Algebraic closure of some generalized convex sets

Anna B. ROMANOWSKA*

Warsaw University of Technology, Poland

Gábor CZÉDLI

University of Szeged, Hungary

AFFINE SPACES AND CONVEX SETS

1. Real affine spaces

Given a vector space (or a module) A over a subfield (or a subring) R of \mathbb{R} :

An affine space A over R (or affine R-space) is the algebra

$$\left(A, \sum_{i=1}^{n} x_i r_i \, \Big| \, \sum_{i=1}^{n} r_i = 1\right).$$

This algebra is equivalent to

$$(A, P, \underline{R}),$$

where

$$\underline{R} = \{ f \mid f \in R \}$$

and

$$xy\underline{f} := x(1-f) + yf = \underline{f}(x,y),$$

and P is the Mal'cev operation

$$xyzP := x - y + z =: P(x, y, z).$$

The class \underline{R} of all affine R-spaces is a variety.

The variety \underline{R} satisfies the **entropic** identities

$$xyp \ ztp \ q = xzq \ ytq \ p$$

for all $p, q \in R$.

Abstractly, \underline{R} is defined as the class of idempotent entropic Mal'cev algebras (A, P, \underline{R}) with a ternary Mal'cev operation P and binary operations \underline{r} for each $r \in R$, satisfying the identities:

$$xy\underline{0} = x = yx\underline{1},$$

 $xy\underline{p} \ xy\underline{q} \ \underline{r} = xy \ \underline{pqr},$
 $xyp \ xyq \ xy\underline{r} \ P = xy \ pqrP$

for all $p, q, r \in R$.

The variety $\underline{\underline{R}}$ also satisfies the **cancellation** laws

$$(xy\underline{p} = xz\underline{p}) \to y = z$$

for all invertible $p \in R$.

2. Convex sets and barycentric algebras

Let F be a subfield of \mathbb{R} , $I^o(F) :=]0, 1[\subset F \text{ and } I(F) := [0,1] \subset F$.

Convex subsets of affine F-spaces (or F-convex sets) are $\underline{I}^o(F)$ -subreducts $(A,\underline{I}^o(F))$ of affine F-spaces.

The class Cv(F) of F-convex sets generates the variety $\mathcal{B}(F)$ of F-barycentric algebras.

Theorem The class Cv(F) and the quasivariety C(F) of cancellative F-barycentric algebras coincide. Cv(F) is a minimal subquasivariety of the variety $\mathcal{B}(F)$.

3. Intervals of the F-line

The algebra (F, \underline{F}) is called an F-line, and intervals of the F-line are closed bounded intervals considered as $\underline{I}^o(F)$ -algebras.

Proposition The following conditions are equivalent for any non-trivial subalgebra $(A, \underline{I}^o(F))$ of $(F, \underline{I}^o(F))$:

- (a) $(A, \underline{I}^o(F))$ is a closed interval of $(F, \underline{I}^o(F))$;
- (b) $(A, \underline{I}^o(F))$ is isomorphic to $(I(F), \underline{I}^o(F))$;
- (c) $(A, \underline{I}^o(F))$ is generated by two (distinct) elements;
- (d) $(A, \underline{I}^o(F))$ is a free algebra on two free generators in the quasivariety $\mathcal{C}(F)$ and in the variety $\mathcal{B}(F)$.

4. R-convex sets

Now assume that R is a principal ideal subdomain of \mathbb{R} such that $\mathbb{Z} \subset R \subseteq \mathbb{R}$.

The algebra (R, P, \underline{R}) is called an R-line. Let $I^o(R) :=]0, 1[\subset R \text{ and } I(R) := [0, 1] \subset R.$ Intervals of (R, P, \underline{R}) are defined as in the case R = F.

Note that not all intervals of the line (R, P, \underline{R}) are isomorphic to the unit interval $(I(R), \underline{I}^o(R))$, and not all are generated by its endpoints.

However $(I(R), \underline{I}^o(R))$ is generated by the endpoints and is free on two generators, in the quasivariety and the variety it generates.

Algebraic R-convex subsets of affine R-spaces are $I^o(R)$ -subreducts $(A, \underline{I}^o(R))$ of faithful affine R-spaces.

Geometric R-convex sets of affine R-spaces R^n are the intersections of \mathbb{R} -convex subsets of \mathbb{R}^n with the subspace R^n .

