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Definition of a group grading

Let A be a nonassociative algebra over a field F. Let G be a group.

Definition
A G-grading on A is a vector space decomposition
Γ : A =

⊕
g∈G Ag such that Ag ·Ah ⊆ Agh for all g,h ∈ G.

Ag is called the homogeneous component of degree g.

The support of Γ is the set S = Supp Γ := {g ∈ G | Ag 6= 0}.
The universal (abelian) group U(Γ) is the (abelian) group with
generating set S and defining relations s1s2 = s3 whenever
0 6= As1As2 ⊂ As3 .

Γ can be regarded as a U(Γ)-grading.
∃! homomorphism U(Γ)→ G that restricts to idS.

We assume that dimA <∞ and G is abelian.
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Examples of gradings

Example
The following is a Z-grading on g = sl2(C): g = g−1 ⊕ g0 ⊕ g1 where

g−1 = Span {
[

0 0
1 0

]
}, g0 = Span {

[ 1 0
0 −1

]
}, g1 = Span {

[
0 1
0 0

]
}.

This can also be regarded as a Zm-grading for any m > 2, but the
universal group is Z.

Example (Cartan grading)
Let g be a s.s. Lie algebra over C, h a Cartan subalgebra. Then

g = h⊕ (
⊕
α∈Φ

gα)

can be viewed as a grading by the root lattice G = 〈Φ〉.
Supp Γ = {0} ∪ Φ; U(Γ) = G ∼= Zr where r = dim h.
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Examples continued

Example (Pauli grading)
A grading on g = sl2(C) by Z2 × Z2 associated to the Pauli matrices

σ3 =
[ 1 0

0 −1
]
, σ1 =

[
0 1
1 0

]
, σ2 =

[ 0 i
−i 0

]
.

Namely, g = ga ⊕ gb ⊕ gc where Z2
2 = {e,a,b, c} and

ga = Span {
[ 1 0

0 −1
]
}, gb = Span {

[
0 1
1 0

]
}, gc = Span {

[ 0 1
−1 0

]
}.

Example (Generalized Pauli grading)

If ε ∈ F, there is a grading on R = Mn(F) (⇒ on g = sln(F)) by G = Z2
n:

X =

 1 0 0 ... 0
0 ε 0 ... 0
0 0 ε2 ... 0
...

0 0 0 ... εn−1

 and Y =

 0 1 0 ... 0 0
0 0 1 ... 0 0
...

0 0 0 ... 0 1
1 0 0 ... 0 0

, where ε is a primitive n-th

root of 1. Choose generators a and b of G and set Rai bj = FX iY j .
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Isomorphism and equivalence of gradings

Definition
Two G-gradings on A, A =

⊕
g∈G Ag and A =

⊕
g∈G A′g , are

isomorphic if there exists an algebra automorphism ψ : A→ A

such that ψ(Ag) = A′g for all g ∈ G.

A G-grading A =
⊕

g∈G Ag and an H-grading A =
⊕

h∈G A′h, with
supports S an S′, respectively, are equivalent if there exists an
algebra automorphism ψ : A→ A and a bijection α : S → S′ such
that ψ(Ag) = A′α(g) for all g ∈ S.

In the def of equivalent gradings, if G and H are universal grading
groups then α extends to a unique isomorphism of groups G→ H.

Example
All Pauli gradings on Mn(F) or sln(F) are equivalent. For Mn(F), there
are φ(n) (Euler function) non-isomorphic Z2

n-gradings among them.
Hence 1

2φ(n) for sln(F) if n > 2.
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Fine gradings

Definition
Consider a G-grading Γ : A =

⊕
g∈G Ag and an H-grading

Γ′ : A =
⊕

h∈G A′h. We say that Γ′ is a coarsening of Γ (or Γ is a
refinement of Γ′) if for any g ∈ G there exists h ∈ H such that Ag ⊂ A′h.

If we have 6= for some g ∈ Supp Γ, then Γ a proper refinement of Γ′.
A grading is fine if it does not have proper refinements.

Example

sl2(C) = Span {
[ 1 0

0 −1
]
} ⊕ Span {

[
0 1
0 0

]
,
[

0 0
1 0

]
} is a Z2-grading that is a

proper coarsening of the Cartan grading and also of the Pauli grading.
Up to equivalence, there are exacly 2 fine ab. group gradings on
sl2(F), charF 6= 2: the Cartan grading and the Pauli grading.

