Nuclear semidirect product of commutative automorphic loops Jan Hora and Přemysl Jedlička* Czech University of Life Sciences, Czech Republic

An automorphic loop is a loop with all inner mappings being automorphisms. A semidirect product of groups is, on one hand, a group G with two subgroups H < G and $K \triangleleft G$ such that KH = G and $K \cap H = 1$. On the other hand, it is a construction of a group Gfrom two groups K and H and a homomorphism $\varphi : H \to \operatorname{Aut}(K)$.

Now consider Q, a commutative automorphic loop. If H < Q and $K \triangleleft Q$ such that KH = Q and $K \cap H = 1$, it is reasonable to speak about a semidirect product of commutative automorphic loops. However, to obtain a construction simple to describe, it is useful to assume two additional conditions: K and H are abelian groups, and $K \leq N_{\mu}(Q)$. In this case we speak about a nuclear semidirect product.

This situation can be described as a construction too, using some mapping $\varphi : H^2 \to \operatorname{Aut}(K)$, satisfying some conditions. We show several examples and we notice that one of the ways how to fulfill the conditions is using φ bilinear. This case is studied deeper and we describe how to obtain such mappings.