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Introduction

Partial latin squares

Definition 1
A partial latin square (PLS) of order n is an n × n array of n symbols in
which each symbol occurs at most once in each row and column.

Definition 2
A PLS of order n is called a latin square (LS) of order n if each cell is
nonempty.

1 4

2 3
1 3

2 5

3 1

1 2 3 4 5

2 4 1 5 3

5 1 2 3 4

4 3 5 1 2

3 5 4 2 1
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Introduction

Completing PLS

Definition 3
A PLS P is called completable if there is a LS of the same order
containing P.
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Introduction

Completing PLS

When can a PLS be completed?

1 3

2 3
2 4 3 5

5 2

3 1

The problem of completing PLSs is NP-complete. (Colbourn,
1984)
A good characterization of completable partial latin square is
unlikely.
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Introduction

Equivalent Objects

A PLS P of order n is a subset of [n]× [n]× [n] in which (r , c, s) ∈ P if
and only if symbol s occurs in cell (r , c).

P =

1 3

2 3
1 3

5 2

3 1

(2,1,2), (4,3,5) ∈ P
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Introduction

Equivalent Objects

A LS of order n is equivalent to a properly n-edge-colored Kn,n.

L =

1 2 3

2 3 1

3 1 2

Theorem 1 (König, 1916)

Let G be a bipartite graph with ∆(G) = m. Then χ′(G) = m.
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Introduction

Isotopisms and Congujates

Let P ∈ PLS(n) and Sn be the symmetric group acting on [n].

Let θ = (α, β, γ) ∈ Sn × Sn × Sn.

The PLS in which the rows, columns, and symbols of P are permuted
according to α, β, and γ respectively is θ(P) ∈ PLS(n).

The mapping θ is called an isotopism, and P and θ(P) are said to be
isotopic.

P =

1 3

2 3
1 3

5 2

3 1

θ(P) =

3 1

2 1
3 1

5 2

1 3
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Introduction

Isotopisms and Congujates

The PLS in which the coordinates of each triple of P are uniformly
permuted is called a conjugate of P.

P =

1
2 3

1

4 1

P(rc) =

1 2 4
1

3 1
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Introduction

Isotopisms and Congujates

The PLS in which the coordinates of each triple of P are uniformly
permuted is called a conjugate of P.

P =

1
2 3

1

4 1

P(rs) =

1 3 5

2
2

5
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Introduction

Isotopisms and Congujates

Theorem 2
A PLS P is completable if and only if an isotopism of P is completable.

Theorem 3
A PLS P is completable if and only if a conjugate of P is completable.
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Classical Results
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2 Classical Results
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Classical Results

Hall’s Theorem

Theorem 4 (Hall’s Theorem, 1940)

Let r ,n ∈ Z such that r ≤ n. Let P ∈ PLS(n) with r completed rows and
n − r empty rows. Then P can be completed to a LS of order n.

Rows can be replaced with columns or symbols.
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Classical Results

Hall’s Theorem

1 2 3 4 5 6 7

2 6 1 7 3 4 5

5 1 7 3 4 2 6
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Classical Results

Hall’s Theorem

1 2 3

2 6 1

3 1 7

4 5 6

5 7 2

6 4 5

7 3 4
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Classical Results

Hall’s Theorem

1 2 3

2 1 3

3 1 2
1 2 3

3 2 1
3 1 2

3 2 1
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Classical Results

Ryser’s Theorem

Theorem 5 (Ryser’s Theorem, 1950)

Let r , s,n ∈ Z such that r , s ≤ n. Let P ∈ PLS(n) with a r × s block of
symbols and empty cells elsewhere. Then P can be completed if and
only if each symbol occurs r + s − n times in P.

1 2 3

2 4 5

5 1 2

1 2 3 7

2 4 5 6

5 1 2 4

3 5 6 1

1 2 3 5

2 4 5 6

5 1 2 4

3 5 6 1
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Classical Results

Evans’ Conjecture

Theorem 6

If P ∈ PLS(n) with at most n − 1 non-empty cells, then P can be
completed.

Confirmed independently by:
Häggkvist (1979) for n ≥ 1111
Smetaniuk (1981) for all n
Andersen and Hilton (1983) for all n

Jaromy Kuhl (UWF) Completing Partial Latin Squares 20 / 83



Classical Results

Evans’ Conjecture

Theorem 6

If P ∈ PLS(n) with at most n − 1 non-empty cells, then P can be
completed.

