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Introduction

In 1998, Atanassov and Shannon discussed mathematical arrays
that are in some way, between two-dimensional vectors and

(2 x 2)-dimensional matrices in their paper denoted matrix-tertions
and noitrets. Ajibade(2003) introduced objects which are in some
ways, between (2 x 2)-dimensional and (3 x 3) dimensional
matrices. Such an object is called a rhotrix in Ajibade (2003), and
went further to define a real rhotrix as follows:
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Introduction

Definition
A rhotrix is a rhomboid array of numbers given as:

a
R={( b ¢ d ):ab,c,d e €R}
e

where ¢ = h(R) is called the heart of any rhotrix R and R is the
set of real numbers. R is the set of all 3-dimensional rhotrices.
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Introduction

However, the paper observed that an extension of this set was
possible in various ways, and also noted that the name rhotrix was
a result of the rhomboid nature. Several authors have worked on
the algebra, analysis and applications a rhotrix into different field
of sciences-see Mohammed(2007), Aminu(2010) and others.
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Introduction

The algebra and analysis of rhotrices are presented in
Ajibade(2003). Thus, addition and multiplication of two
heart-based rhotrices are defined below: Let

a f
R:<b h(R) d>andQ=<g h(Q) J'>
e k

a+f
R+Q:< b+g h(R)+ h(Q) d+j>
e+ k

then
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Introduction

and

ah(Q) + fh(R)
RoQ = < bh(Q) + gh(R)  h(R)A(Q)  dh(Q) + jh(R) >
eh(Q) + kh(R)

A generalization of this hearty multiplication is given in
Mohammed et al (2011). A far-reaching observation was made in
Ajibade(2003) that multiplication on rhotrices can be defined in
many ways. The following year, Sani(2004) introduced an
alternative method of rhotrix multiplication.
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Introduction

A row-column multiplication of heart-based rhotrices was proposed
by Sani(2004) as:

af +dg
RoQ={( bf+eg h(R)h(Q) aj+ dk
bj + ek
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Introduction

A generalization of this row-column multiplication was also later
given by Sani(2007) as:

t t—1

RaoQn = (ajj, cjo(byj, dic) = ( > _(ayby), > (cdi) ), t = (n+1)/2.
ij=1 I,k=1

where R, and @, are n-dimensional rhotrices (with n rows and n
columns). This new method was not commutative unlike the
former. These two definitions set a bearing for researches in rhotrix
theory.
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Introduction

(i) A hl-rhotrix of dimension four (Rs) is given by:

a1
Rs =( as1 o
as2

ai
C11
a2
€22
a33

a2
€12 4a13
a3

Then its corresponding coupled matrix will be presented

below:
(if)
ai
C11
Rs = | am
1
asi

a12

a2

as2

ai3
C12

az3
22

as3
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Introduction

1) Solving nx nand (n—1) x (n— 1) system of linear equations

2) Application into graph, groups and semigroup theories

3)
)

4

In Computer science and Statistics

(
(
(
(

Coding Theory and Cryptography
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Introduction

That rhotrix multiplication can be be defined in many ways is a
motivation for this work, Ajbade(2003) And that the only two
rhotrix multiplication methods hitherto are both associative is
another motivation. Several works on group of matrices, such as
the work of Smith(2006) on left quasigroups, and Johnson and
Vojtechovsky(2005) on right division in groups of matrices were all
a motivation.
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Introduction

Several papers have characterized groups using the operation of
right division x - y~! instead of the multiplication x - y. Johnson
and Vojtechovskys said however that it was not clear how much is
gained within group theory per see by such change in perspective.
The aim of this paper however, is to show the significance of a
similar change in rhotrix multiplication.
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The Concept of Non-Associative Rhotrix Theory

This section presents the non-associative rhotrix multiplication. It
begins with a particular example of a multiplication method that is
non-associative and then prepares the stage for many definitions of
rhotrix multiplications as observed earlier by Ajibade (2003) but
with emphasis on the non-associative binary multiplications which
could be commutative or non-commutative.
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The Concept of Non-Associative Rhotrix Theory

Definition
Let
a
R={R:R=( b ¢ d ),ab,c,d e €R} (1)
e

be a set of all three dimensional rhotrices where h(R) = c is called
the heart of R.
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The Concept of Non-Associative Rhotrix Theory

