2-tangle replacements and adequate diagrams

Jung Hoon Lee (joint with W. S. Kim and S. Lee) Chonbuk National University

July 31, 2017 Fourth Mile High Conference on Nonassociative Mathematics University of Denver

Outline

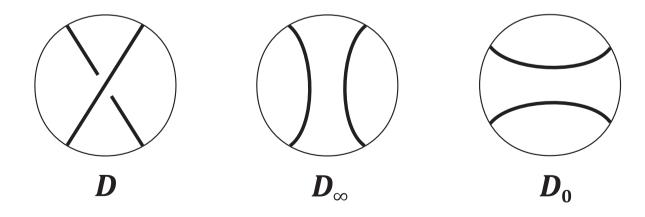
- 1. Bracket polynomial
- 2. Adequate diagrams
- 3. Adequate 2-tangle diagrams
- 4. 2-tangle replacements
- 5. Main results

• Bracket polynomial

D : an unoriented link (or knot) diagram

The *bracket polynomial* $\langle D \rangle$ is a Laurent polynomial in a variable A defined by the following rules.

1. $\langle \bigcirc \rangle = 1$, where \bigcirc denotes the unknot with no crossings. 2. $\langle D \sqcup \bigcirc \rangle = \delta \langle D \rangle$, where $\delta = -A^{-2} - A^2$. 3. $\langle D \rangle = A \langle D_{\infty} \rangle + A^{-1} \langle D_0 \rangle$.



If D is an oriented diagram of a link L and |D| is D with its orientation ignored, then the normalized bracket polynomial

$$V_L(A) = (-A^{-3})^{w(D)} \langle |D| \rangle$$

is a link invariant. (Here w(D) is the writhe of D.)

When $A = t^{-\frac{1}{4}}$, $V_L(t)$ is the Jones polynomial.

A choice of marker for every crossing of an unoriented diagram D is called a *state*.

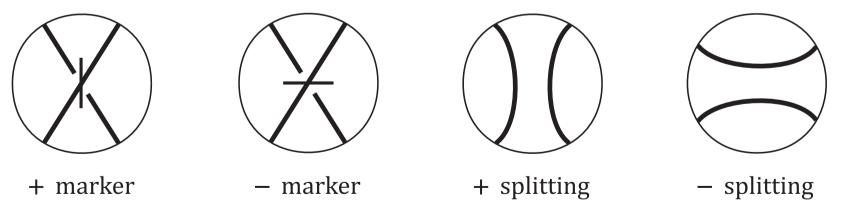
The result of a splitting is a disjoint union of *state circles*.

 $\left|s\right|$: the number of state circles for a state s

p(s) : the number of + markers in s

n(s): the number of – markers in s

$$\langle D \rangle = \sum_{s} A^{p(s)} (A^{-1})^{n(s)} \delta^{|s|-1}$$



• Adequate diagrams

D : an unoriented link diagram

 s_+ : the state of *D* in which all markers are + s_- : the state of *D* in which all markers are -

D is +adequate if, at each crossing, the two strands of the + splitting of s_+ belong to different state circles.

Similarly, -adequate is defined. (- splitting of s_-)

D is *adequate* if it is both +adequate and -adequate.

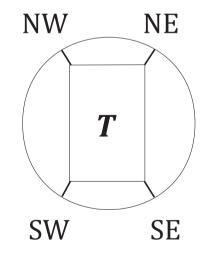
- A reduced alternating diagram is adequate.
- An *r*-fold parallel of an adequate diagram is adequate.
- maxdeg $\langle D \rangle = c(D) + 2|s_+| 2.$
- mindeg $\langle D \rangle = -c(D) 2|s_-| + 2.$

An adequate diagram has minimal crossing number.
(∃ non-adequate minimal crossing diagrams,
e.g. some pretzel links.)

• 2-tangle diagrams

T: an unoriented 2-tangle diagram

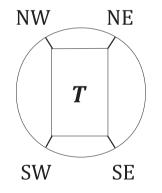
 s_+ : the state of T in which all markers are + s_- : the state of T in which all markers are -



• Adequate 2-tangle diagrams

T is +adequate if the following holds.

- 1. The splitting of s_+ connects NW to SW and NE to SE.
- 2. At each crossing of T, the two strands of the + splitting of
- s_+ belong to different state circle or arc components.

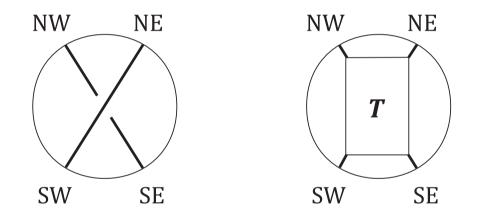


Similarly, *-adequate* is defined. (NW to NE and SW to SE)

T is *adequate* if it is both +adequate and -adequate.

• 2-tangle replacements

We replace a chosen crossing of D by T so that the labels match, and it is called a 2-tangle replacement, denoted by D_T .



Motivation: Y. Bae considered a link diagram $D \otimes T$ obtained by replacing every crossing of D by T, called a *link diagram with local symmetry*.

• Main results

Theorem

If a link diagram D and a 2-tangle diagram T are adequate, then the diagram D_T of a 2-tangle replacement is also adequate.

This gives a way to obtain infinitely many new minimal crossing diagrams.

Sketch of proof)

We show that D_T is +adequate. (-adequate is similar.)

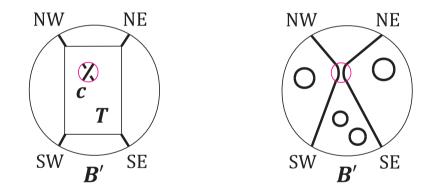
Let B' be a 3-ball defining the tangle T.

Consider a crossing c of D_T .

Case 1. c is in T.

Case 1.1. Both strands of the + splitting at c belong to state circle components in B'. (: T is +adequate.)

Case 1.2. Both strands of the + splitting at c belong to properly embedded arc components in B'.



Case 1.3. One strand of the + splitting at c belongs to a state circle in B' and the other belongs to a properly embedded arc in B'.

Case 2. c is not in T.

Case 2.1. Both strands of the + splitting at c belong to state circle components in the complement of B'.

Case 2.2. Both strands of the + splitting at c belong to properly embedded arc components in the complement of B'.

Case 2.3. One strand of the + splitting at c belongs to a state circle in the complement of B' and the other belongs to a properly embedded arc in the complement of B'.

Thank you for your attention.