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History

Theodor Mollien (1861 - 1941)

(1892) Let A be a finite-dimensional associative algebra
over the complex field, and let N be the solvable radical of
A. Then there exists a subalgebra S ⊆ A such that
S ∼= A/N and A = S ⊕N .

J. M. Wedderburn (1882 - 1941)

(1905) Let A be a finite-dimensional associative algebra
over F, and let N be the solvable radical of A, then there
exists a subalgebra S ⊆ A such that S ∼= A/N and
A = S ⊕N .

Üeber Systeme Höherer complexer zahlen, Math Ann 41, 1893

On the structure of hypercomplex number systems, Amer. Math.
Soc. Volume 12, Number 2 (1905).
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History

Adrian A. Albert (1905-1972)

In 1945 proved an analogue to the Principal Wedderburn
theorem for finite-dimensional especial Jordan algebras over
a field of characteristic zero.

The Wedderburn principal theorem for Jordan algebras, Ann. of
Math. (2)
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History

Penico, Askinuze

Generalized the result of A. Albert for any finite-dimensional Jordan
algebra over arbitrary fields with CharF 6= 2.

Askinuze, A Theorem on the splittability of J-algebras, Ukrain.Mat.Z.
3 (1951)

Penico, A.J. The Wedderburn principal theorem for Jordan algebras,
Trans. Amer. Math. Soc. 70 (1951),
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Definition

Let A0 and A1 be vector spaces over a field F, A = A0 uA1 is called a
superalgebra if it is a Z2-graded algebra over F, it is AiAj ⊆ Ai+j mod 2

A superalgebra A = A0 uA1 is called a Jordan superalgebra if it
satisfies the superidentities

aiaj = (−1)ijajai (1)

((aiaj)ak)al + (−1)lk+lj+kj((aial)ak)aj + (−1)ij+ik+il+lk((ajal)ak)ai =

(aiaj)(akal) + (−1)lk+lj(aial)(ajak) + (−1)kj(aiak)(ajal) (2)

for all ai , aj , a,ak ∈ J0 ∪ J1.

Definition

An A-superbimodule M =M0 uM1 is called a Jordan superbimodule if
the corresponding split null extension superalgebra E = A⊕M is Jordan
superalgebra.
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Some Examples

Let A be an associative superalgebra and consider the new
multiplication in A,

x ◦ y =
1

2
(xy + (−1)|x ||y |yx)

The new superalgebra is a Jordan superalgebra and we denoted this
by A+.

In particulary, we can consider the associative superalgebra

Mn+m(F) =
( ∗ 0

0 ∗
)
u
( 0 ∗
∗ 0

)
and denote this Jordan superalgebra by Mn|m(F)(+).
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Let V = V0 ⊕ V1 be a graded F-vectorspace and let f : V × V −→ F
be a superform, i.e f |V0 , (f |V1) is a symmetric form (skew form) and
f (V0,V1) = 0. Is easy to check that J = F · 1 + V0 u V1 with
multiplication v · 1 = v , v · w = f (v ,w) is a Jordan superalgebra. It
is called the Jordan superalgebra of superform.

Let t ∈ F and Dt = (F · e1 + F · e2) u (F · x + F · y) be a parametric
family of superalgebras with multiplication

ei · x =
1

2
x , ei · y =

1

2
y ,= x · y = −y · x = e1 + te2

This superalgebra is a Jordan superalgebra.

Let K3 = F · e1 u (F · x + F · y) be a superalgebra with multiplication

e1 · x =
1

2
x , e1 · y =

1

2
y ,= x · y = −y · x = e1

This superalgebra is a Jordan superalgebra. It is called the Kaplansky
superalgebra.
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V.Kac introduced the Jordan superalgebra of dimension 10, K10.

Over a field F, CharF = 0, any Jordan superalgebra of the list above is a
simple Jordan superalgebra
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The Problem

The Problem

Let A be a Jordan superalgebra and let N be the solvable radical of A.
When there exists a subsuperalgebra S ⊆ A such that S ∼= A/N and
A = S ⊕N ?