If F is a.c., charF = 0, then (equivalence classes of) fine gradings on A

↔ (conjugacy classes of) maximal quasitori in Aut(A).
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Definition of a structurable algebra

Let F be a field, charF 6= 2,3. Let A be a unital algebra over F and let
x 7→ x̄ be an involution of A.

For any x , y ∈ A, define the operator Vx ,y : A→ A as follows:

Vx ,y (z) = (xȳ)z + (zȳ)x − (zx̄)y for all z ∈ A,

and set Tx = Vx ,1, i.e., Tx (z) = xz + zx − zx̄ .

Definition (Allison, 1978)
A unital algebra with involution (A,̄ ) is said to be structurable if

[Tz ,Vx ,y ] = VTz (x),y − Vx ,Tz̄ (y) for all x , y , z ∈ A.

If (A,̄ ) is structurable then it is skew-alternative, i.e.

(s, x , y) = −(x , s, y) = (x , y , s) for all x , y , s ∈ A with s̄ = −s,

where (x , y , z) := (xy)z − x(yz).
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Examples of structurable algebras

Example
If (A,̄ ) is an associative algebra with involution then it is structurable.

Example
If J is a Jordan algebra then (J,̄ ) is structurable where the involution is
the identity map.

Recall that a Hurwitz algebra is a unital algebra endowed with a
nonsingular multiplicative quadratic form (the norm). The standard
conjugation of a Hurwitz algebra (C,n) is given by x̄ = −x + n(x ,1)1.

Example
If C1 and C2 are Hurwitz algebras then (C1 ⊗ C2 ,̄ ) is structurable where

x1 ⊗ x2 = x1 ⊗ x2 for all x1 ∈ C1 and x2 ∈ C2.
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Lie algebras associated to a structurable algebra A

Let H = {x ∈ A | x̄ = x} and S = {x ∈ A | x̄ = −x}.

The Lie algebra of derivations (commuting with the involution)
Der(A).
The structure Lie algebra str(A), which is the subalgebra of gl(A)
spanned by the operators Vx ,y for all x , y ∈ A. For simple A,
Der(A) is a subalgebra of str(A) and we have a Z2-grading on
str(A) with str(A)0̄ = Der(A)⊕ TS and str(A)1̄ = TH.
The Steinberg unitary Lie algebra stu3(A) is obtained from three
copies of A.
The Kantor algebra Kan(A) is a Lie algebra graded by the
nonreduced root system BC1 with coordinate algebra A.

Any grading on A by an abelian group G induces a grading on
Der(A) by G,
str(A) and its derived algebra str0(A) by G × Z2,
stu3(A) by G × Z2

2,
Kan(A) by G × Z.
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Cayley–Dickson doubling process

Let F be a field, charF 6= 2. Let Q be a Hurwitz algebra with norm n. Fix
0 6= α ∈ F and let CD(Q, α) = Q⊕ Qw be the direct sum of two copies
of Q, where we write the element (x , y) as x + yw , with multiplication

(a + bw)(c + dw) = (ac + αd̄b) + (da + bc̄)w ,

and norm
n(x + yw) = n(x)− αn(y).

It is well known that CD(Q, α) is a Hurwitz algebra⇔ Q is associative.

Note that K := CD(F, α) is Z2-graded, Q := CD(K, β) is Z2
2-graded and

C := CD(Q, γ) is Z3
2-graded. Explicitly,

C =
⊕
α∈Z3

2

Feα where eα = (wα1
1 wα2

2 )wα3
3 .
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Division gradings and twisted group algebras

Thus, any Cayley algebra C can be realized as a twisted group algebra
FσZ3

2. If F is a.c. then wi can be normalized (Albuquerque–Majid,
1999) so that σ(α, β) = (−1)ψ(α,β), where
ψ(α, β) = β1α2α3 + α1β2α3 + α1α2β3 +

∑
i≤j αiβj .

If F is a.c. then the quaternion algebra Q ∼= M2(F), and the Z2
2-grading

induced by the Cayley–Dickson process is isomorphic to the Pauli
grading.
More generally, if F contains a primitive n-th root of 1 then Mn(F) can
be realized as a twisted group algebra FσZ2

n (here σ is a 2-cocycle).

