras.

Thm. (B,M,P-I) Let m be a Malcev algebra of char. $\neq 2, 3$ (so $U(m)$ is a cocommutative Moufang-Hopf algebra). Then

$$D(U(m)) \cong U(L(m))$$

$$U(m) \cong M(U(L(m))).$$
Connections with Universal Enveloping Algebras

Thm. (B,M,P-I) For any U cocommutative Moufang-Hopf algebra,

\[\iota : U \to \mathcal{M}(\mathcal{D}(U)), \quad (\iota(u) = P_u) \]

is an isomorphism of Moufang-Hopf algebras.

Thm. (B,M,P-I) Let \(m \) be a Malcev algebra of char. \(\neq 2, 3 \) (so \(U(m) \) is a cocommutative Moufang-Hopf algebra). Then

\[\mathcal{D}(U(m)) \cong U(L(m)) \]
\[U(m) \cong \mathcal{M}(U(L(m))). \]

Remark. (Shestakov–Pérez-Izquierdo ('04))

\(m \) is a Lie algebra \(\implies U(m) = U(m). \)
Nichols Algebra \(N \)

generators: \(g, x_i \ (i = 1, \ldots, n) \)
Nichols Algebra N

- **generators:** \(g, x_i \ (i = 1, \ldots, n) \)
- **relations:** \(g^2 = 1, \ x_i x_j = -x_j x_i, \ gx_i = x_i g \)
Nichols Algebra N

generators: $g, x_i \ (i = 1, \ldots, n)$

relations: $g^2 = 1, \ x_i x_j = -x_j x_i, \ g x_i = x_i g$

$\Delta(g) = g \otimes g, \ \epsilon(g) = 1, \ S(g) = g^{-1} = g$
Nichols Algebra N

generators: \(g, x_i \ (i = 1, \ldots, n) \)

relations: \(g^2 = 1, \quad x_i x_j = -x_j x_i, \quad g x_i = x_i g \)

\[
\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1} = g
\]

\[
\Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \quad \epsilon(x_i) = 0, \quad S(x_i) = -x_i g
\]
Nichols Algebra N

generators: $g, x_i \; (i = 1, \ldots, n)$

relations: $g^2 = 1, \quad x_i x_j = -x_j x_i, \quad g x_i = x_i g$

\[
\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1} = g
\]

\[
\Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \quad \epsilon(x_i) = 0, \quad S(x_i) = -x_i g
\]

$\text{Aut}(N) = \text{GL}_n(F)$, \quad $a = (a_{i,j}) \in \text{GL}_n(F)$ \quad where
Nichols Algebra N

generators: \(g, x_i \ (i = 1, \ldots, n) \)

relations: \(g^2 = 1, \ x_i x_j = -x_j x_i, \ g x_i = x_i g \)

\[
\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1} = g
\]

\[
\Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \quad \epsilon(x_i) = 0, \quad S(x_i) = -x_i g
\]

\(\text{Aut}(N) = \text{GL}_n(\mathbb{F}), \quad a = (a_{i,j}) \in \text{GL}_n(\mathbb{F}) \) where

\[
\phi_a(g) = g, \quad \phi_a(x_i) = \sum_j a_{i,j} x_j
\]
Nichols Algebra \(\mathbb{N} \)

generators: \(g, x_i \ (i = 1, \ldots, n) \)

relations:

\[
g^2 = 1, \quad x_i x_j = -x_j x_i, \quad g x_i = x_i g
\]

\[
\begin{align*}
\Delta(g) &= g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1} = g \\
\Delta(x_i) &= x_i \otimes g + 1 \otimes x_i, \quad \epsilon(x_i) = 0, \quad S(x_i) = -x_i g
\end{align*}
\]

\(\text{Aut}(\mathbb{N}) = \text{GL}_n(\mathbb{F}) \), \(a = (a_{i,j}) \in \text{GL}_n(\mathbb{F}) \) where

\[
\phi_a(g) = g, \quad \phi_a(x_i) = \sum_j a_{i,j} x_j
\]

\(\sigma, \rho \) block diagonal w.r.t. \(\{ x_i | i = 1, \ldots, n \} \) with blocks
generators: \(g, x_i \ (i = 1, \ldots, n) \)

relations: \(g^2 = 1, \ x_ix_j = -x_jx_i, \ gx_i = x_ig \)

\[
\begin{align*}
\Delta(g) & = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1} = g \\
\Delta(x_i) & = x_i \otimes g + 1 \otimes x_i, \quad \epsilon(x_i) = 0, \quad S(x_i) = -x_ig
\end{align*}
\]

\(\text{Aut}(N) = \text{GL}_n(\mathbb{F}) \), \(a = (a_{i,j}) \in \text{GL}_n(\mathbb{F}) \) where

\[
\phi_a(g) = g, \quad \phi_a(x_i) = \sum_j a_{i,j}x_j
\]

\(\sigma, \rho \) block diagonal w.r.t. \(\{x_i \mid i = 1, \ldots, n\} \) with blocks

\[
\begin{align*}
\sigma & : (1) \quad (-1) \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
\rho & : (1) \quad (1) \quad \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix} \quad \omega^3 = 1.
\end{align*}
\]
Nichols Algebra \(N \)

generators: \(g, x_i \ (i = 1, \ldots, n) \)

relations: \(g^2 = 1, \ x_i x_j = -x_j x_i, \ g x_i = x_i g \)

\[
\Delta(g) = g \otimes g, \quad \epsilon(g) = 1, \quad S(g) = g^{-1} = g
\]

\[
\Delta(x_i) = x_i \otimes g + 1 \otimes x_i, \quad \epsilon(x_i) = 0, \quad S(x_i) = -x_i g
\]

\[\text{Aut}(N) = \text{GL}_n(\mathbb{F}), \quad a = (a_{i,j}) \in \text{GL}_n(\mathbb{F}) \text{ where}\]

\[
\phi_a(g) = g, \quad \phi_a(x_i) = \sum_j a_{i,j} x_j
\]

\(\sigma, \rho \) block diagonal w.r.t. \(\{x_i \mid i = 1, \ldots, n\} \) with blocks

\[
\sigma : \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \quad \rho : \begin{pmatrix} \omega & 0 \\ 0 & \omega^2 \end{pmatrix}, \quad \omega^3 = 1.
\]

Thm. (Madariaga) \(N \) is a non-cocomm. Hopf alg. with triality.