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G2 and the Rolling Ball

Cartan and Killing

The Cartan–Killing classification

Up to choice of cover and real form, the simple Lie groups are:
I Three infinite families, SO(n), SU(n), and Sp(n).
I Five exceptions:

G2, F4, E6, E7, E8.

I The infinite families are the respective symmetry groups of
Rn, Cn, Hn with inner product.

I Where do the exceptions come from? They’re all related to
O.
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Cartan and Killing

The split real form of G2

We will relate two models for the split real form of G2, both
essentially due to Cartan:

I G2 = Aut(O′), where O′ is the ‘split octonions’.
I g2 = Lie(G2) acts locally as symmetries of one ball rolling

on another without slipping or twisting, provided the ratio of
radii is 3:1 or 1:3.

Relating the two will explain

Why 1:3?
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The split octonions

Split octonions
. . . are pairs of quaternions:

O′ = H⊕H

with product (a,b)(c,d) = (ac + db,ad + cb).

They form a composition algebra: there is a quadratic form Q
on O′ such that

Q(xy) = Q(x)Q(y), x , y ∈ O′.

On pairs of quaternions, this is given by:

Q(a,b) = |a|2 − |b|2, (a,b) ∈ H⊕H.
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G2 and the Rolling Ball

The split octonions

G2 acts on . . .

I O′, fixing 1 ∈ O′ and preserving Q;
I Im(O′) = Im(H)⊕H, the subspace orthogonal to 1;
I C = {x ∈ Im(O′) : Q(x) = 0}, the space of null vectors in

Im(O′);
I PC = 1d null subspaces of Im(O′), the projectivization of

C.

We will see that this last space is closely related to the rolling
ball, provided the ratio of radii is 1:3.
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The rolling ball

Rolling balls
The configuration space of the rolling ball is S2 × SO(3).

Figure : Bor and Montgomery, 2009.

We will consider a ball of unit radius rolling on a fixed ball of
radius R, and see why R = 3 is special.
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The rolling ball

Without slipping or twisting

We encode the constraint in an incidence geometry, a
barebones geometry with points, lines, and an incidence
relation, telling us which points lie on which lines.

There is an incidence geometry with:
I Points are elements of S2 × SO(3);
I Lines are given by rolling without slipping or twisting along

great circles.
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The rolling ball

Without slipping or twisting

If the central angle changes by θ, the rolling ball rotates by
(R + 1)θ.

I Points are elements of S2 × SO(3);
I Lines are given by subsets of the form:

L = {(cos(θ)u + sin(θ)v , R(u × v , (R + 1)θ)g) : θ ∈ R}

where u, v are orthonormal, g ∈ SO(3) and R(w , α)
denotes the right-handed rotation about the w-axis by
angle α.
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The rolling ball

Hiding inside Im(O′) . . .
Remember:

PC = 1d null subspaces of Im(O′)

= {〈x〉 : nonzero x ∈ Im(O′), Q(x) = 0}
= {〈(a,b)〉 : nonzero (a,b) ∈ Im(H)⊕H, |a|2 = |b|2}

=
S2 × S3

(a,b) ∼ (−a,−b)
.

This last space
S2 × S3

Z2

tells us PC is awfully similar to the rolling ball configuration
space:

S2 × SO(3).
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The rolling ball

Hiding inside Im(O′) . . .
Recall:

I S3 ⊂ H is the group of unit quaternions.

I
S3

Z2

∼= SO(3).

I Alas:
S2 × S3

Z2
6∼= S2 × SO(3).

I Instead:
S2 × S3

Z2

∼= RP2 × S3.

We will think of RP2 × S3 as the configuration space of a spinor
rolling on a projective plane.
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The rolling ball

Spinor rolling on a projective plane

I RP2 is S2 with antipodal points identified; so instead of one
ball, we consider a pair, rolling in sync.

I The ball is a spinor: it is rotated by elements of S3 instead
of SO(3). Since

S3 → SO(3)

is a double-cover, it takes a 720◦ rotation to get back
where you started.
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The rolling ball

Without slipping or twisting

There is an incidence geometry where:
I Points are elements of RP2 × S3.
I Lines are given by a spinor rolling without slipping or

twisting along lines of RP2.

Explicitly, lines are given by
subsets of the form:

L =
{
(±eθwu, e

R+1
2 θwq)) : θ ∈ R

}
where u, w are orthonormal, q ∈ S3 and the
exponentiation takes place in H.
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The rolling ball

When R = 3

Remember, RP2 × S3 ∼= PC, the space of null 1d subspaces in
Im(O′).

Theorem
If and only if R = 3, the incidence geometry of a spinor rolling
on a projective plane coincides with the incidence geometry
where

I Points are 1d null subspaces of Im(O′), i.e. elements of PC.
I Lines are 2d null subspaces of Im(O′) on which the

product vanishes.
G2 acts as symmetries of this incidence geometry, hence of the
spinor rolling on the projective plane when R = 3.
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The rolling ball

Coda

I A spinor needs to turn twice to get back where it started.
I On a projective plane, we get back where we started by

going half way around.
I For what ratio of radii do we turn twice as we roll half way

around?

Only 1:3
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