Definition A
Let R, Q € R, such that

R—<b1 h‘(a}'?) d1>andQ—<b2 hié) d2>

e ()
then
aia
RoQ= < biby h(R)h(Q) did> >
ere

then, we call the operation above a left conjugate multiplication
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The Concept of Non-Associative Rhotrix Theory

Definition A
Let R, Q € R, such that

R—<b1 h‘(a}'?) d1>andQ—<b2 hié) d2>

€ €2
then

aijar
ROQ= < biby h(Q)h(Q) dcid> >

e1e

then, we call the operation above a right conjugate multiplication
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The Concept of Non-Associative Rhotrix Theory

Remark

(1) where a7 is the left conjugate of a, and a; is the right
conjugate of a; such that aa =3aa =1 and al = a= 1a. Then,
(R,®) is a groupoid, called a rhotrix groupoid. (ii) Also, @ = a~
where 'a’ is a real number, and the juxtaposition is a direct
multiplication of real numbers.

1
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The Concept of Non-Associative Rhotrix Theory

Behold, the left and right conjugate operations are equivalent to
the left and right division operation. Therefore, we can redefine
our left conjugate operation as:
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The Concept of Non-Associative Rhotrix Theory

Definition
Let R, Q € R, such that

ai ap
R:<b1 h(R) d1>andQ:<b2 h(Q) d2>

€1 €2
then
31\32
R®Q=< b1\ bo h(R)\ h(Q) di\d> >
er\ e

such that
a-(a\b)=b a\(a-b)=0»b (2)

then, we call the operation above a left conjugate multiplication
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The Concept of Non-Associative Rhotrix Theory

Definition
Let R, Q € R, such that

ai ap
R:<b1 h(R) d1>andQ:<b2 h(Q) d2>

€1 €2
then
81/32
R®Q=< bi/b h(Q)/h(Q) dr/d> >
e1/e

such that
b=(b/a)-a b= (b-a)/b (3)

then, we call the operation above a right conjugate multiplication
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The Concept of Non-Associative Rhotrix Theory

Then we call the resultant rhotrix above a conjugate rhotrix (CR).
An example of a CR is a rhotrix with rational entries. It is to be
noted that a conjugate operation is strictly a left conjugate
operation or a right conjugate operation.
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The Concept of Non-Associative Rhotrix Theory

A conjugate rhotrix whose heart is invariant under conjugate

operation is called an SCR.

Examples of SCR are

(1) The conjugate identity (Trivial)

(ii) Rhotrices with unit hearts

(iii) Rhotrices with equal heart
)

(iv) Rhotrix group of roots of unity
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The Concept of Non-Associative Rhotrix Theory

A left conjugate rhotrix quasigroup (Q, ) is a rhotrix Q equipped
with a left conjugate operation such that for all a and b, there is a
unique element ¢ such that

a-b=c (4)

The right conjugate rhotrix quasigroup is defined analogously.
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The Concept of Non-Associative Rhotrix Theory

Equationally, a quasigroup (Q, -, /,\) is a conjugate rhotrix
quasigroup or simply a rhotrix quasigroup equipped with three
binary operations of multiplication, right division (/) and left
division (\) satisfying the identities 2 and 3 respectively . These
identities correspond respectively to the uniqueness of the solution

4.
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The Concept of Non-Associative Rhotrix Theory

Definition
2.6 Let R, € R and ® a conjugate operation. If

RolI=R=I10R

then, we called | a two sided conjugate identity, under ® as
defined above. This implies that

1
I=( 111
1
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The Concept of Non-Associative Rhotrix Theory

Definition
Let R,X € R and ® a conjugate operation. If R® X =1 or
X ® R =1 then, we called X the conjugate inverse of R. That is

a a
R:< b h(R) d > implies that R~1 =< b h(R) d >

e e
Then R is self-invertible or self-conjugate under ®.
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The Concept of Non-Associative Rhotrix Theory

Remark

We can easily verify that conjugate operation on rhotrices as
defined above is non-commutative and non-associative, except at
trivial cases where the rhotrices are identical or when having the
value of the heart repeated at every other point etc.
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The Concept of Non-Associative Rhotrix Theory

Lemma

Let A and B be distinct rhotrices of the same dimension in R.
Then, A® X = B and Y ® A = B have unique solutions in R
(unique solvability)
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The Concept of Non-Associative Rhotrix Theory

Definition
Let (R, ®) be a rhotrix groupoid and let | € R. Then | is a
left(right )identity rhotrix for (R,®) means that

Cu(l): R— R(Cr(I): R— R)
is the identity conjugate operator on R.
Definition

A rhotrix quasigroup with a left and right identity rhotrix is called
a rhotrix loop
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The Concept of Non-Associative Rhotrix Theory

This means that a rhotrix groupoid (f%,@) is a rhotrix loop if

(f?, ®) is a rhotrix quasigroup that has a two-sided identity rhotrix.
Thus, all rhotrix groups are rhotrix loops. But all rhotrix loops are
not rhotrix groups. Those that are rhotrix groups are associative
rhotrix loops. Therefore, rhotrix loops generalize rhotrix groups.

