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Abstract

We consider latin squares obtained by extending the Cayley tables of finite

abelian groups, and give preliminary results on the existence/nonexistence
of latin squares orthogonal to these.
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Extending the Cayley table of Zg.

The Cayley table of Z¢ = {0,1,2,3,4,5}.
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Extending the Cayley table of Zg.

The Cayley table of Z¢ = {0,1,2,3,4,5}.

Extend the symbol set to {0,1,2,3,4,5, a}.

01 2 3 45 a
0|01 2 3 45 a
111 2 3 450
212 3 45 01
313 45 01 2
414 5 01 2 3
5/5 01 2 3 4
ala
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Extending the Cayley table of Zg.

The Cayley table of Z¢ = {0,1,2,3,4,5}.

Extend the symbol set to {0,1,2,3,4,5, a}.

01 2 3 45 a
0|01 2 3 45 a
111 2 3 450
212 3 45 01
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414 5 01 2 3
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Extending the Cayley table of Zg.

The Cayley table of Z¢ = {0,1,2,3,4,5}.

Extend the symbol set to {0,1,2,3,4,5, a}.

01 2 3 45 a
0j]0 1 2 3 4 5 a
111 2 3 45 0 4
212 3 45 010
313 4501 2 2
414 5 01 2 3 5
515 01 2 3 41
ala b 1 4 0 2
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Extending the Cayley table of Zg.

The Cayley table of Z¢ = {0,1,2,3,4,5}.

Extend the symbol set to {0,1,2,3,4,5, a}.

01 2 3 45 a
0j]0 1 2 3 4 5 a
1112 3 a 5 0 4
212 3 45 a2 10
31345 01 a 2
414 a 01 2 3 5
515 0 a 2 3 41
ala b 1 4 0 2
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Extending the Cayley table of Zg.

The Cayley table of Z¢ = {0,1,2,3,4,5}.

Extend the symbol set to {0,1,2,3,4,5, a}.

01 2 3 45 a
0|0 1 2 3 4 5 a
1112 3 a 5 0 4
212 345 a 10
313 4501 a2
414 a 01 2 35
5/5 0 a 2 3 41
ala b1 40 2 3

Anthony B. Evans (Wright State University) Latin squares 8 /38



The general construction.
G ={go.--

,&m—1}, & = 0, an abelian group.
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The general construction.

G:{go,...

,&m—1}, & = 0, an abelian group.
0:{g1,...,8m-1} — {g1,...,8m—1} a bijection.
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The general construction.

G =1{g0,---,8m—1}, & =0, an abelian group.

0:{g1,...,8m-1} — {g1,...,8m—1} a bijection.

Form a latin square, Exty(G; a).

80

81

gm-1

81
Exty(G; a) =
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The general construction.

G =1{g0,---,8m—1}, & =0, an abelian group.
0:{g1,...,8m-1} — {g1,...,8m—1} a bijection.

Form a latin square, Exty(G; a).

80 g ... 8m-1| 4
81
Exty(G; a) = 5 A B
8m—1
a C w
a if 0(gi) = gj,

The g;gith entry of A is { .
Ei&j y gi+g ifo(g)#g
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The general construction.

G =1{g0,---,8m—1}, & =0, an abelian group.
0:{g1,...,8m-1} — {g1,...,8m—1} a bijection.

Form a latin square, Exty(G; a).

80 g ... 8m-1| 4
81
Exty(G; a) = 5 A B
8m—1
a C w
a if 0(gi) = gj,

The g;gith entry of A is { .
Ei&j y gi+g ifo(g)#g

The ith entry of B is g; + 6(g;).
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The general construction.

G =1{g0,---,8m—1}, & =0, an abelian group.
0:{g1,...,8m-1} — {g1,...,8m—1} a bijection.

Form a latin square, Exty(G; a).

80 g ... 8m-1| 4
81
Exty(G; a) = 5 A B
8m—1

a C w

. a if 0(gi) = g

The g;gith entry of A is { . )

Ei&j y gi+g ifo(g)#g

The ith entry of B is g; + 6(g;).
The jth entry of C is gj + 07 (g;).
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Characterizing 6 and w.

Define n by n(g;) = 0(g;) + &i-
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Characterizing 6 and w.

Define n by n(gi) = 0(gi) + &i-

Lemma
@ If G has a unique involution §, then
w = ¢, and

0 is a near complete mapping of G, i.e.,  is a bijection
{1, 8m-1} — {g0,-- -, 8m—1} \ {0}.
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Characterizing 6 and w.

