Loop matrices, loop determinants and S-rings on loops
Ken Johnson
Penn State Abington College
Outline

1) Group matrices and group determinant, Loop matrices and loop determinants (latin square determinants)
2) Some properties of group matrices.
3) The group matrix modulo p
4) The loop matrix mod p
5) the k-S-ring of a group and a corresponding ”ring” for a loop
6) The connection with harmonic analysis
7) Fusion for loop classes
8) Fission for loop classes
9) Further ideas
Let G be a finite group of order n with a listing of elements
\{g_1 = e, g_2, ..., g_n\} and let \{x_{g_1}, x_{g_2}, ..., x_{g_n}\} be a set of independent commuting variables indexed by the elements of G.

Definition
The (full) *group matrix* X_G is the matrix whose rows and columns are indexed by the elements of G and whose \((g, h)^{th}\) entry is $x_{gh^{-1}}$. The group matrix is a patterned matrix: it is determined by its first row (or column)

Example
The group matrix of C_3 is (abbreviating x_{g_i} by i) the circulant

$$
C(1, 2, 3) = \begin{bmatrix}
1 & 3 & 2 \\
2 & 1 & 3 \\
3 & 2 & 1 \\
\end{bmatrix}.
$$
Further example

Example

The group matrix of S_3 is the matrix

$$\begin{bmatrix}
1 & 3 & 2 & 4 & 5 & 6 \\
2 & 1 & 3 & 6 & 4 & 5 \\
3 & 2 & 1 & 5 & 6 & 4 \\
4 & 6 & 5 & 1 & 2 & 3 \\
5 & 4 & 6 & 3 & 1 & 2 \\
6 & 5 & 4 & 2 & 3 & 1 \\
\end{bmatrix} = \begin{bmatrix}
C(1, 2, 3) & C(4, 6, 5) \\
C(4, 5, 6) & C(1, 3, 2) \\
\end{bmatrix}$$
The loop matrix:

Q is a loop of order n variables $\{x_{q_i}\}_{q_i \in Q}$ are taken.
X_Q is the matrix with $(i, j)^{th}$ element x_{q_i}/q_j.
Most of the time think of this as $x_{q_iq_j^{-1}}$
This is the latin square matrix of the parastrophe.
The loop determinant...
group matrices obtained from the cosets of an arbitrary subgroup

If $|G| = kr$ and H is any cyclic subgroup of order k then the elements of G can be listed such that X_G is a block matrix of the form

$$
\begin{bmatrix}
B_{11} & B_{12} & \ldots & B_{1r} \\
B_{21} & B_{22} & \ldots & B_{2r} \\
\vdots & \vdots & \ddots & \vdots \\
B_{r1} & B_{r2} & \ldots & B_{rr}
\end{bmatrix},
$$

where each B_{ij} is a circulant of size $k \times k$. A corresponding result holds for any subgroup H. (Dickson 1907) If in the above H is arbitrary, X_G is as above, but the blocks are now all of the form $X_H(g_{i_1}, g_{i_2} \ldots g_{i_k})$. Here elements in the vector $(g_{i_1}, g_{i_2} \ldots g_{i_k})$ are elements in G, and not necessarily arising from any specific coset of H.
Dickson’s results on the mod p case

The group determinant mod p of a p-group.

Lemma

Let H be any p-group of order $r = p^s$. Let P be the upper triangular matrix of the form

$$
\begin{bmatrix}
1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 2 & 3 & \cdots & \cdots & \cdots \\
1 & 3 & (r - 1)(r - 2)/2 \\
1 & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
1 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\end{bmatrix}
$$

Then a suitable ordering of H exists such that, modulo p, PX_HP^{-1} is a lower triangular matrix with identical diagonal entries of the form $\alpha = \sum_{i=1}^{r} x_{h_i}$.

The group determinant Θ_H modulo p is thus α^r.
Example

\(G = C_5 \). Then \(P = \)

\[
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 \\
1 & 4 \\
1 \\
\end{bmatrix}
\]

and modulo 5

\[
PX_GP^{-1} = \begin{bmatrix}
\alpha & 0 & 0 & 0 & 0 \\
\beta & \alpha & 0 & 0 & 0 \\
\gamma & \beta & \alpha & 0 & 0 \\
\delta & \gamma & \beta & \alpha & 0 \\
\mu & \delta & \gamma & \beta & \alpha \\
\end{bmatrix}
\]

where \(\alpha = \sum_{i=1}^{5} x_{g_i}, \beta = 4x_2 + 3x_3 + 2x_4 + x_5, \gamma = x_2 + 3x_3 + x_4, \delta = 4x_2 + x_3 \) and \(\mu = x_2 \).