If R is a field, both concepts coincide. If not, then the algebraic and geometric definitions of R-convex sets do not coincide.

Proposition The class Cv(R) of $\underline{I}^o(R)$ -subreducts of faithful affine R-spaces is a (minimal) quasivariety containing the class of geometric R-convex sets.

Cv(R) does not coincide with the quasivariety of cancellative members of the variety generated by $\underline{I}^o(R)$ -subreducts of affine R-spaces.

MODES

An algebra (A, Ω) is a **mode** if it is

• idempotent:

$$x...x\omega = x,$$

for each n-ary $\omega \in \Omega$, and

• entropic:

$$(x_{11}...x_{1n}\omega)...(x_{m1}...x_{mn}\omega)\varphi$$

$$= (x_{11}...x_{m1}\varphi)...(x_{1n}...x_{mn}\varphi)\omega.$$
 for all $\omega, \varphi \in \Omega$.

Affine R-spaces, R-convex sets and their subreducts are modes.

ALGEBRAIC CLOSURES OF GEOMETRIC R-CONVEX SETS

From now on, R is a principal ideal subdomain of \mathbb{R} such that $\mathbb{Z} \subset R \subseteq \mathbb{R}$, and $I^o(R)$ contains an invertible element s.

All R-convex sets $(C, \underline{I}^o(R))$ are assumed to be geometric subsets of an affine R-space A isomorphic to (R^k, P, \underline{R}) for some k = 1, 2,

For $(a,b) \in C \times C$, $\langle a,b \rangle$ denotes the $\underline{I}^o(R)$ -subalgebra generated by a and b, and $\langle a,b \rangle^o := \langle a,b \rangle \setminus \{a,b\}.$

1. Algebraic s-closures

The pair (a,b) is called s-**eligible**, if for each $x \in \langle a,b \rangle^o$ there is a $y \in C$ with $b = xy\underline{s}$. $E_s(C)$ denotes the set of s-eligible pairs of $(C,\underline{I}^o(R))$.

Lemma The set $E_s(C)$ forms a subalgebra of $(A \times A, \underline{I}^o(R))$.

Lemma Let $(a,b) \in C \times C$. Then (a,b) is an s-eligible pair of $(C,\underline{I}^o(R))$ if and only if $xb1/s \in C$ for each $x \in \langle a,b \rangle^o$.

An R-convex subset $(C, \underline{I}^o(R))$ of an affine R-space A is called **algebraically** s-closed if for each s-eligible pair $(a,b) \in C \times C$, there is a $c \in C$ such that $b = ac\underline{s}$.

Proposition An R-convex subset $(C, \underline{I}^o(R))$ of an affine R-space A is algebraically s-closed if and only if $ab\underline{1/s} \in C$ for each s-eligible pair $(a,b) \in C \times C$.

Let

$$\overline{C}_s := \{ab1/s \mid (a,b) \in E_s(C)\}.$$

The set \overline{C}_s is called the **algebraic** s-closure of $(C, \underline{I}^o(R))$.

Lemma The s-closure \overline{C}_s of an R-convex subset $(C, \underline{I}^o(R))$ of an affine R-space A is a subalgebra of $(A, \underline{I}^o(R))$.

Lemma Let s and t be any two invertible elements of $I^o(R)$. Then \overline{C}_s and \overline{C}_t coincide.

2. Algebraic closures

The s-closure \overline{C}_s of C will be called the **algebraic closure** or simply the **closure** of C, and will be denoted by \overline{C} .

Proposition Let C be a k-dimensional geometric convex subset of the affine R-space R^k . Then its closure \overline{C} is also a geometric k-dimensional convex subset of R^k , and it coincides with the convex hull $\operatorname{conv}_R(\overline{C})$ of \overline{C} .

Proposition The following hold for the closures \overline{B} and \overline{C} of R-convex subsets $(C, \underline{I}^o(R))$ and $(B, \underline{I}^o(R))$ of an affine R-space R^k .

(a)
$$C \leq \overline{C}$$
;

(b) If
$$(B, \underline{I}^o(R)) \leq (C, \underline{I}^o(R))$$
, then $(\overline{B}, \underline{I}^o(R)) \leq (\overline{C}, \underline{I}^o(R))$;

(c)
$$\overline{\overline{C}} = \overline{C}$$
.

