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Some ovoids in the Og (p) quadric (Klein quadric)

Consider a prime p = 1 mod 4. Let S be the set of all
X = (x1,...,X) € Z8 such that

@ x;=1mod4;and
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Some ovoids in the Og (p) quadric (Klein quadric)

Consider a prime p = 1 mod 4. Let S be the set of all
X = (x1,...,X) € Z8 such that

@ x;=1mod4;and
Then |S| = p? +1;and forall x # yin S, x - y # 0 mod p.
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Some ovoids in the Og (p) quadric (Klein quadric)

Consider a prime p = 1 mod 4. Let S be the set of all
X = (x1,...,X) € Z8 such that
@ x;=1mod4;and
Q >, x2=6p.
Then |S| = p? +1;and forall x # yin S, x - y # 0 mod p.

Example (p =5, |S| =5° + 1 = 26)

S contains 6 vectors of shape (5,1,1,1,1,1);
20 vectors of shape (—3,-3,-3,1,1,1).
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Some ovoids in the Og (p) quadric (Klein quadric)

Consider a prime p = 1 mod 4. Let S be the set of all
X = (x1,...,X) € Z8 such that
@ x;=1mod4;and
Q >, x2=6p.
Then |S| = p? +1;and forall x # yin S, x - y # 0 mod p.

Example (p =5, |S| =5° + 1 = 26)

S contains 6 vectors of shape (5,1,1,1,1,1);
20 vectors of shape (—3,-3,-3,1,1,1).

Example (p = 13, |S| = 132 + 1 = 170)

S contains 20 vectors of shape (5,5,5,1,1,
30 vectors of shape (-7, -5, 1, 1
60 vectors of shape (5,5, —3, -3, —3,
60 vectors of shape (-7, -3, -3, -3

9
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

o
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0.
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set of all singular points.
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular.
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular. A
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular. A
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.

An ovoid is a set O of points of the quadric, meeting each
generator exactly once. Equivalently, O is a set of ¢"~' + 1
singular points, no two perpendicular.
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular. A
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.

An ovoid is a set O of points of the quadric, meeting each
generator exactly once. Equivalently, O is a set of ¢"~' + 1
singular points, no two perpendicular.

The O} (q) quadricis a (g + 1) x (g + 1) grid; ovoids are
transversals of the grid. ﬁ
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular. A
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.

An ovoid is a set O of points of the quadric, meeting each
generator exactly once. Equivalently, O is a set of ¢"~' + 1
singular points, no two perpendicular.

The O} (q) quadricis a (g + 1) x (g + 1) grid; ovoids are
transversals of the grid. Ovoids in the OF (q) quadric exist for ﬁ
all g. The lattice construction of ovoids in OF (p) (above) can be
generalized to all primes p.
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular. A
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.

An ovoid is a set O of points of the quadric, meeting each
generator exactly once. Equivalently, O is a set of ¢"~' + 1
singular points, no two perpendicular.

Ovoids in O (g) are known for some values of g, including all
g = p prime (Conway et al., 1988). ﬁ
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Ovoids in O, (q) quadrics

Let V be a 2n-dimensional vector space over Fq with
nondegenerate quadratic form Q: V — Fy.

(Projective) points are 1-dimensional subspaces (v) < V; such
a point is singular if Q(v) = 0. The associated quadric is the
set of all singular points. A subspace U < V is totally singular it
lies entirely in the quadric, i.e. each of its points is singular. A
generator is a maximal totally singular subspace. All
generators have dimension n, if Q is chosen appropriately.

An ovoid is a set O of points of the quadric, meeting each
generator exactly once. Equivalently, O is a set of ¢"~' + 1
singular points, no two perpendicular.

Ovoids in O (g) are known for some values of g, including all
q = p prime (Conway et al., 1988). No ovoids in O}, (q) are ﬁ
known in dimension 2n > 10.
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The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra
is O =R ®z Oand O is isometric to a root lattice of type Eg in
0.

o
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The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra
is O =R ®z Oand O is isometric to a root lattice of type Eg in
0.