This problem is an analogue to the validity of the Principal Wedderburn
Theorem (PWT) for associative algebras.
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Reduction preliminaries

Proposition

If the principal Wedderburn theorem is valid for Jordan superalgebras with
unity, then it is valid for any Jordan superalgebra

Proposition

Let J be a finite dimensional semisimple Jordan superalgebra, that is,
N (J) = 0 where N is the soluble radical. Fix a class M(J) of finite
dimensional Jordan J-bimodules which is closed with respect to
subbimodules and homomorphic images. Denote by KM(J) the class of
finite dimensional Jordan superalgebras A that satisfy the following
conditions: A/N (A) ∼= J, N (A)2 = 0 and, N (A) considered as
J-bimodule belongs to M(J). Then if PWT is true for all superalgebras
B ∈ KM(J) with N (B) an irreducible J-bimodule, then it is true for all
superalgebras A from KM(J)

FAGG (UdeA) The PWT for Jordan superalgebras with 1.
Third Mile High Conference, Denver 2013 10

/ 22



Reduction preliminaries

Proposition

If the principal Wedderburn theorem is valid for Jordan superalgebras with
unity, then it is valid for any Jordan superalgebra

Proposition

Let J be a finite dimensional semisimple Jordan superalgebra, that is,
N (J) = 0 where N is the soluble radical. Fix a class M(J) of finite
dimensional Jordan J-bimodules which is closed with respect to
subbimodules and homomorphic images. Denote by KM(J) the class of
finite dimensional Jordan superalgebras A that satisfy the following
conditions: A/N (A) ∼= J, N (A)2 = 0 and, N (A) considered as
J-bimodule belongs to M(J). Then if PWT is true for all superalgebras
B ∈ KM(J) with N (B) an irreducible J-bimodule, then it is true for all
superalgebras A from KM(J)

FAGG (UdeA) The PWT for Jordan superalgebras with 1.
Third Mile High Conference, Denver 2013 10

/ 22



irreducible bimodules over Jordan superalgebras

Irreducible bimodules over Jordan superalgebras of type Mn|m(F)(+), Dt ,
Kaplansky, and superform were classified by Zelmanov-Martinez. The
cases of Jordan superalgebras of type K10 was proved by Shtern.
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Answer to the problem

As a first step we consider the case in which the radical satifies N 2 = 0,
and the quotient superalgebra J/N is a simple Jordan superalgebra of one
of the following types: Mn|m(F)(+), superforms, Dt , or K10, we prove that
an analogue to the PWT is valid, provided some restrictions are imposed
on the types of irreducible bimodules contained in the radical N .
The restrictions are necessary and counter-examples were provided
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Main Theorem

Theorem (Main Theorem)

Let J,N be as before. In the following cases there exists a
subsuperalgebra S ⊆ J such that S ∼= J/N and J = S ⊕N :

J/N is isomorphic to Mn|m(F)(+). And when n + m ≥ 3, N does

not contain any copy of the regular bimodule RegMn|m(F)(+). When
m = n = 1 N does not contain any copy of the regular bimodule nor
of V e .

J/N is a superalgebra of a superform with even part of dimension n,
and N does not contain any copy of the irreducible bimodule
Cn/Cn−2 when n is odd, or of u · Cn/u · Cn−2 when n is even.

J/N is isomorphic to Dt , t 6= −1. And N does not contain any copy
of the bimodule RegDt , or of the vector space generated by one even
vector.

J/N is a Kac superalgebra without restriction in the bimodule.
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The restrictions impossed by the theorem above are essential, and we
provide the corresponding counter-examples
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Irreducible bimodules over Jordan superalgebras of
superform

Let V = V0 + V1 be a vector superspace equipped with a
nondegenerate superform, and suppose that V1 6= 0. Let v1, . . . , vn be an
orthogonal basis of V0 and w1, . . . ,w2m be a basis of V1 such that
(w2i−1,w2i ) = 1, 1 ≤ i ≤ m, where all other products are zero.