Confirmed independently by:
Häggkvist (1979) for n ≥ 1111

Smetaniuk (1981) for all n
Andersen and Hilton (1983) for all n

Jaromy Kuhl (UWF) Completing Partial Latin Squares 20 / 83



Classical Results

Evans’ Conjecture

Theorem 6

If P ∈ PLS(n) with at most n − 1 non-empty cells, then P can be
completed.

Confirmed independently by:
Häggkvist (1979) for n ≥ 1111
Smetaniuk (1981) for all n

Andersen and Hilton (1983) for all n

Jaromy Kuhl (UWF) Completing Partial Latin Squares 20 / 83



Classical Results

Evans’ Conjecture

Theorem 6

If P ∈ PLS(n) with at most n − 1 non-empty cells, then P can be
completed.

Confirmed independently by:
Häggkvist (1979) for n ≥ 1111
Smetaniuk (1981) for all n
Andersen and Hilton (1983) for all n

Jaromy Kuhl (UWF) Completing Partial Latin Squares 20 / 83



Classical Results

Evans’ Conjecture

Theorem 6

If P ∈ PLS(n) with at most n − 1 non-empty cells, then P can be
completed.

Confirmed independently by:
Häggkvist (1979) for n ≥ 1111
Smetaniuk (1981) for all n
Andersen and Hilton (1983) for all n

Jaromy Kuhl (UWF) Completing Partial Latin Squares 20 / 83



Classical Results

1
4 5

5
3

1

1
5 4

5
3

1
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Evans’ Conjecture

1
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1
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Classical Results

Evans’ Conjecture

1
4 5

5
3

1

1 2 4 5 6 7

2 7 5 1 4 6

5 4 6 2 7 1

6 5 1 7 2 4

7 6 2 4 1 5

4 1 7 6 5 2
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Classical Results

Evans’ Conjecture

1
4 5

5
3

1

1 2 4 5 6 7 3

2 7 5 1 4 3 6

5 4 6 2 3 1 7

6 5 1 3 7 4 2

7 6 3 4 2 5 1

4 3 7 6 1 2 5
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Classical Results

There are incompletable PLSs of order n with n non-empty cells.

1
2
3

4

1 2 3
4

1
1

1
2

1
2

3 4

1 2
3
4

1
1

2
3

Let Bk ,n ∈ PLS(n) with symbol 1 in the first k diagonal cells and
symbols 2,3, . . . ,n − k + 1 in the last n − k cells of column k + 1.
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Classical Results

Theorem 7 (Andersen and Hilton, 1983)

Let P ∈ PLS(n) with exactly n non-empty cells. Then P can be
completed if and only if P is not a species of Bk ,n for each k < n.
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Recent Results
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Recent Results

One Nonempty Row, Column, and Symbol

Let P ∈ PLS(n).

If there exists r , c, and s such that for each (x , y , z) ∈ P either x = r ,
y = c, or z = s, then P satisfies the RCS-property.
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Recent Results

1 4 3 2 5 6

2 1

3 1

4 1

5 1

6 1

Casselgren and Häggkvist conjectured that if P satisfies the
RCS-property, (r , c, s) ∈ P, and n /∈ {3,4,5}, then P can be
completed.

They confirmed (2013) n ∈ {6,7} and n = 4k for all k ≥ 2.
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Recent Results

1 2 3

2 1

3 1

1 3 4 2

2 1

3 1

4 1

1 3 2 4 5

2 1

3 1

4 1

5 1

2 3 4 5
1

3 1

4 1

5 1
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Recent Results

Theorem 8 (Kuhl and Schroeder, 2016)

Let P ∈ PLS(n) satisfy the RCS-property. If n /∈ {3,4,5} and P does
not contain a species of Bk ,n for each k ∈ [n − 1], then a completion of
P exists.
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Recent Results

One Nonempty Row, Column, and Symbol

1 5 2 6 7 3 4

2 1

3 1

4 1

5 1

6 1

7 1

1 5 7 2 6 3 4

2 1

5 1

3 1

4 1

6 1

7 1
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One Nonempty Row, Column, and Symbol

1 5 2 6 7 3 4
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One Nonempty Row, Column, and Symbol