It is worth noting that rhotrices as defined by Ajibade (2003) and
Sani(2004) are associative rhotrix loops. These types of rhotrix
loops are trivial rhotrix loops. Whereas, rhotrix loops defined by
conjugate operation as considered in this work, are non-trivial
rhotrix loops
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The Concept of Non-Associative Rhotrix Theory

Definition

A rhotrix groupoid (Ii’, ®) is called a rhotrix quasigroup if the
conjugate operators Cr(Q) : R — R and C,(Q) : R — R are
bijections. And if it possess in addition, an identity rhotrix, then
(R,®) becomes a rhotrix loop. The order of R is its cardinality |R)|.
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The Concept of Non-Associative Rhotrix Theory

This section confirms the observation in [2] that rhotrix
multiplication can be defined in many ways. These multiplications
are defined using Cayley tables. Depending on the definitions,
rhotrix multiplications can be commutative, associative,
non-commutative or non-associative, or even both. However, we
are going to be concerned with non-associative rhotrix
multiplications which could be commutative or non-commutative.
Starting with the two multiplication methods already known in
literature., we have the following
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The Concept of Non-Associative Rhotrix Theory

Example

Let p
R—<b h(R) d>andQ—<g h(Q) J>
e k

then
a\ h(Q) +h(R)\ f

RoQ_< b\ h(Q)+ h(R)\ g h(R)\ h(Q) d\ h(Q)+ h(R)\j >
e\ h(Q) + h(R)\ k

such that the identities (2) are satisfied.
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The Concept of Non-Associative Rhotrix Theory

Example
Let

then

a\f+d\g
ROQ:<

b\f+e\g h(R)\hQ) a\j+d\k>
b\j+e\k

such that the identities (2) are satisfied.
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The Concept of Non-Associative Rhotrix Theory

Remark

The two examples of rhotrix multiplication just presented are
non-associative. They can be referred to as Left Division
Multiplication (LDM ) of the Ajibade and Sani multiplication
methods respectively. The Right Division Multiplication (RDM )
can be defined Analogously.
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The Concept of Non-Associative Rhotrix Theory

Example

Let R ={I,P,Q} be a set of arbitrary rhotrices of the same
dimension, and a binary multiplication () defined as

L lrirlQ)
ITITPTQ
Pl PlQl1
Qllal [P

Table : Associative and Commutative Rhotrix Loop

Then, (R,-) is an associative and commutative rhotrix loop. A
trivial loop.
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The Concept of Non-Associative Rhotrix Theory

Example

Let R = {I,P, Q, R} be a finite set of arbitrary rhotrices of the
same dimension. Define multiplication (o) as

el rfPlQR]
T[T P|Q|R
PIPITR|Q
Ql QR 1|P
RIR[ Q[P

Table : Associative and Commutative Rhotrix Loop

Then, (f?, o) is also an associative and commutative rhotrix loop.
This is also trivial.
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The Concept of Non-Associative Rhotrix Theory

Example

Let R = {I,P,Q,R,S} be a finite set of arbitrary rhotrices of the
same dimension and ® be given by the table below:

(ol I[P]QIR]S]
I 1P Q|RIS
PIlP] IT|R]S]Q
RQIQR| S| I|P|R
RIR[Q S| ] P
SIS[RIP| QI 1

Table : Non-Associative and Non-Commutative Rhotrix Loop

Then, (R,®) is a non-trivial rhotrix loop.
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The Concept of Non-Associative Rhotrix Theory

Example

Let R = {I,P,Q,R,S} be a finite set of arbitrary rhotrices of the
same dimension and ® be given by the table below:

(ol I[P]QIR]S]
I 1P Q|RIS
PIlP] IT|R]S]Q
RQIQR| S| I|P|R
RIR[Q S| ] P
SIS[RIP| QI 1

Table : Non-Associative and Non-Commutative Rhotrix Loop

Then, (R,®) is a non-trivial rhotrix loop.
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The Concept of Non-Associative Rhotrix Theory

