Outline.

- **Introduction.**
 - Latin squares.
 - Partial transversals.
 - Examples and notes.
- **Bicyclic latin squares.**
 - A class of latin squares of side $2n + 1$.
 - Some basic facts.
 - The case n even.
 - Constructions of maximal partial transversals.
 - Constructions of transversals.
 - The case n odd.
 - Results so far.
Latin squares.

Definition

A latin square of side n is an $n \times n$ matrix in which each symbol from an n-element set appears exactly once in each row and each column.
Latin squares.

Definition

A *latin square* of side n is an $n \times n$ matrix in which each symbol from an n-element set appears exactly once in each row and each column.

Example

A latin square of order 9.

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 1 & 6 & 7 & 8 & 9 & 5 \\
3 & 4 & 1 & 2 & 7 & 8 & 9 & 5 & 6 \\
4 & 1 & 2 & 3 & 8 & 9 & 5 & 6 & 7 \\
5 & 6 & 7 & 8 & 9 & 2 & 3 & 4 & 1 \\
6 & 7 & 8 & 9 & 1 & 5 & 2 & 3 & 4 \\
7 & 8 & 9 & 5 & 4 & 1 & 6 & 2 & 3 \\
8 & 9 & 5 & 6 & 3 & 4 & 1 & 7 & 2 \\
9 & 5 & 6 & 7 & 2 & 3 & 4 & 1 & 8 \\
\end{pmatrix}
\]
Partial transversals.

Definition

A partial transversal of length m in a latin square L is a set T of m cells,

- at most one from each row,
- at most one for each column,
- no symbol of L appearing more than once in T.
Partial transversals.

Definition

A **partial transversal** of length m in a latin square L is a set T of m cells,
- at most one from each row,
- at most one for each column,
- no symbol of L appearing more than once in T.

Definition

A **partial transversal** is **maximal** if it cannot be extended to a partial transversal of greater length.
A partial transversal of length 5 in a latin square of side 9.

\[
\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 1 & 6 & 7 & 8 & 9 & 5 \\
3 & 4 & 1 & 2 & 7 & 8 & 9 & 5 & 6 \\
4 & 1 & 2 & 3 & 8 & 9 & 5 & 6 & 7 \\
5 & 6 & 7 & 8 & 9 & 2 & 3 & 4 & 1 \\
6 & 7 & 8 & 9 & 1 & 5 & 2 & 3 & 4 \\
7 & 8 & 9 & 5 & 4 & 1 & 6 & 2 & 3 \\
8 & 9 & 5 & 6 & 3 & 4 & 1 & 7 & 2 \\
9 & 5 & 6 & 7 & 2 & 3 & 4 & 1 & 8 \\
\end{bmatrix}
\]

This partial transversal is maximal.
A partial transversal of length 5 in a latin square of side 9.

\[
\begin{pmatrix}
\cdot \cdot \cdot \cdot & 5 & \cdot \cdot \cdot \cdot \\
\cdot \cdot \cdot \cdot & 7 & \cdot \cdot \cdot \cdot \\
\cdot \cdot \cdot \cdot & 9 & \cdot \cdot \cdot \\
5 & 6 & 7 & 8 & \cdot \cdot \cdot \cdot \\
6 & 7 & 8 & 9 & \cdot \cdot \cdot \cdot \\
7 & 8 & 9 & 5 & \cdot \cdot \cdot \cdot \\
8 & 9 & 5 & 6 & \cdot \cdot \cdot \cdot \\
\cdot \cdot \cdot \cdot \cdot \cdot \cdot & 8 & \cdot \cdot \cdot \cdot \\
\end{pmatrix}
\]

This partial transversal is maximal.
A partial transversal of length 7 in a latin square of side 9.

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & \color{blue}5 & 6 & 7 & 8 & 9 \\
2 & 3 & 4 & 1 & 6 & 7 & 8 & 9 & 5 \\
3 & 4 & 1 & 2 & 7 & 8 & 9 & 5 & 6 \\
4 & 1 & 2 & 3 & 8 & 9 & 5 & 6 & 7 \\
5 & 6 & 7 & 8 & 9 & \color{blue}2 & \color{blue}3 & \color{blue}4 & 1 \\
6 & 7 & 8 & 9 & 1 & 5 & 2 & 3 & 4 \\
7 & 8 & 9 & 5 & 4 & 1 & 6 & 2 & 3 \\
8 & 9 & 5 & 6 & 3 & 4 & 1 & 7 & 2 \\
9 & 5 & 6 & 7 & 2 & 3 & 4 & 1 & 8 \\
\end{array}
\]
A partial transversal of length 7 in a latin square of side 9.