Define n by n(gi) = 0(gi) + &i-

Lemma
@ If G has a unique involution §, then
w =4, and
0 is a near complete mapping of G, i.e.,  is a bijection
{&1,. ., 6m-1} — {80, .-, 8m-1} \ {6}
@ Otherwise
w =0, and

f is a “complete mapping” of G, i.e., i is a bijection
{e,....8m-1} — {8&1,.. ., 8m—1}.
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A transversal in Ext(Zg; a)

0123 45 a a) Each row contains one cell of
1 23 a5 0 4 the transversal.

23 45 a10

34501 a2

4 a 01 2 35

5 0 a2 3 41

a 514023
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A transversal in Ext(Zg; a)

0123 45 a a) Each row contains one cell of

1 23 a5 0 4 the transversal.

2 345 a10@0 b) Each column contains one cell of
34501 a2 the transversal.

4 a 012 35

5 0 a2 3 41

ab5140 23
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A transversal in Ext(Zg; a)

0123 45 a a) Each row contains one cell of

1 2 3 ab5 0 4 the transversal.

2 345 a10@0 b) Each column contains one cell of
345 01 a2 the transversal.

4 a 01 2 35 c) Each symbol appears exactly once
50 a 2 3 41 in the transversal.

ab 140 2 3
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Deviations and the A- lemma.

Let L be a latin square with rows and columns indexed by the elements
{g0,...,8m—1} of an abelian group G.
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Deviations and the A- lemma.

Let L be a latin square with rows and columns indexed by the elements
{g0,...,8m—1} of an abelian group G.

If cell Cisin row g; and column gj, and its entry is g, then

dev(C) = gk — (& + &)
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Deviations and the A- lemma.

Let L be a latin square with rows and columns indexed by the elements
{g0,...,8m—1} of an abelian group G.

If cell Cisin row g; and column gj, and its entry is g, then
dev(C) = gk — (gi + gj)-

The A-lemma

Let Gi,..., C, be the cells of a transversal of L.

o If G has a unique involution 9, then

> dev(G) =04
i=1

@ Otherwise .
> " dev(G) =0.
i=1

4
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Orthogonal latin squares.
A pair of orthogonal latin squares of order 5.

0

and

A WO NO B

O~ WD
= O B~ N
N RO P~ W
WNH= O D
W NN RO
_ O b~ W

\, superimposed

0,0 1,2 2,4 3,1 4,3
1,1 2,3 3,0 4,2 0,4
2,2 3,4 4,1 0,3 1,0
3,3 40 0,2 1,4 2.1
4,4 0,1 1,3 2,0 3,2

Each ordered pair of symbols appears exactly once.
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Orthogonality and transversals.

A pair of orthogonal latin squares of order 5.

01 2 3 4 0 2413
1 23 40 1 30 2 4
2 3401 and 2 4130
34012 302 41
4 01 23 4 1 3 0 2

The red entries in the second square are all 0.
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Orthogonality and transversals.

A pair of orthogonal latin squares of order 5.

01 2 3 4 0 2413
1 23 40 1 30 2 4
2 3 401 and 2 4130
34012 302 41
4 01 23 4 1 3 0 2

The red entries in the second square are all 0.

The corresponding entries in the first square form a transversal.

Anthony B. Evans (Wright State University) Latin squares 17 / 38



Orthogonality and transversals.

A pair of orthogonal latin squares of order 5.

01 2 3 4 0 2413
1 23 40 1 30 2 4
2 3 401 and 2 4130
34012 302 41
4 01 23 4 1 3 0 2

The red entries in the second square are all 0.
The corresponding entries in the first square form a transversal.

Lemma

A latin square has an orthogonal mate if and only its set of cells can be
partitioned by some set of transversals.
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Some new classes of confirmed bachelor squares.
Definition

A bachelor square is a latin square without an orthogonal mate.
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Some new classes of confirmed bachelor squares.

Definition
A bachelor square is a latin square without an orthogonal mate.
It is a confirmed bachelor square if at least one cell is not contained in any

transversal.
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Some new classes of confirmed bachelor squares.

Definition
A bachelor square is a latin square without an orthogonal mate.

It is a confirmed bachelor square if at least one cell is not contained in any
transversal.

v

Theorem

If G does not have a unique involution, then Ext(G; a) is a confirmed
bachelor square.
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Some new classes of confirmed bachelor squares.

Definition
A bachelor square is a latin square without an orthogonal mate.

It is a confirmed bachelor square if at least one cell is not contained in any
transversal.

v

Theorem

If G does not have a unique involution, then Ext(G; a) is a confirmed
bachelor square.

Examples

o If m=0 (mod 4) and G = Z X Zp,, then Ext(G; a) is a confirmed
bachelor square of order m + 1.
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Some new classes of confirmed bachelor squares.

Definition
A bachelor square is a latin square without an orthogonal mate.

It is a confirmed bachelor square if at least one cell is not contained in any
transversal.

v

Theorem

If G does not have a unique involution, then Ext(G; a) is a confirmed
bachelor square.