The set of units O* is a Moufang loop of order 240, consisting
of all elements of norm 1 in O.
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The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra
is O =R ®z Oand O is isometric to a root lattice of type Eg in
0.

The set of units O* is a Moufang loop of order 240, consisting
of all elements of norm 1 in O.

For all n > 1, the number of elements v € O of norm |v|? = nis

24003(n) =240 ) d°.
1<d|n
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The Ring O of Integral Octaves

Denote by O the ring of integral octaves. The octonion algebra
is O =R ®z Oand O is isometric to a root lattice of type Eg in
0.

The set of units O* is a Moufang loop of order 240, consisting
of all elements of norm 1 in O.

For all n > 1, the number of elements v € O of norm |v|? = nis

24003(n) =240 ) d°.
1<d|n

Reduction mod p gives maps Z — Fp and O — V := O/pO
denoted by ~. Equipped with the quadratic form

Q:V—TF, QX =|x?,
V is an orthogonal space of type O (p). d
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The ‘binary’ ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit u € O*. Let S be the set of
vectors x € Zu + 20 C O such that |x|?> = p. Then
|S| = 2(p°+1) and S consists of p* + 1 pairs +x.

W
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The ‘binary’ ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit u € O*. Let S be the set of
vectors x € Zu + 20 C O such that |x|?> = p. Then
|S| = 2(p®+1) and S consists of p® 4 1 pairs +x. Reducing
these vectors mod pO gives

O=0spu={(X): £x € S},
an ovoid in O/pO ~ OF (p).

The proof uses the most basic facts about the Eg root lattice.

W
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The ‘binary’ ovoids

Theorem (Conway, Kleidman & Wilson, 1988)

Let p be an odd prime. Fix a unit u € O*. Let S be the set of
vectors x € Zu + 20 C O such that |x|?> = p. Then
|S| = 2(p®+1) and S consists of p® 4 1 pairs +x. Reducing
these vectors mod pO gives

O=0spu={(X): £x € S},
an ovoid in O/pO ~ OF (p).

The proof uses the most basic facts about the Eg root lattice.
Conway et al. also gave a construction of ‘ternary’ ovoids
(replacing the prime 2 by 3 above).

W
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The r-ary ovoids in OF (p)

Theorem (M., 1993)

_ 2
Let r # p be odd primes. Fix u € O such that ( Pl > =4

r

W
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The r-ary ovoids in OF (p)

Theorem (M., 1993)

_ 2
Let r # p be odd primes. Fix u € O such that ( POy +1.

b
Let S be the set of vectors x € Zu + rO C O such that
|X|2 = k(r — k)p for some k € {1,2,...,5'}. Then

|S| = 2(p+1) and S consists of p>+1 pairs £x.

W

G. Eric Moorhouse Octonionic Ovoids



The r-ary ovoids in OF (p)

Theorem (M., 1993)

_ 2
Let r # p be odd primes. Fix u € O such that ( Pl > =4

,
Let S be the set of vectors x € Zu + rO C O such that
|X|2 = k(r — k)p for some k € {1,2,...,5'}. Then

|S| = 2(p3+1) and S consists of p>+1 pairs +x. Reducing
these vectors mod pO gives

O:Or7p7u:{<7> o Zl:XES},
an ovoid in O/pO ~ OF (p). (Some degenerate cases occur for
r>p.)

W
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The r-ary ovoids in OF (p)

Theorem (M., 1993)

_ 2
Let r # p be odd primes. Fix u € O such that ( P |ru| > — 1.
Let S be the set of vectors x € Zu + rO C O such that
|X|2 = k(r — k)p for some k € {1,2,...,5'}. Then
|S| = 2(p3+1) and S consists of p>+1 pairs +x. Reducing
these vectors mod pO gives

O:Or7p7u:{<7> o Zl:XES},
an ovoid in O/pO ~ OF (p). (Some degenerate cases occur for
r>p.)