This partial transversal is maximal.
Notes on partial transversals.

L a latin square of side n.
- A partial transversal of length n is a transversal.
Notes on partial transversals.

L a latin square of side n.

- A partial transversal of length n is a **transversal**.
- A partial transversal of length $n-1$ is a **near transversal**.
Notes on partial transversals.

Let L be a latin square of side n.

- A partial transversal of length n is a transversal.
- A partial transversal of length $n-1$ is a near transversal.

Theorem

If a latin square of side n has a maximal partial transversal of length m, then

$$\left\lfloor \frac{n}{2} \right\rfloor \leq m \leq n.$$
L a latin square of side n.

- A partial transversal of length n is a **transversal**.
- A partial transversal of length $n - 1$ is a **near transversal**.

Theorem

If a latin square of side n has a maximal partial transversal of length m, then

$$\left\lfloor \frac{n}{2} \right\rfloor \leq m \leq n.$$

Example

Our latin square of side 9 has maximal partial transversals of lengths 5, 6, 7, 8, and 9, i.e., all allowed lengths.
Notation.

M_n will denote the Cayley table of \mathbb{Z}_n, i.e., the latin square of side n and ijth entry

$$i + j \mod n,$$

$i, j = 0, \ldots, n - 1$.
Bicyclic latin squares.

A latin square $L_{A,d_1,...,d_n}$ of side $2n + 1$ is **bicyclic** if its symbol set is

$$\mathbb{Z}_n \cup \mathbb{Z}_{n+1} = \{0, 1, \ldots, n-1\} \cup \{0, 1, \ldots, n\},$$

and

$$L_{A,d_1,...,d_n} = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right),$$

where
Bicyclic latin squares.

A latin square $L_{A,d_1,...,d_n}$ of side $2n + 1$ is bicyclic if its symbol set is

$$\mathbb{Z}_n \cup \mathbb{Z}_{n+1} = \{0, 1, \ldots, n - 1\} \cup \{0, 1, \ldots, n\},$$

and

$$L_{A,d_1,...,d_n} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where

- A is isotopic to M_n,
A latin square \(L_{A,d_1,\ldots,d_n} \) of side \(2n + 1 \) is \textit{bicyclic} if its symbol set is
\[
\mathbb{Z}_n \cup \mathbb{Z}_{n+1} = \{0, 1, \ldots, n - 1\} \cup \{0, 1, \ldots, n\},
\]
and
\[
L_{A,d_1,\ldots,d_n} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},
\]
where
\begin{itemize}
 \item \(A \) is isotopic to \(M_n \),
 \item \(B \) is \(M_{n+1} \) with the last row removed,
\end{itemize}
A latin square $L_{A,d_1,...,d_n}$ of side $2n + 1$ is **bicyclic** if its symbol set is

$$\mathbb{Z}_n \cup \mathbb{Z}_{n+1} = \{0,1,\ldots,n-1\} \cup \{0,1,\ldots,n\},$$

and

$$L_{A,d_1,...,d_n} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where

- A is isotopic to M_n,
- B is M_{n+1} with the last row removed,
- C is M_{n+1} with the last column removed, and
- D has the last row of B/last column of C on the main diagonal, and

$d_j - i \in \mathbb{Z}_n$, $i \neq j$.

A is isotopic to M_n,

B is M_{n+1} with the last row removed,

C is M_{n+1} with the last column removed, and
Bicyclic latin squares.

A latin square $L_{A,d_1,...,d_n}$ of side $2n+1$ is **bicyclic** if its symbol set is

$$\mathbb{Z}_n \cup \mathbb{Z}_{n+1} = \{0, 1, \ldots, n-1\} \cup \{0, 1, \ldots, n\},$$

and

$$L_{A,d_1,...,d_n} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where

- A is isotopic to M_n,
- B is M_{n+1} with the last row removed,
- C is M_{n+1} with the last column removed, and
- D has the last row of B/last column of C on the main diagonal, and ijth entry $d_{j-i} \in \mathbb{Z}_n, i \neq j$.
Bicyclic latin squares.