Question: does this have any relevance to the FFT?
Lemma
Let G be a group of order n divisible by p and H be a Sylow-p subgroup of index k and order r. Then, an ordering of G exists such that, modulo p, X_G is similar to a matrix which has a block diagonal part of the form

$$\text{diag}(B, B, ..., B) \ (r \ \text{occurrences of } B)$$

with the upper triangular part above the diagonal 0. Moreover B encodes the permutation representation of G on the cosets of H. This is proved by acting on the X_G obtained by ordering G by the left cosets of H and acting by $\text{diag}(P, P, ..., P)$ and rearranging. Thus it follows that, modulo p, $\Theta_G = \det(B)^r$.

Question: is there an explanation of all this using the standard techniques of modular representation theory?
(a) M_{12} (smallest non-associative Moufang loop)
With a suitable ordering of the loop, the loop matrix is of the form
(abbreviating x_i by i)

$$
\begin{bmatrix}
C(1, 3, 2) & C(4, 5, 6) & C(7, 8, 9) & C(10, 11, 12) \\
C(4, 6, 5) & C(1, 2, 3) & R(10, 11, 12) & R(7, 8, 9) \\
C(7, 9, 8) & R(10, 11, 12) & C(1, 2, 3) & R(4, 5, 6) \\
C(10, 12, 11) & R(4, 5, 6) & R(7, 8, 9) & C(1, 2, 3)
\end{bmatrix}.
$$

Now, if P_3 is the 3×3 Pascal matrix,

$$
PC(a, b, c)P^{-1} \equiv \begin{bmatrix}
\alpha & 0 & 0 \\
\beta & \alpha & 0 \\
\gamma & \beta & \alpha
\end{bmatrix}, \quad PR(a, b, c)P^{-1} \equiv \begin{bmatrix}
\alpha & 0 & 0 \\
\beta & -\alpha & 0 \\
\gamma & \delta & \alpha
\end{bmatrix}.$$
The loop matrix can be put in the form

\[
\begin{bmatrix}
C_{(1,2,3,4)} & C_{(7,6,5,8)} & C_{(11,10,9,12)} & C_{(15,14,13,16)} \\
C_{(5,6,7,8)} & C_{(1,4,3,2)} & R_{(13,16,15,14)} & R_{(11,10,9,12)} \\
C_{(9,10,11,12)} & R_{(15,14,13,16)} & C_{(1,4,3,2)} & R_{(5,8,7,6)} \\
C_{(13,14,15,16)} & R_{(9,12,11,10)} & R_{(7,6,5,8)} & C_{(1,4,3,2)} \\
\end{bmatrix}
\]

Now, if \(P = P_4 \) is the \(4 \times 4 \) Pascal matrix,

\[
PC(a, b, c, d)P^{-1} \equiv \begin{bmatrix}
\alpha & 0 & 0 & 0 \\
\beta & \alpha & 0 & 0 \\
\gamma & \beta & \alpha & 0 \\
\delta & \gamma & \beta & \alpha \\
\end{bmatrix} \pmod{2}, \quad (\text{modulo } 2),
\]

\[
PR(a, b, c, d)P^{-1} = \begin{bmatrix}
\alpha & 0 & 0 & 0 \\
* & \alpha & 0 & 0 \\
* & * & \alpha & 0 \\
* & * & * & \alpha \\
\end{bmatrix} \pmod{2}
\]
Then, after conjugating by diag(P, P, P, P), rearranging and conjugating again, the loop matrix of \mathcal{O}_{16} is transformed, mod 2, to a lower triangular matrix with diagonal entry $\sum_{i=1}^{16} x_i$. Thus the determinant of \mathcal{O}_{16} mod 2 is exactly the same as that of any group of order 16.

Questions: (1) When do loops of order a power of p loops Q which are of the form

$$D \rightarrow Q \rightarrow C_p.$$

behave similarly?

(2) Is there a characterisation of loops whose loop matrix can be written as a block matrix of circulants and reverse circulants with respect to a cyclic subgroup? (they probably need to be power associative).

(3) Commutative automorphic loops mod 2?
The *k*-class algebra

Let Q be a loop with inner mapping group IQ. The **k-class algebra** of Q is defined as follows. Consider the orbits $\{\Delta_i\}$ of $IQ \times S_k$ acting on $Q^{(k)}$ by

$$\sigma(q_1, \ldots, q_k) = (\sigma q_1, \ldots, \sigma q_k), \ \sigma \in IQ$$

and

$$\tau(q_1, \ldots, q_k) = (q_{\tau(1)}, \ldots, q_{\tau(k)}).$$

Let Δ_i be the element of $\mathbb{C}(Q^{(k)})$ which is the sum of the elements of Δ_i. These sums generate the k-class algebra of Q. Call this A_k. If Q is a group, then the k-class algebra is an S-ring over $Q^{(k)}$. It contains interesting information. If Q is a loop, the 1-class algebra is commutative and associative (and is an S-ring over Q).
Questions: (1) for an arbitrary loop, when is A_k an S-ring over $Q^{(k)}$?
If Q is an A-loop- yes.