1 5 2 6 7 3 4

2 1

3 1

4 1

5 1

6 1

7 1

1 5 2 7 6 3 4

2 1

5 1 4

3 4 1 7

4 1 6

6 4 1

7 3 1
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Recent Results

1 5 2

2 1

5 1

7 6 3 4

4
3 4 6 7

3 4 7

4 6

6 4

7 3

1 7
1 6
4 1

3 1
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Recent Results

1 5 2

2 1 5

5 2 1

7 6 3 4

6 7 4 3

4 3 7 6

3 4 6 7

3 6 4 7

4 7 3 6

6 3 7 4

7 4 6 3

1 2 5 7

2 1 6 5

5 4 1 2

3 5 2 1
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Recent Results

1 5 2 7 6 3 4

2 1 5 6 7 4 3

5 2 1 4 3 7 6

3 6 4 1 2 5 7

4 7 3 2 1 6 5

6 3 7 5 4 1 2

7 4 6 3 5 2 1
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Recent Results

1 5 2 7 6 3 4

2 1 5 6 7 4 3

5 2 4 1 3 7 6

3 6 1 4 2 5 7

4 7 3 2 1 6 5

6 3 7 5 4 1 2

7 4 6 3 5 2 1
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Recent Results

One Nonempty Row, Column, and Symbol

4 5 2 6 7 3 1

2 1

3 1

7 1

5 1

6 1

1
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Recent Results

Completed Rows and Columns

When can a PLS with exactly a rows and b columns be completed?

1 2 4 5 6 7 3

2 7 5 1 3 6 4

5 4

6 5

3 6

4 1

7 3

Buchanan solved problem for a = b = 2 in dissertation (2007)
Adam, Bryant, and Buchanan shortened dissertation (2008)
Kuhl and McGinn proved same result and more (2017)
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Recent Results

Completed Rows and Columns

Y =

1 2 3 4

3 4 2 1

2 3

4 1

Z =

1 2 3 4 5

3 1 2 5 4

2 3

4 5

5 4

Let Γ denote the set of all isotopisms of Y and Z .

Theorem 9

Let n ≥ 2 and A ∈ PLS(2,2; n). The partial latin square A can be
completed if and only if A /∈ Γ.
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Recent Results

Completed Rows and Columns

There is a symbol not in an intercalate.

1 2 4 5 6 7 3

2 7 5 1 3 6 4

5 4

6 5

3 6

4 1

7 3

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1
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Recent Results

Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3

2 7 1 3 6 5

7 3

6 5

3 6

5 1
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Recent Results

Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3

2 7 1 3 6 5

7 3 2 1 5 6

6 5 3 7 2 1

3 6 7 5 1 2

5 1 6 2 3 7
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Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3

2 7 1 3 6 5

7 3 2 1 5 6

6 5 3 7 2 1

3 6 7 5 1 2

5 1 6 2 3 7
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Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3

2 7 1 3 6 5

7 3 2 1 6 5

6 5 3 2 1 7

3 6 5 1 2 7

5 6 2 3 7 1
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Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3

2 7 1 3 6 5

7 3 2 1 5 6

6 5 3 2 1 7

3 6 7 5 2 1

5 6 2 1 7 3
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Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3 2 1 4 5 6

6 5 3 4 2 1 7

3 6 4 7 5 2 1
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Recent Results

Completed Rows and Columns

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3

6 5

3 6

5 4

4 1

1 2 5 6 7 3 4

2 7 1 3 6 4 5

7 3 2 1 4 5 6

6 5 3 4 2 1 7

3 6 4 7 5 2 1

5 4 6 2 1 7 3

4 1 7 5 3 6 2
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Recent Results

Completed Rows and Columns

Each symbol is in an intercalate.

1 2 3 4 5 6 7

2 3 1 5 4 7 6

3 1

6 4

4 6

5 7

7 5

1 2 3 4 6 5

2 3 1 5 4 6

3 1

6 4

5 6

4 5
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Recent Results

Completed Rows and Columns

1 2 3 4 5 6 7

2 3 1 5 4 7 6

3 1

6 4

4 6

5 7

7 5

1 2 3 4 6 5

2 3 1 5 4 6

3 1 4 6 5 2

6 4 5 1 2 3

5 6 2 3 1 4

4 5 6 2 3 1
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Recent Results

Completed Rows and Columns

1 2 3 4 5 6 7

2 3 1 5 4 7 6

3 1

6 4

4 6

5 7

7 5

4 3 1 6 5 2

3 1 2 4 6 5

1 2 3 5 4 6

5 6 4 1 2 3

2 5 6 3 1 4

6 4 5 2 3 1
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Completed Rows and Columns