A bicyclic latin square of side 9.

\[
\begin{pmatrix}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}

This is $L_{M_{4,1,2,3,0}}$.
Some basic facts.

Lemma

If n is even and a bicyclic latin square of side $2n + 1$ has a maximal partial transversal of length m, then

$$n + 1 \leq m \leq 2n + 1.$$
Some basic facts.

Lemma

If n *is even and a bicyclic latin square of side* $2n + 1$ *has a maximal partial transversal of length* m, *then*

$$n + 1 \leq m \leq 2n + 1.$$

Lemma

If n *is even, then* M_n

- *has no transversals, and*
- *any cell can be the missing cell of a near transversal.*
Some basic facts.

Lemma

If n is even and a bicyclic latin square of side $2n + 1$ has a maximal partial transversal of length m, then

$$n + 1 \leq m \leq 2n + 1.$$

Lemma

If n is even, then M_n

- has no transversals, and
- any cell can be the missing cell of a near transversal.

Lemma

If n is odd, then M_n

- has transversals, and
- any near transversal can be extended to a transversal.
The case n even. Constructions of maximal partial transversals.

Lemma

If n is even, then any bicyclic latin square of side $2n + 1$ has a maximal partial transversal of length $n + 1$.
The case n even. Constructions of maximal partial transversals.

Lemma

If n is even, then any bicyclic latin square of side $2n + 1$ has a maximal partial transversal of length $n + 1$.

The construction.

For

$$L = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

pick a

“transversal” of B, and
The case n even. Constructions of maximal partial transversals.

Lemma

If n is even, then any bicyclic latin square of side $2n+1$ has a maximal partial transversal of length $n+1$.

The construction.

For $L = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$, pick a

- “transversal” of B, and
- one entry on the main diagonal of D.

The case \(n \) even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
\hline
0 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 0 \\
1 & 2 & 3 & 4 & 0 & 0 & 1 & 2 & 3 \\
2 & 3 & 4 & 0 & 1 & 3 & 0 & 1 & 1 \\
3 & 4 & 0 & 1 & 2 & 2 & 3 & 0 & 2 \\
4 & 0 & 1 & 2 & 3 & 1 & 2 & 3 & 0 \\
\end{array}
\]

The black entries form a maximal partial transversal of length 5.
The case n even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

$$
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 \\
\end{array}
\begin{array}{cccc}
& & & \\
& 2 & & \\
& & 4 & \\
& 1 & & \\
\end{array}
\begin{array}{cccc}
& & & \\
& 1 & 2 & 3 \\
& 0 & 1 & 2 \\
& 3 & 0 & 1 \\
& 2 & 3 & 0 \\
& 1 & 2 & 3 \\
\end{array}
\begin{array}{cccc}
& & & \\
& & & 3 \\
& & & 1 \\
\end{array}
$$

The black entries form a maximal partial transversal of length 5.
The case n even. Constructions of maximal partial transversals.

Lemma

If n is even, then any bicyclic latin square of side $2n + 1$ has a maximal partial transversal of length $2n$.
The case n even. Constructions of maximal partial transversals.

Lemma

If n is even, then any bicyclic latin square of side $2n + 1$ has a maximal partial transversal of length $2n$.

The construction.

For

$$L = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

pick a

- near transversal of A, and
The case \(n \) even. Constructions of maximal partial transversals.

Lemma

If \(n \) is even, then any bicyclic latin square of side \(2n + 1 \) has a maximal partial transversal of length \(2n \).

The construction.

For

\[
L = \begin{pmatrix}
A & B \\
C & D
\end{pmatrix},
\]

pick a
- near transversal of \(A \), and
- the main diagonal of \(D \).
The case n even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 \\
\hline
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 \\
4 & 0 & 1 & 2 \\
\end{array}
\quad
\begin{array}{cccc}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 0 \\
3 & 4 & 0 & 1 \\
\hline
0 & 1 & 2 & 3 \\
4 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 \\
3 & 0 & 1 & 1 \\
2 & 3 & 0 & 2 \\
\end{array}
\]

The entries shown, less one 1 form a maximal partial transversal of length 8.
The case n even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

$$\begin{pmatrix}
0 & \cdot \\
\cdot & 2 & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 4 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 0 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & 2 & \cdot \\
\cdot & 3 \\
\end{pmatrix}$$

The entries shown, less one 1, form a maximal partial transversal of length 8.
The case \(n \) even. Constructions of maximal partial transversals.