These gradings are division gradings in the sense that (nonzero)
homogeneous elements are invertible.
If F is a.c. and Mn(F) is endowed with a division grading by G then the
support T ⊂ G is a subgroup and Mn(F) ∼= FσT . Such gradings are
classified up to isomorphism (Bahturin–K, 2010) by the pairs (T , β)
where β(a,b) = σ(a,b)/σ(b,a) is a nondegenerate alternating
bicharacter T × T → F×, T ⊂ G, |T | = n2.
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First Tits construction

Let F be an a.c. field, charF 6= 2. The simple exceptional Jordan
algebra A = H3(C), with multiplication x ◦ y = 1

2(xy + yx), can be
realized as the sum of three copies of R = M3(F).

Any x ∈ R satisfies the Cayley–Hamilton equation

x3 − tr(x)x2 + s(x)x − det(x)1 = 0,

where s(x) = 1
2

(
tr(x)2 − tr(x2)). Define x ] = x2 − tr(x)x + s(x)1, so

xx ] = x ]x = det(x)1 for any x ∈ R, and its linearization

x × y =
1
2

(
xy + yx −

(
tr(x)y + tr(y)x

)
+
(
tr(x)tr(y)− tr(xy)

)
1
)
.

Set x̄ = x × 1 = 1
2

(
tr(x)1− x

)
. Then A = R0 ⊕ R1 ⊕ R2, where R is

linearly isomorphic to Ri (x 7→ xi ), with the following multiplication:

a′0 b′1 c′2
a0 (a ◦ a′)0 (āb′)1 (c′ā)2
b1 (a′b)1 (b × b′)2 (bc′)0
c2 (ca′)2 (b′c)0 (c × c′)1

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 13 / 1



First Tits construction

Let F be an a.c. field, charF 6= 2. The simple exceptional Jordan
algebra A = H3(C), with multiplication x ◦ y = 1

2(xy + yx), can be
realized as the sum of three copies of R = M3(F).
Any x ∈ R satisfies the Cayley–Hamilton equation

x3 − tr(x)x2 + s(x)x − det(x)1 = 0,

where s(x) = 1
2

(
tr(x)2 − tr(x2)). Define x ] = x2 − tr(x)x + s(x)1, so

xx ] = x ]x = det(x)1 for any x ∈ R, and its linearization

x × y =
1
2

(
xy + yx −

(
tr(x)y + tr(y)x

)
+
(
tr(x)tr(y)− tr(xy)

)
1
)
.

Set x̄ = x × 1 = 1
2

(
tr(x)1− x

)
. Then A = R0 ⊕ R1 ⊕ R2, where R is

linearly isomorphic to Ri (x 7→ xi ), with the following multiplication:

a′0 b′1 c′2
a0 (a ◦ a′)0 (āb′)1 (c′ā)2
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Albert algebra as a twisted group algebra

Assume charF 6= 2,3 and let ω be a primitive cubic root of 1. Let

x =

ω2 0 0
0 ω 0
0 0 1

 and y =

0 1 0
0 0 1
1 0 0

 ,
which satisfy xy = ωyx .

Then we have a Z3
3-grading on A defined by

A =
⊕
α∈Z3

3

Feα where eα = ωα1α2(xα1yα2)α3 ∈ Rα3 .

This is a division grading and identifies (Griess, 1990) A with FσZ3
3

where

σ(α, β) =

ω
ψ(α,β) if dimZ3(Z3α + Z3β) ≤ 1,

−1
2ω

ψ(α,β) otherwise,

and ψ(α, β) = (α1β2 − α2β1)(α3 − β3).
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Cayley–Dickson doubling process for Jordan algebras

Let F be a field, charF 6= 2. For a separable (finite-dimensional) Jordan
algebra (J, ·) of degree 4 , we can define a structurable algebra by
means of the following doubling process.

Let A = J⊕ vJ with multiplication determined by the following rules:

ab = a · b, a(vb) = v(aθ · b), (va)b = v(aθ · bθ)θ, (va)(vb) = (a · bθ)θ,

where θ : J→ J is a linear map defined by 1θ = 1 and aθ = −a for any
element a whose generic trace is zero. The involution of A is defined
by a + vb = a− vbθ.