(2) For which loops is A_k commutative?
(3) For which loops is A_k associative?
Harmonic analysis

Suppose that a random walk on a loop Q proceeds as follows. There is given a probability p on Q, i.e. p is a function $Q \to \mathbb{R}_{\geq 0}$ such that $\sum_{q \in Q} p(q) = 1$. If the walk is at element q_1 at the r^{th} stage, it moves to the element $q_1 s$ with probability $p(s)$. This is a Markov chain with transition matrix $X_Q(p)$ with (i, j) entry $p(q_i^{-1} q_j)$ (from the loop matrix under left division). If Q is a group this case has been the subject of a lot of analysis, and especially important is that $(X_Q(p))^2 = X_Q(p \ast p)$, where $p \ast p$ denotes convolution. If Q is nonassociative then it is not so easy to describe $(X_Q(p))^2$ but the analysis of the walk involves the calculation of $(X_Q(p))^r$ for arbitrary r. It is easiest if $X_Q(p)$ is similar to a diagonal matrix, and this is always the case if p is constant on conjugacy classes. It might be an interesting project to analyse a random walk on Chein loops constructed from, say, families of simple groups.
Fusion of the character table of a loop to that of another loop was discussed in papers (CFQI...) of JDH Smith and KWJ beginning in the 1980’s as part of the project to construct a character theory of quasigroups. Often a character table of a loop is most easily obtained by fusing that of a group. More recently work of Humphries and KWJ discussed the class of groups whose character table fuses from a cyclic group, the methods used being mainly those of S-rings. The results with Smith in a special case were rediscovered in a paper by Diaconis and Isaacs (Supercharacters) and then applied to the problem of random walks on $U_n(q)$. The calculation of the conjugacy classes of $U_n(q)$ is wild, but if the classes are fused in a certain way the new classes, the superclasses, can be described. More recently it was shown that the superclasses form a Hopf algebra which is isomorphic to the Hopf algebra of non-commutative symmetric functions.
The talk of Michael Munywoki indicated how a loop can be constructed on $U_n(q)$ in such a way that the classes of the loop are almost equal to the superclasses. Questions:
(1) Is it possible to change the multiplication of the loop such that the classes are exactly the same as the superclasses?
(2) Is there a natural Hopf algebra on the conjugacy classes of the loops constructed on $U_n(q)$?
(3) Which loops have character tables which fuse from those of groups?
(4) Which loops have character tables which fuse from those of abelian groups?
Fission
Consider the loop Q of order 6 whose group matrix is

$$
\begin{bmatrix}
C(1, 3, 2) & C(4, 5, 6) \\
C(4, 6, 5) & C(1, 3, 2)
\end{bmatrix}.
$$

It has classes $\{1\}, \{2, 3\}, \{4, 5, 6\}$, and a random walk with probability p on the loop has diagonalisable $X_Q(p)$ if p is constant on these classes. However, either of the following "fissions" of classes are used, then $X_Q(p)$ remains diagonalisaable.
(a) $\{1\}, \{2\}, \{3\}, \{4, 5, 6\}$, (b) $\{1\}, \{2, 3\}, \{4\}, \{5, 6\}$.

Question: what is the maximum number of classes in a fission of Q for which $X_Q(p)$ is diagonalisable whenever p is constant on these classes?

Answer for groups (Humphries). The maximum number is

$$
\tau(G) = \sum_{\chi \in \text{Irr}(Q)} \deg(\chi).
$$

(This may not be attained, but is attained for all groups of orders < 54).

Answer for loops-no idea.
Strange fact: the Jucy’s Murphy elements in the group ring of the symmetric group produce a commutative subring of the group ring of dimension $\tau(G)$, but this is not an S-ring.
Latin squares

Suppose we take a collection \(\{L_i\}_{i=1}^r \) of orthogonal latin squares on \(\{1, \ldots, n\} \). Consider the array \(A \) whose \(\{i, j, k\}^{th} \) element is \(L_k(i, j) \). Then consider the array obtained by replacing each \(i \) by a variable \(x_i \).

There is a wonderful book by Gelfand, Kapranov, Zelevinsky: Hyperdeterminants, resultants...
(see Bull AMS for a review). They go back to papers of Cayley.

Questions:
(1) What are the properties of the hyperdeterminant of \(A \)?
(2) Special case: suppose \(\{L_i\}_{i=1}^n \) is a collection of orthogonal latin squares arising from a projective plane. But: Beware of ET!!!