Lemma

If \(n \) is even and

\[1 \leq k < \frac{n}{2}, \]

then \(L_{M_n,1,...,n-1,0} \) has a maximal partial transversal of length \(n + 2k + 1 \).
The case n even. Constructions of maximal partial transversals.

The construction.

First pick the black entries shown below.

\[
\begin{pmatrix}
0 & \cdots & 2(k - 1) \\
2k & \cdots & 2(n - 1) \\
& \cdots & \\
& & \ \ \ &= 2n
\end{pmatrix}
\]

Then choose blue entries.
The case n even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 0 \\
1 & 2 & 3 & 4 & 0 & 0 & 1 & 2 & 3 \\
2 & 3 & 4 & 0 & 3 & 0 & 1 & 1 & 2 \\
3 & 4 & 0 & 1 & 2 & 3 & 0 & 2 & 1 \\
4 & 0 & 1 & 2 & 1 & 2 & 3 & 0 & 3 \\
\end{bmatrix}
\]

The entries shown form a partial transversal of length 5, which can be extended. The red and black entries form a maximal partial transversal of length 7.
The case n even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{cccccc}
0 & \cdot & \cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
2 & \cdot & \cdot & \cdot & \cdot & \cdot \\
3 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & 2 \\
\cdot & \cdot & \cdot & \cdot & 2 & 3 \\
\cdot & \cdot & \cdot & 4 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & 3 \\
\end{array}
\]

The entries shown form a partial transversal of length 5, which can be extended. The red and black entries form a maximal partial transversal of length 7.
The case n even. Constructions of maximal partial transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{ccccccccc}
\cdot & \cdot & \cdot & \cdot & \cdot & 0 & \cdot & \cdot & \cdot \\
1 & \cdot \\
2 & \cdot \\
3 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & 2 & 3 & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & 3 \\
\end{array}
\]

The entries shown form a partial transversal of length 5, which can be extended. The red and black entries form a maximal partial transversal of length 7.
The case n even. Constructions of maximal partial transversals.

Lemma

If n is even and

$$1 \leq k < \frac{n}{2},$$

then $L_{M_{n,1,\ldots,n-1,0}}$ has a maximal partial transversal of length $n + 2k$.
The case n even. Constructions of maximal partial transversals.

The construction.

First pick the black entries shown below.

\[
\begin{pmatrix}
0 \\
\vdots \\
2(n-1)
\end{pmatrix}
\begin{pmatrix}
2k & 2n \\
\end{pmatrix}
\begin{pmatrix}
0 \\
\ldots \\
2(k-1)
\end{pmatrix}
\]

Then choose blue entries.
The case n even. Constructions of transversals.

A question.

For

$$L_{A,d_1,...,d_n} = \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

a bicyclic latin square of side $2n + 1$, n even, when can a near transversal of A be extended to a transversal of $L_{A,d_1,...,d_n}$?
The case n even. Constructions of transversals.

A question.

For

$$L_{A,d_1,\ldots,d_n} = \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right),$$

a bicyclic latin square of side $2n+1$, n even, when can a near transversal of A be extended to a transversal of L_{A,d_1,\ldots,d_n}?

A possible extension.

Let T be a near transversal of A.

- Missing cell (i,j) with entry a.
The case \(n \) even. Constructions of transversals.

A question.

For

\[
L_{A,d_1,...,d_n} = \begin{pmatrix}
A & B \\
C & D
\end{pmatrix},
\]

a bicyclic latin square of side \(2n + 1 \), \(n \) even, when can a near transversal of \(A \) be extended to a transversal of \(L_{A,d_1,...,d_n} \)?

A possible extension.

Let \(T \) be a near transversal of \(A \).

- Missing cell \((i,j)\) with entry \(a\).
- Missing symbol \(-a \in \mathbb{Z}_n\).
The case \(n \) even. Constructions of transversals.

A possible extension.

- Pick cell \((i, t)\) in \(B \): entry \(y = i + t \in \mathbb{Z}_{n+1} \).
The case n even. Constructions of transversals.

A possible extension.

- Pick cell (i, t) in B: entry $y = i + t \in \mathbb{Z}_{n+1}$.
- Pick cell (s, j) in C: entry $x = s + j \in \mathbb{Z}_{n+1}$.
The case n even. Constructions of transversals.