The proof uses facts about Eg and the fact that Eg & Eg has
48007(n) elements of norm n > 1. (Or O and theorems on
factorization in O). ﬁ
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The r-ary ovoids in OF (p)

Theorem (M., 1993)

_ 2
Let r # p be odd primes. Fix u € O such that ( Pl > =4

,
Let S be the set of vectors x € Zu + rO C O such that
|X|2 = k(r — k)p for some k € {1,2,...,5'}. Then

|S| = 2(p3+1) and S consists of p>+1 pairs +x. Reducing
these vectors mod pO gives

O:Or7p7u:{<7> o Zl:XES},
an ovoid in O/pO ~ OF (p). (Some degenerate cases occur for
r>p.)

The proof uses facts about Eg and the fact that Eg & Eg has
48007(n) elements of norm n > 1. (Or O and theorems on
factorization in O). Ovoids isomorphic to O, p , (for primes

r # p, including r = 2) are the r-ary ovoids of octonionic type in

0; (p).



Open Questions

@ For each p, there are infinitely many choices of r, u to
choose in constructing O, p , but only finitely many ovoids
in Oy (p). How many? How do we know when we have

found them all?
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Open Questions

@ For each p, there are infinitely many choices of r, u to
choose in constructing O, p , but only finitely many ovoids
in Oy (p). How many? How do we know when we have
found them all?

© Let w(p) be the number of isomorphism classes of
octonionic ovoids in Of (p). Does w(p) — oo as p — oo?
(By Conway et al. (1988), w(p) > 1.)

W

G. Eric Moorhouse Octonionic Ovoids



Open Questions

@ For each p, there are infinitely many choices of r, u to
choose in constructing O, p , but only finitely many ovoids
in Oy (p). How many? How do we know when we have
found them all?

© Let w(p) be the number of isomorphism classes of
octonionic ovoids in Of (p). Does w(p) — oo as p — oo?
(By Conway et al. (1988), w(p) > 1.)

© r,pdon't really have to be primes. Does anything
comparable work in OF (q)?
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Open Questions

@ For each p, there are infinitely many choices of r, u to
choose in constructing O, p , but only finitely many ovoids
in Oy (p). How many? How do we know when we have
found them all?

© Let w(p) be the number of isomorphism classes of
octonionic ovoids in Of (p). Does w(p) — oo as p — oo?
(By Conway et al. (1988), w(p) > 1.)

© r,pdon't really have to be primes. Does anything
comparable work in OF (q)?

© Most octonionic ovoids should be rigid, i.e. having trivial
stabilizer in PGOj (p); but no rigid ovoids in OF (q) have
been found.
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Open Questions

@ For each p, there are infinitely many choices of r, u to
choose in constructing O, p , but only finitely many ovoids
in Oy (p). How many? How do we know when we have
found them all?

© Let w(p) be the number of isomorphism classes of
octonionic ovoids in Of (p). Does w(p) — oo as p — oo?
(By Conway et al. (1988), w(p) > 1.)

© r,pdon't really have to be primes. Does anything
comparable work in OF (q)?

© Most octonionic ovoids should be rigid, i.e. having trivial
stabilizer in PGOj (p); but no rigid ovoids in OF (q) have
been found.

© What is really going on in the construction of octonionic ﬁ
ovoids?
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Conjectured number of octonionic ovoids

Let O, 0, ..., Oy be representatives for the isomorphism
types of octonionic ovoids in OF (p), under G = PGO{ (p). The
number of ovoids isomorphic to O; is [G : Gp,]; note that

|Gl = |PGOg (p)| = 5p"(p° — 1)(p* — 1)%(p* — 1)

where d = gcd(p — 1, 2).
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Conjectured number of octonionic ovoids

Let O, 0, ..., Oy be representatives for the isomorphism
types of octonionic ovoids in OF (p), under G = PGO{ (p). The
number of ovoids isomorphic to O; is [G : Gp,]; note that

|G| = |PGO; (p)| = §p™(p° — 1)(p* — 1)2(p* — 1)
where d = gcd(p — 1, 2).
The subgroup W(Eg)/{+/} = PGOj (2) < G has order
|PGO; (2)| = 348,364,800.
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Conjectured number of octonionic ovoids

Conjectured Mass Formula

For p > 5,

WE(S)[G' Gy GIP* +239)
2% E00 T 1 PGOg (2)]

i.e.
|PGO; (2)] N |PGO; (2)] ey |PGOg (2)]  p* +239
|Go, | |Go, | |Go,| 4

o
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Conjectured number of octonionic ovoids

Conjectured Mass Formula
For p > 5,

5216+ Go) = 191 +209)
_ — | ! 4|PGO§'(2)| '
i.e. =i
|PGO; (2)] N |PGO; (2)] P |PGOg (2)]  p* +239

|Go, | |Go, | |Go,| 4

The stabilizers Gp, are not necessarily subgroups of PGOj (2).
| am not claiming that the terms in this sum are always integers
(but in every known case they are).