Examples
o If m=0 (mod 4) and G = Z X Zp,, then Ext(G; a) is a confirmed
bachelor square of order m + 1.

e If mis odd and G = Z,, then Ext(G; a) is a confirmed bachelor
square of order m + 1.
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Proof by example.

0123456 a
1 234560 2
23 25601 4
345200126
Et(Zria)=| 4 5 6 0 2 2 3 1
56 01 2 a4 3
6 01 234 a5
22461350

Suppose there is a transversal through the "a" in the last row.
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Proof by example.

0123456 a
1 234560 2
23256014
345200126

Bt(Zra)=| 4 56 0 2 2 3 1
56012 a4 3
601234 a5
22461350

Suppose there is a transversal through the "a" in the last row.

None of the red entries can be on this transversal.
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Proof by example.

123456
34560 2
3 56014
45 0126
Ext(Zz;2) = 56 0 231
6 012 43
01234 5

Suppose there is a transversal through the "a" in the last row.

None of the red entries can be on this transversal. Remove these.
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Proof by example.

123456
34560 2
3 56014
45 0126
Ext(Zz;2) = 56 0 231
6 012 43
01234 5

Suppose there is a transversal through the "a" in the last row.

None of the red entries can be on this transversal. Remove these.

Rearrange columns: move “red” column.
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Proof by example.

123456
2 3456 0
43 560 1
6 45 012
Ext(Z7:a) = 1560 23
36012 4
5012 3 4

Suppose there is a transversal through the "a" in the last row.

None of the red entries can be on this transversal. Remove these.

Rearrange columns: move “red” column.
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Proof by example.

123456
2 3456 0
43 560 1
6 45 012
Ext(Z7:a) = 1560 23
36012 4
5012 3 4

Suppose there is a transversal through the "a" in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.

Compute deviations.
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Proof by example.

000000
1 00000
20 000 0
300 00 0
Ext(Z7:a) = 4000 00
50000 0
6 0000 0

Suppose there is a transversal through the "a" in the last row.
None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.

Compute deviations.
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Proof by example.

000000
1 00000
20 000 0
300 00 0
Ext(Z7:a) = 4000 00
50000 0
6 0000 0

Suppose there is a transversal through the "a" in the last row.

None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.

Compute deviations.

The transversal must contain exactly one cell from each column and the
deviations must add to 0.
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Proof by example.

000000
1 00000
20 000 0
300 00 0
Ext(Z7:a) = 4000 00
50000 0
6 0000 0

Suppose there is a transversal through the "a" in the last row.

None of the red entries can be on this transversal. Remove these.
Rearrange columns: move “red” column.

Compute deviations.

The transversal must contain exactly one cell from each column and the
deviations must add to 0.

This is impossible: a contradiction.
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Some bachelor/monogamous squares?

Definition
A monogamous square is a latin square that has an orthogonal mate, but
is not contained in a set of three pairwise orthogonal latin squares.
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Some bachelor/monogamous squares?

Definition
A monogamous square is a latin square that has an orthogonal mate, but
is not contained in a set of three pairwise orthogonal latin squares.

Theorem
If G has a unique involution, then Exty(G; a) is a either a bachelor square

Oor a monogamous square.
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Some bachelor/monogamous squares?

Definition
A monogamous square is a latin square that has an orthogonal mate, but
is not contained in a set of three pairwise orthogonal latin squares.

Theorem

If G has a unique involution, then Exty(G; a) is a either a bachelor square
or a monogamous square.

Question
For which 6 is Exty(G; a) a bachelor square; for which a monogamous
square?
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Some partial transversals.

0 0(9) o a
9_1:(6) c; §+071(5)
5 :
a 0
a 0 -I-:H(é) 0 5

Any transversal through the red a must pass through
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Some partial transversals.

0 0(9) o a
9_1:(6) c; §+071(0)
5 :
a 0
a 0 -I-:H(é) 0 5

Any transversal through the red a must pass through the red ¢ + 671(5).
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Some partial transversals.

0 0(9) o a
9_1:(6) ci) §+071(0)
5 :
a 0
a 0 -I-:9(5) 0 5

Any transversal through the red a must pass through the red ¢ + 671(5).

Any transversal through the blue a must pass through

Anthony B. Evans (Wright State University)

Latin squares

28 / 38



Some partial transversals.

0 0(9) o a
9_1:(6) ci) §+071(0)
5 :
a 0
a 0 +:9(5) 0 5

Any transversal through the red a must pass through the red ¢ + 671(5).
Any transversal through the blue a must pass through the blue 6 + 6(9).

Anthony B. Evans (Wright State University)
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Some partial transversals.