Note that the only skew-symmetric elements are the scalar multiples of
v . Since v2 = 1, it follows that all automorphisms of A (commuting with
involution) send v to ±v and all derivations (commuting with involution)
send v to 0. Any automorphism or derivation of J extends uniquely to
A. A grading on J by an abelian group G induces a grading on A by
G × Z2.
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The structurable algebra H4(Q)⊕ vH4(Q)

Let Q be the split quaternion algebra over F, equipped with its standard
involution. Upon the identification Q ∼= M2(F), the involution switches
E11 with E22 and multiplies both E12 and E21 by −1. The subalgebra
K = Span {E11,E22} is isomorphic to F× F with exchange involution.

Consider the associative algebra M4(Q) with involution (qij)
∗ = (qji).

Since M4(Q) ∼= M4(F)⊗ Q, we can alternatively write the elements of
M4(Q) as sums of tensor products or as 2× 2 matrices over M4(F).

Consider the Jordan subalgebra of symmetric elements

H4(Q) = {a ∈ M4(Q) | a∗ = a}
= {
( z x

y z t
)
| x , y , z ∈ M4(F), x t = −x , y t = −y}.

Note that the subalgebra H4(K) ⊂ H4(Q) is isomorphic to M4(F)(+).

The Cayley–Dickson double A = H4(Q)⊕ vH4(Q) is a simple
structurable algebra of dimension 56. The simple Lie algebras of
“series” E can be constructed in terms of A as follows: Der(A) has
type E6, str0(A) has type E7 and stu3(A) has type E8.
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Construction of the Z3
4-grading

Assume F contains a 4-th root of 1. The construction will proceed in
two steps:

define a Z4-grading on A = H4(Q)⊕ vH4(Q),
refine it using two commuting automorphisms of order 4.

The even components of the Z4-grading are just A0̄ = H4(K) and
A2̄ = vH4(K). The odd components are as follows:

A1̄ = {x ⊗ E12 + v(y ⊗ E21) | x , y ∈ M4(F), x t = −x , y t = −y} and

A3̄ = {x ⊗ E21 + v(y ⊗ E12) | x , y ∈ M4(F), x t = −x , y t = −y} = vA1̄.

The group GL4(F) acts on H4(Q) via g 7→ Ad
(

g 0
0 (gt )−1

)
. Let ϕ and ψ

be the automorphisms of H4(Q) corresponding to the generalized
Pauli matrices X and Y in GL4(F). We denote their extensions to A by
the same symbols.

Note that ϕ and ψ have order 4 and preserve the Z4-grading of A, but
they do not commute!

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 17 / 1



Construction of the Z3
4-grading

Assume F contains a 4-th root of 1. The construction will proceed in
two steps:

define a Z4-grading on A = H4(Q)⊕ vH4(Q),
refine it using two commuting automorphisms of order 4.

The even components of the Z4-grading are just A0̄ = H4(K) and
A2̄ = vH4(K). The odd components are as follows:

A1̄ = {x ⊗ E12 + v(y ⊗ E21) | x , y ∈ M4(F), x t = −x , y t = −y} and

A3̄ = {x ⊗ E21 + v(y ⊗ E12) | x , y ∈ M4(F), x t = −x , y t = −y} = vA1̄.

The group GL4(F) acts on H4(Q) via g 7→ Ad
(

g 0
0 (gt )−1

)
. Let ϕ and ψ

be the automorphisms of H4(Q) corresponding to the generalized
Pauli matrices X and Y in GL4(F). We denote their extensions to A by
the same symbols.

Note that ϕ and ψ have order 4 and preserve the Z4-grading of A, but
they do not commute!

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 17 / 1



Construction of the Z3
4-grading

Assume F contains a 4-th root of 1. The construction will proceed in
two steps:

define a Z4-grading on A = H4(Q)⊕ vH4(Q),
refine it using two commuting automorphisms of order 4.

The even components of the Z4-grading are just A0̄ = H4(K) and
A2̄ = vH4(K). The odd components are as follows:

A1̄ = {x ⊗ E12 + v(y ⊗ E21) | x , y ∈ M4(F), x t = −x , y t = −y} and

A3̄ = {x ⊗ E21 + v(y ⊗ E12) | x , y ∈ M4(F), x t = −x , y t = −y} = vA1̄.

The group GL4(F) acts on H4(Q) via g 7→ Ad
(

g 0
0 (gt )−1

)
. Let ϕ and ψ

be the automorphisms of H4(Q) corresponding to the generalized
Pauli matrices X and Y in GL4(F). We denote their extensions to A by
the same symbols.