1 2 3 4 5 6 7

2 3 1 5 4 7 6

3 1

6 4

4 6

5 7

7 5

4 3 1 6 5 2

3 1 2 4 6 5

1 2 3 5 6 4

5 6 4 2 3 1

2 5 3 1 4 6

6 5 2 3 1 4
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Recent Results

Completed Rows and Columns

1 2 3 4 5 6 7

2 3 1 5 4 7 6

3 1

6 4

4 6

5 7

7 5

4 3 1 6 5 2

3 1 2 4 6 5

1 2 3 5 6 4

5 6 4 2 3 1

2 5 3 1 4 6

6 5 2 4 1 3
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Recent Results

Completed Rows and Columns

1 2 3 4 5 6 7

2 3 1 5 4 7 6

3 1

6 4

4 6

5 7

7 5

4 3 1 6 5 2 7

3 1 2 4 6 7 5

1 2 3 5 7 6 4

5 6 4 7 2 3 1

2 5 7 3 1 4 6

6 7 5 2 4 1 3

7 4 6 1 3 5 2
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Recent Results

Theorem 10 (Kuhl and McGinn, 2017)

Let A ∈ PLS(2,b; n) and cells [2]× [b] consist only of symbols from [b].
If n ≥ 2b2 − 2b + 5 and σA([n]\[b]) contains a cycle of length at least
n+3

2 , then A can be completed.

Conjecture 1

Let A ∈ PLS(2,b; n). If n ≥ 2b + 2, then A can be completed.
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Open Problems
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Open Problems

Häggkvist Conjecture

Conjecture 2 (Häggkvist, 1979)

If P ∈ PLS(nr) with all non-empty cells in at most n − 1 pairwise
disjoint r × r blocks, then P can be completed.

n = 1 is trivial
r = 1 is Evans’ conjecture
n = 2 is solved by Ryser’s Theorem
n = 3 was solved by Denly and Häggkvist (2003)
Kuhl and Denley confirmed Conjecture 1 for latin r × r blocks
(2008)
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Open Problems

Block Diagonal

Theorem 11 (Kuhl and Schroeder, 2015)
Let n and r be positive integers.

If n ≥ r + 1, then for every A ∈ LS(r ; [nr ]), nA is completable.
If n ≤ r − 1, then there exists A ∈ LS(r ; [nr ]) for which nA is not
completable.

1 2

2 3
1 2
2 3

1 2
2 3
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Open Problems

Block Diagonal

Theorem 12 (Kuhl and Schroeder, 2015)
Let n and r be positive integers.

If n ≥ r + 1, then for every A ∈ LS(r ; [nr ]), nA is completable.
If n ≤ r − 1, then there exists A ∈ LS(r ; [nr ]) for which nA is not
completable.

Conjecture 3

Let n and r be positive integers. If n ≥ r , then for every A ∈ LS(r ; [nr ]),
nA is completable.
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Open Problems

Disjoint Subsquares

PLS(as,bt ): PLSs with s + t pairwise disjoint subsquares, where s
subsquares have order a and t subsquares have order b.

1 2

2 1
3 4
4 3

5 6
6 5

7 8 9
8 9 7
9 7 8

Jaromy Kuhl (UWF) Completing Partial Latin Squares 70 / 83



Open Problems

Disjoint Subsquares

PLS(as,bt ): PLSs with s + t pairwise disjoint subsquares, where s
subsquares have order a and t subsquares have order b.

1 2

2 1
3 4
4 3

5 6
6 5

7 8 9
8 9 7
9 7 8

Jaromy Kuhl (UWF) Completing Partial Latin Squares 70 / 83



Open Problems

Disjoint Subsquares

Theorem 13 (Heinrich, 1982)

Each element of PLS(a,b, c) is completable if and only if
a = b = c.
Each element of PLS(a,b, c,d) is completable if and only if
a = b = c and d ≤ 2a.

Theorem 14 (Heinrich, 1982)
Suppose that a < b.

If s ≥ 3 and t ≥ 3, then each element of PLS(as,bt ) is
completable.
Each element of PLS(a,bt ) is completable if and only if t ≥ 3.
Each element of PLS(as,b) is completable if and only if
(s − 1)a ≥ b.
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Open Problems

Disjoint Subsquares

Theorem 15 (Kuhl and Schroeder, 2017)
Suppose that a < b.