Let C be the Clifford algebra over F. Let 0 ≤ i1, . . . , in ≤ 1 and
k1, . . . , k2m are non negative integers, the elements v i1

1 · · · v in
n wk1

1 · · ·w
k2m
2m ,

form a basis for C.

Consider the subspace Cr =
∑

i≤r V · · ·V︸ ︷︷ ︸
i

as the span of all basic

products of lenght ≤ r .

F = C0 ⊆ C1 ⊂ · · · ; C = ∪r≥0Cr
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Irreducible bimodules over a Jordan superalgebras of
superform

Any superspace of type Cr with r odd integer is a superbimodule over the
Jordan superalgebra of superform.

Theorem (C. Martinez- E. Zelmanov)

The only finite dimensional unital irreducible Jordan bimodules over
J = F · 1 + V , (Jordan superalgebra of superform) are Cr/Cr−2 if r is odd
and u Cr/u Cr−2 if r is even, where u is an even vector.
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A counter-example to the PWT in Jordan superalgebras of
superform

We consider the superspace N ⊂ A where

A0 =Vect 〈 1, vi , v1v2, v1v3, v2v3, v1v2v3, viw
2
s , viw1w2,w

2
s ,w1w2 〉

A1 =Vect 〈w1,w2, viws , v1v2ws , v1v3ws , v2v3ws ,w
3
s ,w

2
s wt 〉

N0 =Vect 〈 v1v2, v1v3, v2v3, v1v2v3, viw
2
s , viw1w2,w

2
s ,w1w2 〉

N1 =Vect 〈 viws , v1v2ws , v1v3ws , v2v3ws ,w
3
s ,w

2
s wt 〉

and we observe that

A/N ∼= (F · 1 + F · v1 + F · v2 + F · v3) u (F · w1 + F · w2)

for i=1,2,3, s=1,2
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A counter-example

We define the nonzero products on A, as follows v2
i = 1 for i = 1, 2, 3 and

w1 · w2 = 1 + v1v2v3

v1 · v2v3 = v1v2v3, v2 · v1v3 = −v1v2v3, v3 · v1v2 = v1v2v3,
vi · w1w2 = viw1w2, vi · w2

s = viw
2
s , vi · viw2

s = w2
s ,

vi · viw1w2 = w1w2, v1 · v2ws = v1v2ws , v1 · v3ws = v1v3ws ,
v2 · v3ws = v2v3ws , vi · vivjws = vjws ,
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A counter-example

it is easy to check that the superspace A with the multiplication above is
a Jordan superalgebra and the quotient superalgebra is isomorphic to
superalgebra of superform

(

A/N

)1

∼= (F · 1 +F · v1 +F · v2 +F · v3)u (F · w1 + F · w2) e N ∼= C3/C1.

In particular, we have that

A0/N0
∼= J(V0, f ) = F · 1 + F · v1 + F · v2 + F · v3

is a Jordan algebra.

Since the PWT is valid for Jordan algebras, then there exist ṽi ∈ A0 such
that ṽi ≡ vi mod N0 and ṽi

2 = 1, ṽi · ṽj = 0 i 6= j . We assume ṽi = vi .

If the PWT is valid for A then there exists elements w̃1, w̃2 ∈ A1 such
that w̃s ≡ ws and w̃1 · w̃2 = 1, w̃s · vi = 0.
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A counter-example

We recall that

w1 · w2 = 1 + v1v2v3

N1 = Vect 〈 viws , v1v2ws , v1v3ws , v2v3ws ,w
3
s ,w

2
s wt〉, and we can adopt

w̃i = wi +
∑

ω∈N1
αωω,

Now, it is possible to prove that

w̃1 = w1 + α11w3
1 + α21w2

1 w2 + α31w1w2
2 + α41w3

2

w̃2 = w2 + α12w3
1 + α22w2

1 w2 + α32w1w2
2 + α42w3

2

therefore w̃1 · w̃2 = 1 if and only if v1v2v3 = 0

, but v1v2v3 is a non zero
vector.
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