Note that ϕ and ψ have order 4 and preserve the Z4-grading of A, but
they do not commute!

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 17 / 1



Construction of the Z3
4-grading

Assume F contains a 4-th root of 1. The construction will proceed in
two steps:

define a Z4-grading on A = H4(Q)⊕ vH4(Q),
refine it using two commuting automorphisms of order 4.

The even components of the Z4-grading are just A0̄ = H4(K) and
A2̄ = vH4(K). The odd components are as follows:

A1̄ = {x ⊗ E12 + v(y ⊗ E21) | x , y ∈ M4(F), x t = −x , y t = −y} and

A3̄ = {x ⊗ E21 + v(y ⊗ E12) | x , y ∈ M4(F), x t = −x , y t = −y} = vA1̄.

The group GL4(F) acts on H4(Q) via g 7→ Ad
(

g 0
0 (gt )−1

)
. Let ϕ and ψ

be the automorphisms of H4(Q) corresponding to the generalized
Pauli matrices X and Y in GL4(F). We denote their extensions to A by
the same symbols.

Note that ϕ and ψ have order 4 and preserve the Z4-grading of A

, but
they do not commute!

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 17 / 1



Construction of the Z3
4-grading

Assume F contains a 4-th root of 1. The construction will proceed in
two steps:

define a Z4-grading on A = H4(Q)⊕ vH4(Q),
refine it using two commuting automorphisms of order 4.

The even components of the Z4-grading are just A0̄ = H4(K) and
A2̄ = vH4(K). The odd components are as follows:

A1̄ = {x ⊗ E12 + v(y ⊗ E21) | x , y ∈ M4(F), x t = −x , y t = −y} and

A3̄ = {x ⊗ E21 + v(y ⊗ E12) | x , y ∈ M4(F), x t = −x , y t = −y} = vA1̄.

The group GL4(F) acts on H4(Q) via g 7→ Ad
(

g 0
0 (gt )−1

)
. Let ϕ and ψ

be the automorphisms of H4(Q) corresponding to the generalized
Pauli matrices X and Y in GL4(F). We denote their extensions to A by
the same symbols.

Note that ϕ and ψ have order 4 and preserve the Z4-grading of A, but
they do not commute!

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 17 / 1



The automorphism π

The automorphisms ϕ and ψ of A commute on the even component
A0̄ ⊕A2̄ = H4(K)⊕ vH4(K) and anticommute on the odd component
A1̄ ⊕A3̄.

We will construct another automorphism π of order 4 that preserves
the Z4-grading, commutes with each of ϕ and ψ on A0̄ ⊕A2̄ and
anticommutes on A1̄ ⊕A3̄.

Let U = {x ⊗ E12 | x t = −x} and V = {y ⊗ E21 | y t = −y}, so
A1̄ = U ⊕ vV and A3̄ = V ⊕ vU.

U and V are dual GL4(F)-modules, but isomorphic as SL4(F)-modules.
We construct an SL4(F)-isomorphism U → V , x ⊗E12 7→ x̂ ⊗E21, using
the Pfaffian pf(x) = x12x34− x13x24 + x14x23 for skew x = (xij) ∈ M4(F).

Finally, we define π : A→ A as identity on A0̄ ⊕A2̄ and

π(x ⊗ E12) = −v(x̂ ⊗ E21), π(v(x ⊗ E12)) = −x̂ ⊗ E21,
π(x ⊗ E21) = v(x̂ ⊗ E12), π(v(x ⊗ E21)) = x̂ ⊗ E12.
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Construction of the Z3
4-grading (continued)

Fix i ∈ F with i2 = −1, so X = diag(1, i,−1,−i). We will keep ψ and
replace ϕ by ϕ̃, which is the composition of π and the action of
X̃ = diag(ω, ω3, ω5, ω7) where ω2 = i. (We can temporarily extend F.)

Then ϕ̃ and ψ are commuting automorphisms of order 4 and hence we
get a Z3

4-grading of A by setting

A(̄j,k̄ ,¯̀) = {a ∈ Aj̄ | ψ(a) = ik , ϕ̃(a) = (−i)`}.