ALGEBRAIC AND OTHER CLOSURES

Consider an affine R-space (A, P, \underline{R}) . Define the following relation \sim_s on the set $A \times A$:

$$(a_1, b_1) \sim_s (a_2, b_2) \text{ iff } a_1 b_2 \underline{s} = a_1 a_2 \underline{s} b_1 \underline{s}.$$

Lemma (a) The relation \sim_s is a congruence relation of the affine R-space $(A \times A, P, \underline{R})$.

(b) The mapping

$$\varphi: A \to (A \times A)^{\sim_s} ; a \mapsto (a,a)^{\sim_s}$$

is an embedding of affine R-spaces.

(c) The relation \sim_s is a congruence relation of $\underline{I}^o(R)$ -subreducts of $(A \times A, P, \underline{R})$, in particular of each R-convex set $(C \times C, \underline{I}^o(R))$.

Lemma Let $(A, \underline{I}^o(R))$ be the $\underline{I}^o(R)$ -reduct of an affine R-space (A, P, \underline{R}) . Then

$$(E_s(A), \underline{I}^o(R))^{\sim_s} \cong (A, \underline{I}^o(R))$$

.

1. Algebraic closures and aiming congruences

The congruence \sim_s of $(C \times C, \underline{I}^o(R))$ is called the **aiming congruence**.

Proposition Let $(C, \underline{I}^o(R))$ be an R-convex subset of an affine R-space (A, P, \underline{R}) . Then

$$(\overline{C}_s, \underline{I}^o(R)) \cong (E_s(C), \underline{I}^o(R))^{\sim_s}.$$

Corollary The following conditions are equivalent for a k-dimensional geometric R-convex subset C of the affine R-space R^k , where $k = 1, 2, \ldots$, and an invertible element $s \in I^o(R)$:

- (a) $(C, \underline{I}^o(R))$ is algebraically closed,
- (b) $(C, \underline{I}^o(R)) \cong (\overline{C}, \underline{I}^o(R)),$
- (c) $(C, \underline{I}^o(R)) \cong (E_s(C), \underline{I}^o(R))^{\sim_s}$.

2. Algebraic and topological closures

We consider the usual Euclidean topology on \mathbb{R}^k , and R^k as a topological subspace of \mathbb{R}^k . Its closed (open) sets are simply closed (open) subsets of \mathbb{R}^k intersected with R^k .

For a geometric convex subset C of R^k , let C_R^{tc} be its topological closure in R^k , and $C_{\mathbb{R}}^{tc}$ its topological closure in \mathbb{R}^k .

Theorem Let $(C, \underline{I}^o(R))$ be a k-dimensional geometric convex subset of an affine R-space (R^k, P, \underline{R}) . Then the algebraic closure \overline{C} of C and the topological closure C_R^{tc} of C in R^k coincide:

$$\overline{C} = C_R^{tc}$$
.

SOME REFERENCES

- G. Bergman, On lattices of convex sets in \mathbb{R}^n , Algebra Universalis **53** (2005), 357–395.
- B. Csákány, *Varieties of affine modules*, Acta Sci Math. **37** (1975), 3–10.
- G. Czédli and A. Romanowska, *An algebraic closure for barycentric algebras and convex sets,* Algebra Universalis 68 (2012), 111-143.
- G. Czédli and A. Romanowska, *Generalized* convexity and closure condition, submitted.
- V. V. Ignatov, *Quasivarieties of convexors*, (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. **29** (1985), 12–14.
- J. Ježek and T. Kepka, *Medial Groupoids*, Academia, Praha, 1983.

- A. I. Mal'cev, *Algebraic Systems*, Springer-Verlag, Berlin, 1973.
- K. Matczak and A. Romanowska, *Quasivarieties of cancellative commutative binary modes*, Studia Logica **78** (2004), 321–335.
- K. Matczak, A. B. Romanowska and J. D. H. Smith, *Dyadic polygones*, International Journal of Algebra and Computation **21** (2011), 387–408.
- W.D. Neumann, On the quasivariety of convex subsets of affine spaces, Arch. Math. **21** (1970), 11–16.
- F. Ostermann and J. Schmidt, *Der baryzen-trische Kalkül als axiomatische Grundlage der affinen Geometrie*, J. Reine Angew. Math. **224** (1966), 44–57.

A.B. Romanowska and J.D.H. Smith, *Modal Theory*, Heldermann, Berlin, 1985.

A.B. Romanowska and J.D.H. Smith, *Modes,* World Scientific, Singapore, 2002.