0 0(9) o a
9_1:(6) ci) §+071(0)
5 :
a 0
.; 0 +:9(5) 0 )

Any transversal through the red a must pass through the red ¢ + 671(5).
Any transversal through the blue a must pass through the blue 6 + 6(9).

Any transversal through the green 6 must pass through
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Some partial transversals.

0 () ... o0 ... a
9_1:(6) | ci; | A )
5 :
a 0
N N R0 0 ;

Any transversal through the red a must pass through the red ¢ + 671(5).
Any transversal through the blue a must pass through the blue 6 + 6(9).
Any transversal through the green o must pass through the green a.
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Some more partial transversals.

0 ... O(g) --. g a
gs |- a

é,- . g,-—l—.H(g,-)
o LI

If the three red entries are on the same transversal, then
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Some more partial transversals.

0 ... O(g) --. g a
gs |- a

é,- . g,-—l—.H(g,-)
o LI

If the three red entries are on the same transversal, then

0(gi) + 07 (g) = gs + 0(gs) + 6.
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Some more partial transversals.

0 ... O(g) --. g a
gs |- a

é; . g,-—l—.H(g,-)
o LI

If the three red entries are on the same transversal, then

0(gi) + 07 (g) = gs + 0(gs) + 6.

0(gi), 07" (gj), 8 + 0(gs) + 6 € {go, ..., 8m-1} \ {0,6}.
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An example: Ext(Zjs; a)

Anthony B. Evans (Wright State University)
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An example: Ext(Zjs; a)

0|1 2 3|a
112 a 03
2|13 0 all
31la 1 2|0
al0 3 1|2

0(gi), 0 (g;), g + 0(gs) + 0 € {1,3}.

Anthony B. Evans (Wright State University) Latin squares
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An example: Ext(Zjs; a)

0|1 2 3]|a
112 a 03
213 0 a1
31a 1 2|0
al0 3 112

0(g). 0 (gj), &5 + 0(gs) + 6 € {1,3}.

Hence
0(gi) + 07 (g) # gs + 0(gs) + 6.
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An example: Ext(Zg; a)

0|1 2 3 4 5]a
112 3 a 5 014
2!3 45 2 1|0
314 501 a|2
4/a 01 2 3|5
5/0 a 2 3 4|1
al5 1 4 0 2|3

If this square has an orthogonal mate, then the red cells must be on the
same transversal, the blue cells must be on the same transversal, and the
green cells must be on the same transversal.
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An example: Ext(Zg; a)

0|1 2 3 4 5]a
112 3 5 0|4
213 45 a2 1|0
314 501 a

4/a 01 2 3|5
5/0 a 2 3 4|1
alb 1 4 2|3

If this square has an orthogonal mate, then the red cells must be on the
same transversal, the blue cells must be on the same transversal, and the
green cells must be on the same transversal.

Further, the cyan cells must be on the same transversal, and the
cells must be on the same transversal.
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An example: Ext(Zg; a)

0|1 2 3 4 5]a
112 3 5 0|4
213 45 a2 1|0
314 501 a

4/a 01 2 3|5
5/0 a 2 3 4|1
alb 1 4 2|3

If this square has an orthogonal mate, then the red cells must be on the
same transversal, the blue cells must be on the same transversal, and the
green cells must be on the same transversal.

Further, the cyan cells must be on the same transversal, and the
cells must be on the same transversal.

We cannot add more transversals: this is a bachelor square.
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An example: Ext(Zs; a)

0|1 2 3 45 6 7|a
112 3 4 6 7 015
213 4 5 6 0 1|7
3/14 5 6 7 0 a 2

415 6 7 0 1 2 a3
5/a 7 01 2 3 4|6
6|7 a1 2 3 45

7101 a 3 45 6|2
a 0 5 7 1 3|4

If this square has an orthogonal mate, then cells of the same color must be
on the same transversal.

Anthony B. Evans (Wright State University) Latin squares 36 / 38



An example: Ext(Zsg; a)

0|1 2 3 45 6 7|a
112 3 4 6 7 015
213 4 5 6 0 1|7
3/14 5 6 7 0 a 2

415 6 7 0 1 2 a3
5/a 7 01 2 3 4|6
6|7 a1 2 3 45

7101 a 3 45 6|2
a 0 5 7 1 3|4

If this square has an orthogonal mate, then cells of the same color must be
on the same transversal.

Have not determined yet if these partial transversals all complete to
transversals.

Anthony B. Evans (Wright State University) Latin squares 36 / 38



A generalization.

g |81 --- 8m-1|ad1 ... ap
81
: A B
Ext(G;a1,...,an) = | &m-1
a1
C D
dan

The gigjth entry in A is either g; + gj or one of a1,...,ay.

There are several choices for B, C, and D.
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