Explicitly, the homogeneous components are given by
A(0̄,k̄, ¯̀) = F(Xk Y` ⊗ E11 + (Xk Y`)t ⊗ E22);

A(2̄,k̄, ¯̀) = Fv(Xk Y` ⊗ E11 + (Xk Y`)t ⊗ E22);

A(1̄,0̄, ¯̀) = F(ξ1 ⊗ E12 + i`v(ξ1 ⊗ E21)), ` = 1, 3;

A(1̄,2̄, ¯̀) = F(ξ2 ⊗ E12 + i`v(ξ2 ⊗ E21)), ` = 1, 3;

A(1̄,1̄, ¯̀) = F(ξ3 ⊗ E12 − i`v(ξ3 ⊗ E21)), ` = 1, 3;

A(1̄,3̄, ¯̀) = F(ξ4 ⊗ E12 − i`v(ξ4 ⊗ E21)), ` = 1, 3;

A(1̄,1̄, ¯̀) = F(ξ5 ⊗ E12 + i`v(ξ5 ⊗ E21)), ` = 0, 2;

A(1̄,3̄, ¯̀) = F(ξ6 ⊗ E12 + i`v(ξ6 ⊗ E21)), ` = 0, 2.
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A(1̄,1̄, ¯̀) = F(ξ3 ⊗ E12 − i`v(ξ3 ⊗ E21)), ` = 1, 3;

A(1̄,3̄, ¯̀) = F(ξ4 ⊗ E12 − i`v(ξ4 ⊗ E21)), ` = 1, 3;

A(1̄,1̄, ¯̀) = F(ξ5 ⊗ E12 + i`v(ξ5 ⊗ E21)), ` = 0, 2;

A(1̄,3̄, ¯̀) = F(ξ6 ⊗ E12 + i`v(ξ6 ⊗ E21)), ` = 0, 2.
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Construction of the Z3
4-grading (completed)

On the previous slide, {ξ1, . . . , ξ6} is the following basis of K4(F):

ξ1,2 =


0 1 0 ∓1

0 ±1 0
0 1

skew 0

 , ξ3,4 =


0 1 0 ±i

0 ±i 0
0 −1

skew 0

 , ξ5,6 =


0 0 1 0

0 0 ±i
0 0

skew 0



Since all nonzero homogeneous components have dimension 1, our
Z3

4-grading on A = H4(Q)⊕ vH4(Q) is fine. The support S is a proper
subset of Z3

4 of size dimA = 56, which can be characterized as follows:
g /∈ S ⇔ g has order 4 but its image in the quotient group modulo 〈h〉
has order 2, where h = (2̄, 0̄, 0̄) is the degree of v .

Recall that the even component A0̄ ⊕A2̄ is the double of the Jordan
algebra M4(F)(+), so this double receives a fine grading by Z2 × Z2

4.
Here the support is the entire group; there is a distinguished element
h = (1̄, 0̄, 0̄) of order 2 (the degree of v ).
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Fine gradings for G2 and F4

Assume that the ground field F is a.c., charF 6= 2,3.

Up to equivalence, there are exactly two fine gradings on the Cayley
algebra C: the division Z3

2-grading and the Cartan Z2-grading
(Elduque, 1998). They yield two fine gradings on the simple Lie
algebra Der(C) of type G2, which is a complete list (Draper–Martin,
2006; Elduque–K, 2012).

Up to equivalence, there are exactly four fine (abelian) gradings on the
Albert algebra J, with universal groups Z4, Z× Z3

2, Z5
2 and Z3

3
(Draper–Martin, 2009; Elduque–K, 2012). They yield four fine gradings
on the simple Lie algebra Der(J) of type F4, which is a complete list.
Two of these can be obtained from the Z3

2-grading on C, regarded as a
structurable algebra, using the models Kan(C) and stu3(C) for F4.
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Fine gradings for “series” E , infinite universal group

The ground field F is assumed a.c., charF 6= 2,3.
E6 E7 E8

Universal group Model Universal group Model Universal group Model

Z6 Cartan Z7 Cartan Z8 Cartan

Z4 × Z2 T(ΓK, Γ1
A) Z4 × Z2

2 T(Γ2
Q, Γ1

A) Z4 × Z3
2 T(Γ2

C, Γ1
A)

(F4 , K) (F4 , Q) (F4 , C)

Z2 × Z2
3 T(Γ1

C, Γ2
M3(F)) —— Z2 × Z3

3 T(Γ1
C, Γ4

A)

(G2 , M3(F)(+)) (G2 , A)