A possible extension.

$$
\begin{pmatrix}
 j & t & s \\
 \vdots & \vdots & \vdots \\
 i & a & \ldots & y & \ldots & \ldots \\
 \vdots & \vdots & \vdots \\
 t & \ldots & \ldots & x & \ldots & ? \\
 \vdots & \vdots & \vdots \\
 s & \ldots & x & \ldots & \ldots & y \\
 \vdots & \vdots \\
\end{pmatrix}
$$
The case n even. Constructions of transversals.

A possible extension.

We find that T can be extended to a transversal if and only if

\begin{equation}
i + j + 2 \equiv 0 \pmod{n+1},\end{equation}

i.e., the missing cell of T is on the antidiagonal of A, and

$? = -a \in \mathbb{Z}_n$.
The case n even. Constructions of transversals.

A possible extension.

We find that T can be extended to a transversal if and only if

- $i + j + 2 \equiv 0 \pmod{n+1}$, i.e., the missing cell of T is on the antidiagonal of A, and
A possible extension.

We find that T can be extended to a transversal if and only if

1. $i + j + 2 \equiv 0 \pmod{n + 1}$, i.e., the missing cell of T is on the antidiagonal of A, and
2. the “?” is $-a \in \mathbb{Z}_n$.
The case \(n \) even. Constructions of transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 & \\
2 & 3 & 0 & 1 & \\
3 & 0 & 1 & 2 & \\
\hline
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
4 & 0 & 1 & 2 & \\
\end{array}
\]

The entries shown form a transversal.
The case \(n \) even. Constructions of transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{cccccccc}
0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 \\
2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
\hline
0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 \\
2 & 3 & 4 & 0 & 1 & 2 & 3 & 0 \\
3 & 4 & 0 & 1 & 2 & 3 & 0 & 1 \\
4 & 0 & 1 & 2 & 3 & 0 & 1 & 2 \\
\end{array}
\]

The entries shown form a transversal.
The case n even. Constructions of transversals.

A bicyclic latin square of side 9.

\[
\begin{bmatrix}
 0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 \\
 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
\end{bmatrix}
\]

The entries shown form a transversal.
The case n even. Constructions of transversals.

A bicyclic latin square of side 9.

\[
\begin{pmatrix}
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
0 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 0 \\
1 & 2 & 3 & 4 & 0 & 0 & 1 & 2 & 3 \\
2 & 3 & 4 & 0 & 3 & 0 & 1 & 1 & 2 \\
3 & 4 & 0 & 1 & 2 & 3 & 0 & 2 & 1 \\
4 & 0 & 1 & 2 & 1 & 2 & 3 & 0 & 3 \\
\end{pmatrix}
\]

The entries shown form a transversal.
The case n even. Constructions of transversals.

A bicyclic latin square of side 9.

\[
\begin{pmatrix}
0 & 1 & 2 & 3 \\
1 & 2 & 3 & 0 \\
2 & 3 & 0 & 1 \\
3 & 0 & 1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 0 & 1 \\
3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}
\]

The entries shown form a transversal.
The case n even. Constructions of transversals.

A bicyclic latin square of side 9.

$$
\begin{pmatrix}
0 & 1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 \\
1 & 2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 \\
2 & 3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 \\
3 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 \\
\end{pmatrix}
$$

The entries shown form a transversal.
The case n even. Constructions of transversals.

A bicyclic latin square of side 9.

\[
\begin{array}{cccccccc}
& & & & & & & 4 \\
& & & & & & & \\
& & & & & & 3 & \\
2 & & & & & & & \\
& & & & & & 0 & \\
& & & & & & & \\
& & & & 3 & & & \\
& & & & & & 0 & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
& & & & & & & \\
1 & & & & & & & \\
& & & & & & & \\
& & & & & & & \\
1 & & & & & & & \\
\end{array}
\]

The entries shown form a transversal.
The case n even. The conclusion.

Theorem

If n is even, then there exists a bicyclic latin square of side $2n + 1$ that has maximal partial transversals of all allowed lengths.
The case n odd. Results so far.

Theorem

If n is odd, then there exists a bicyclic latin square of side $2n + 1$ that has maximal partial transversals of all allowed lengths except possibly $n + 1$ and $2n$.