Example

Let R = {I,P,Q,R,S} be a finite set of arbitrary rhotrices of the
same dimension and (e) be given by the table below:

H [EX

/
/
P
Q
R

—~| | || || T
QO U~ X=X
DO T = |||

)

Table : A Commutative Rhotrix Group

Then, (Ii’,o) is a trivial rhotrix loop.
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The Concept of Non-Associative Rhotrix Theory

Example

Let R = {I,P,Q,R,S, T,U, V} be a finite set of arbitrary
rhotrices of the same dimension and let ® be defined by the table
below:

<ICIH| »©| DO B —~|| =

C<|O»HO| | —|T|| ©

—H 0| <[ T = DO
OO —C<|H»nwuv

— OO/ AHICI <

0 H <TI0 D=
T = DO H L <

<|<|H|»| DO T —~||©

Table : Non-Associative and Non-Commutative Rhotrix Loop
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The Concept of Non-Associative Rhotrix Theory

Definition
Let (R,®) be a rhotrix groupoid and let Q be any fixed rhotrix in
R. Then, Cg is a right conjugate operator if

PCr(Q) =P Q
and a left conjugate operator if

PC(Q)=QOP

A

for all P € R. It follows that Cr(Q) : R+ R and C,(Q): R R
for each Q € R.

Remark

Whenever, the operation is not a conjugate operation, the
conjugate operators are simply the translation maps i.e
Cr(Q) = Rg and C (Q) = Lg -see Pflugfelder(1990)
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The Concept of Non-Associative Rhotrix Theory

Definition
A rhotrix groupoid (R, ®) is commutative means that

C(Q) = Cr(Q)
for all Q € R

Definition
A rhotrix groupoid (R, ®) is associative if the conjugate operator

Cr(Q ® P) = Cr(Q)Cr(P)
for all Q,P € R

Remark

These definitions above are helpful in determining whether or not a
rhotrix multiplication defined usually by a Cayley tables are
commutative, associative or otherwise.
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The Concept of Non-Associative Rhotrix Theory

Lemma
The heart of a conjugate rhotrix corresponds to the center of a
rhotrix quasigroup(loop)
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The Concept of Non-Associative Rhotrix Theory

Theorem
Let (R, ®) be a rhotrix groupoid. the following are equivalent:

(i) (fA?, ®) is a rhotrix quasigroup.
(i) Cr(Q) :AR’ — R and C,(Q) : R — R are injective for
all @ € R.
(i) Cr(Q): R — R and C/(Q) : R — R are surjective
for all Q € R.
(iv) The left and right cancellation laws hold for (R, ®).
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The Concept of Non-Associative Rhotrix Theory

Corollary
Let (R, ®) be a quasigroup. Then, the following hold:
(i) ForR,Q,Pe R, R®Q=R® P implies P = Q
(left cancellation law)
(i) For R,Q,Pe R, Q®R=P®R implies P = Q
(right cancellation law)
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The Concept of Non-Associative Rhotrix Theory

Theorem
The heart of an SCR commutes and associates
Proof

Let R and @ be two rhotrices of the same dimension.
Consider:

R® Q= h(R)A(Q) = h(R)h(Q) = Q& R

Then, the heart commutes.
Next, we show associativity. Let R, @ and P be three rhotrices

(ROQ)OP = (h(R)h(Q))®P = (h(R)h(Q))h(P) = h(R)(h(Q)h(P)) = |

The heart associates.
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The Concept of Non-Associative Rhotrix Theory

This work opens up a large door of research to exploit the
properties of rhotrices as binary systems. Though, rhotrices are
geometric objects, but using algebra as a microscope, one is able
to examine the scope of their properties. This is a reminiscence of
the age long interplay between geometry and algebra. Therefore,
there is need to investigate rhotrices through a geometric
approach. This article examined the properties of the rhotrix
through non-associative binary systems.
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The Concept of Non-Associative Rhotrix Theory

Many things in nature are not linear. Thus, assuming linearity on
them limits the much we can know about them. For example, in a
rhotrix loop, there may be some rhotrices or a rhotrix that may
commute or associate with every other rhotrix in the loop. Such a
rhotrix may exist at the heart of the rhotrix loop. It is interesting
to find out such a rhotrix. These are areas for future work.
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