Z2 × Z3
2 T(Γ2

C, Γ1
M3(F)) Z3 × Z3

2 T(Γ2
C, Γ1

H3(Q)) ——
(A2 , C) (C3 , C)

Z2 × Z3
2 Kan(Γ̃X(F)) Z2 × Z4

2 Kan(Γ̃X(K)) Z2 × Z5
2 Kan(Γ̃X(Q))

(BC2 , X(F)1/2) (BC2 , X(K)1/2) (BC2 , X(Q)1/2)

—— Z × Z3
3 T(Γ1

Q, Γ4
A) ——

(A1 , A)

Z × Z5
2 Kan(Γ1

X(F)) Z × Z6
2 Kan(Γ1

X(K)) Z × Z7
2 Kan(Γ1

X(Q))

(BC1 , X(F)) (BC1 , X(K)) (BC1 , X(Q))

Z × Z4
2 T(ΓK, Γ3

A) Z × Z5
2 T(Γ2

Q, Γ3
A) Z × Z6

2 T(Γ2
C, Γ3

A)
(BC1 , K ⊗ C) (BC1 , Q ⊗ C) (BC1 , C ⊗ C)

—— Z × Z2
4 × Z2 Kan(Γ2

X(K)) Z × Z3
4 Kan(Γ2

X(Q))

(BC1 , X(K)) (BC1 , X(Q))
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Fine gradings for “series” E , finite universal group

E6 E7 E8
Universal group Model Universal group Model Universal group Model

Z4
3 g(ΓK̄, ΓO) —— Z5

3 g(ΓO, ΓO)

Z3
2 × Z2

3 T(Γ2
C, Γ2

M3(F)) —— ——

Z2 × Z3
3 T(ΓK, Γ4

A) Z2
2 × Z3

3 T(Γ2
Q, Γ4

A) Z3
2 × Z3

3 T(Γ2
C, Γ4

A)

Z7
2 stu3(Γ1

X(F)) Z8
2 stu3(Γ1

X(K)) Z9
2 stu3(Γ1

X(Q))

Z6
2 T(ΓK, Γ2

A) Z7
2 T(Γ2

Q, Γ2
A) Z8

2 T(Γ2
C, Γ2

A)

Z3
4 Der(Γ2

X(Q)) Z3
4 × Z2 str0(Γ2

X(Q)) Z3
4 × Z2

2 stu3(Γ2
X(Q))

Z4 × Z4
2 Der(Γ3

X(Q)) Z4 × Z5
2 str0(Γ3

X(Q)) Z4 × Z6
2 stu3(Γ3

X(Q))

—— Z2
4 × Z3

2 stu3(Γ2
X(K)) ——

—— —— Z3
5 Jordan grading

The list is known to be complete (up to equivalence) for E6 if charF = 0
(Draper–Viruel, preprint 2012).

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 23 / 1



Fine gradings for “series” E , finite universal group

E6 E7 E8
Universal group Model Universal group Model Universal group Model

Z4
3 g(ΓK̄, ΓO) —— Z5

3 g(ΓO, ΓO)

Z3
2 × Z2

3 T(Γ2
C, Γ2

M3(F)) —— ——

Z2 × Z3
3 T(ΓK, Γ4

A) Z2
2 × Z3

3 T(Γ2
Q, Γ4

A) Z3
2 × Z3

3 T(Γ2
C, Γ4

A)

Z7
2 stu3(Γ1

X(F)) Z8
2 stu3(Γ1

X(K)) Z9
2 stu3(Γ1

X(Q))

Z6
2 T(ΓK, Γ2

A) Z7
2 T(Γ2

Q, Γ2
A) Z8

2 T(Γ2
C, Γ2

A)

Z3
4 Der(Γ2

X(Q)) Z3
4 × Z2 str0(Γ2

X(Q)) Z3
4 × Z2

2 stu3(Γ2
X(Q))

Z4 × Z4
2 Der(Γ3

X(Q)) Z4 × Z5
2 str0(Γ3

X(Q)) Z4 × Z6
2 stu3(Γ3

X(Q))

—— Z2
4 × Z3

2 stu3(Γ2
X(K)) ——

—— —— Z3
5 Jordan grading

The list is known to be complete (up to equivalence) for E6 if charF = 0
(Draper–Viruel, preprint 2012).

M. Kotchetov (MUN) Some gradings on nonassociative algebras Third Mile High, Denver, 2013 23 / 1