Each element of PLS(a2,bt ) is completable if and only if t ≥ 3.
Each element of PLS(as,b2) is completable if and only if as ≥ b.

Problems:
Find conditions on s, t , and u that guarantee completions of the
elements of PLS(as,bt , cu).
Classify the completable elements of PLS(a,b, c,d ,e).
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Open Problems

Diagonally Cyclic Latin Squares

Definition 4
A LS L is diagonally cyclic if for each (i , j , k) ∈ L, (i + 1, j + 1, k + 1) ∈ L.

0 2 4 1 3

4 1 3 0 2

3 0 2 4 1

2 4 1 3 0

1 3 0 2 4

A diagonally cyclic LS is determined by its first row.
Suppose that (0, i , si) ∈ L. If si − i 6≡ sj − j for each i , j , then L is
diagonally cyclic.
There are no diagonally cyclic LSs of even order.
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Open Problems

Diagonally Cyclic Latin Squares

Let P ∈ PLS(n) with k diagonals completed cyclically. Can P be
completed to a diagonally cyclic LS?

0 2 1
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Open Problems

Diagonally Cyclic Latin Squares

0 2 1

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 0

2 3 4 5 6 7 8 0 1

3 4 5 6 7 8 0 1 2

4 5 6 7 8 0 1 2 3

5 6 7 8 0 1 2 3 4

6 7 8 0 1 2 3 4 5

7 8 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7
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Open Problems

Diagonally Cyclic Latin Squares

0 2 7 6 8 4 3 5 1

0 1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 0

2 3 4 5 6 7 8 0 1

3 4 5 6 7 8 0 1 2

4 5 6 7 8 0 1 2 3

5 6 7 8 0 1 2 3 4

6 7 8 0 1 2 3 4 5

7 8 0 1 2 3 4 5 6

8 0 1 2 3 4 5 6 7
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Open Problems

Diagonally Cyclic Latin Squares

Let N(k) be the smallest integer in which all PLSs of odd order
n ≥ N(k) with k cyclic diagonals can be completed cyclically.

N(k) ≥ 3k − 1 for k ≥ 3 (Grüttmüller, 2003)
N(2) = 3 (Grüttmüller, 2003)
PLSs of prime order (at least 11) with 3 cyclic diagonals can be
completed cyclically (Cavenagh, Hämäläinen, Adrian; 2009)

Conjecture 4

N(3) = 9.
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Open Problems

ε-dense PLSs

Let P ∈ PLS(n). We say that P is ε-dense if each row, column, and
symbol is used at most εn times.

Conjecture 5 (Nash-Williams, Daykin, and Häggkvist)

All 1
4 -dense PLSs are completable.

Theorem 16 (Daykin and Häggkvist, 1984)

If n = 16k, then all 1
29
√

n -dense PLSs of order n are completable.

Theorem 17 (Bartlett, 2013)

All 10−4-dense PLSs of order n are completable for n > 1.2× 105.
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Other Completion Problems

Conjecture 6
If P is a partial latin cube of order n with at most n− 1 non-empty cells,
then P can be completed to a latin cube of order n.

Theorem 18 (Kuhl and Denley, 2011)
If P is a partial latin cube of order n with at most n− 1 non-empty cells,
no two of which lie in the same row, then P can be completed to a latin
cube of order n.
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Other Completion Problems

Conjecture 7

Let P ∈ PLS(n) with at most n − 1 non-empty cells. Let Q ⊆ PLS(n) be
the PLSs that avoid P. For any Q ∈ Q, P can be completed to a LS
that avoids Q.

Theorem 19 (Kuhl and Denley, 2012)

Let P ∈ PLS(4k) with at most k − 1 non-empty cells. Let Q ⊆ PLS(n)
be the PLSs that avoid P. For any Q ∈ Q, P can be completed to a LS
that avoids Q.
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Other Completion Problems

Conjecture 8

Any two PLSs of order n > 5 can be avoided simultaneously.

Theorem 20 (Chetwynd and Rhodes; Cavenagh; Kuhl and Denley)

All PLSs of order n ≥ 4 are avoidable.

Theorem 21 (Kuhl and Hinojosa, 2012)

Any two PLSs of order 4k with k > 56 can be avoided simultaneously.

Any two PLSs of order mk with k ≥ m5

2 can be avoided simultaneously.

Conjecture 6

Let P1, . . . ,Pt ∈ PLS(n). If t < n/3, then P1, . . . ,Pt can be avoided
simultaneously.
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Thank You!
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