-

W
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Conjectured number of octonionic ovoids

Conjectured Mass Formula
For p > 5,

5216+ Go) = 191 +209)
_ — | ! 4|PGO§'(2)| '
i.e. =i
|PGO; (2)] N |PGO; (2)] P |PGOg (2)]  p* +239
|Go, | |Go, | |Go,| 4

-

The stabilizers Gp, are not necessarily subgroups of PGOj (2).
| am not claiming that the terms in this sum are always integers
(but in every known case they are).

The cases p = 2, 3 are genuine exceptions. (When p = 3 the
octonionic ovoids lie in hyperplanes.) ﬁ
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The abundance of ovoids

Let n(p) be the number of isomorphism types of ovoids in
Og (p). If the Mass Formula holds, then for some absolute
constant C > 0, n(p) > Cp* — oo as p — oc.

Currently it is known that n(p) > 1 (Conway et al., 1988).
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Verifying the Mass Formula for small p

p | w(p) | Mass Formula

5| 2 | o96+120 =216 = 529

7 | 2 | 1204540 =660 = L1200

11 4 | 120+1204+960+2520 = 3720 = 1%+229

13 4 12041080+1680+4320 = 7200 = ‘fﬁ

17 7 120+120+-540+960+3360+4320+11520 = 20940 = M

19 6 120+120+1080+7560-+8640+15120 = 32640 = ‘fﬁ
120++120-+120+-540+960+2520-+3360 .

23 10 +7560+20160+34560 = 70020 = 23-+2%9

W

G. Eric Moorhouse Octonionic Ovoids



Verifying the Mass Formula for small p

p | w(p) | Mass Formula

5| 2 | o96+120 =216 = 529

7 | 2 | 1204540 =660 = L1200

11 4 | 120+1204+960+2520 = 3720 = 1%+229

13 4 1204-1080+1680-+4320 = 7200 = M

17 7 120+120-+540+9604-3360+4320-+11520 = 20940 = M

19 6 120+120+1080+7560+8640-+15120 = 32640 = M
120++120-+120+-540+960+2520-+3360 .

23 10 +7560+20160+34560 = 70020 = 23-+2%9

Strictly speaking, these terms are lower bounds found by
enumerating r-ary ovoids in Oy (p) for small r and testing for
isomorphism. To compute Aut(O), use nauty to determine
Aut(A(O)) where A(O) is the associated two-graph. In general ﬁ
Aut(O) C Aut(A(0©)), and we check that equality holds in all

cases.
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Canonical bijections between octonionic ovoids in

J’_
Oz (p)
Fix odd primes r # p and u € O such that <_p|r“|2> = +1.

Denote the binary ovoid

Ozp1 = {(X) : £x € Z+20, |x|? = p}.
An alternative construction of the r-ary ovoid Oy p , is via the
canonical bijection

f : Or7p7u — 027p71
constructed as follows.
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Canonical bijections between octonionic ovoids in

_|_
Oz (p)
Fix odd primes r # p and u € O such that <_p|r“|2> = +1.

Denote the binary ovoid

Ozp1 = {(X) : £x € Z+20, |x|? = p}.
An alternative construction of the r-ary ovoid Oy p , is via the
canonical bijection

f:O0rpu— O2p.1
constructed as follows. Given w € Zu + rO with
X|2 = k(r —k)p, 1 < k < 51, we have
W= xy
for some x, y € O such that |x|?> = pand |y|2 = k(r — k). If we

also require x € Z + 20, then this factorization is unique up to a
+1 factor and our bijection is d

fo (W) (X).
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Thank You!

Questions? ﬁ
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