Magic squares of Lie groups
Tevian Dray*, John Huerta, Joshua Kincaid, Corinne A. Manogue, Aaron Wangberg and Robert A. Wilson
Oregon State University, USA

The Tits-Freudenthal magic square yields a description of certain real forms of the exceptional Lie algebras in terms of a pair of (possibly split) division algebras. At the group level, the first two rows are well understood, including a geometric understanding of the minimal representations of F_{4} and E_{6} in terms of the Albert algebra. In the third row, the minimal representation of E_{7} consists of Freudenthal triples.

We present here several results at the group level: A complete description of the corresponding " 2×2 " magic square as $S U\left(2, \mathbb{K}^{\prime} \otimes \mathbb{K}\right)$, the use of Cartan decompositions involving all 5 real forms of E_{6} to identify chains of real subgroups of the particular real form $S L(3, \mathbb{O})$, and a new description of Freudenthal triples in terms of "cubies", the components of an antisymmetric rank-3 representation of (generalized) symplectic groups, thus providing a unified, geometric interpretation of Freudenthal triples as a single object, and a new description of the minimal representation of E_{7}.

In future work, we hope to extend this construction to the fourth row, ultimately providing a unified description of the full magic square.

