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I. Skew-polynomial rings

Let D be a unital associative division ring, σ a ring

endomorphism of D, δ : D → D a left σ-derivation of

D, i.e. an additive map such that

δ(ab) = σ(a)δ(b) + δ(a)b

for all a, b ∈ D. The skew-polynomial ring R = D[t;σ, δ]

is the set of polynomials

f(t) = ant
n + · · ·+ a1t+ a0 (ai ∈ D)

where addition is defined term-wise and multiplication

by the rule

ta = σ(a)t+ δ(a) for all a ∈ D.
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Example: D[t] = D[t; id,0] is the ring of left polyno-

mials, with the “usual” multiplication

(
s∑

i=1

ait
i)(

t∑
i=1

bit
i) =

∑
i,j

aibjt
i+j.

• For f(t) = antn+ · · ·+a1t+a0 ∈ R with an 6= 0 define

the degree of f as

deg(f) = n and deg(0) = −∞.

Then deg(fg) = deg(f) + deg(g).

• f(t) ∈ R = D[t;σ, δ] is irreducible in R if f(t) is no

unit and it has no proper factors, i.e if there do not

exist g(t), h(t) ∈ R with deg(g),deg(h) < deg(f) such

that f(t) = g(t)h(t).
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• There is a right-division algorithm in R = D[t;σ, δ]: for
all f(t), g(t) ∈ R, f(t) 6= 0, there exist unique r(t), q(t) ∈
R, deg(r) < deg(f), such that

g(t) = q(t)f(t) + r(t).

II. Nonassociative algebras

Let F be a field. An algebra A over F is an F -vector
space together with a bilinear map A×A→ A,
(x, y)→ x · y, the multiplication of A.

A is unital ⇔ ∃ e ∈ A: e · x = x · e = x for all x ∈ A.

A is a division algebra over F , if A 6= 0 and if left
and right multiplication La, Ra : A → A, La(x) = a · x,
Ra(x) = x · a, are bijective for all a ∈ A, a 6= 0.
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For dimF A < ∞, this implies: A division algebra ⇔ A

has no zero divisors (so uv = 0 means u = 0 or v = 0).

• The associator [x, y, z] = (xy)z − x(yz) measures the
associativity of A:

• Nucl(A) = {x ∈ A | [x,A,A] = 0} is the left nucleus,

• Nucm(A) = {x ∈ A | [A, x,A] = 0} the middle nucleus,

• Nucr(A) = {x ∈ A | [A,A, x] = 0} the right nucleus,

• Nuc(A) = Nucl(A)∩Nucm(A)∩Nucr(A) is the nucleus
of A.

• C(A) = {x ∈ A |x ∈ Nuc(A) and xy = yx for all y ∈
A} is the center of A.
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III. How to construct nonassociative algebras from

skew-polynomial rings

Let f(t) ∈ R = D[t;σ, δ] have degree m.

• If Rf(t) is a two-sided ideal, R/Rf(t) is a quotient

ring.

...but what if Rf(t) is not a two-sided ideal?

• Then R/Rf(t) is a left R-module...but also has a

nonassociative ring structure!
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Theorem (Petit, 1966) Let modrf denote the remain-
der of right division by f . Then

Rm = {g ∈ D[t;σ, δ] |deg(g) < m}

together with the usual addition and the multiplication

g ◦ h = gh modrf

is a unital nonassociative ring Sf which is an algebra
over

F0 = {a ∈ D | ah = ha for all h ∈ Rm}.

F0 is a subfield of D. Sf is also denoted by R/Rf(t).

• Sf is associative iff Rf(t) is a two-sided ideal.

In that case, Sf = R/Rf(t) is the classical quotient
algebra obtained by factoring out a two-sided ideal.
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Example Let be complex conjugation, then

C[t; ]/C[t; ](t2 + 1) ∼= H = (−1,−1)R,

while

C[t; ]/C[t; ](t2 + i)

is a nonassociative quaternion division algebra over R
with nucleus C (Dickson ’35).

Are these algebras actually useful for anything?

• Yes: in space-time block coding (Adv. Math. Comm.

2015 (joint with Steele), J. Algebra 2016);
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in particular to build fast-decodable space-time codes

for less receive than transmit antennas, like the iterat-

ed codes constructed by Markin, Oggier and Srinath,

Rajan (both in IEEE Trans. Inf. Theory, 2013).

• Over finite fields they yield Jha-Johnson semifields,

i.e., certain finite-dimensional division algebras (Lavrauw-

Sheekey, Adv. Geom. 2013).

• They are the algebras behind linear (f, σ, δ)-codes, e.g.

skew-cyclic codes (to appear in Adv. Math. Comm.).

• They can be seen as generalizations of classical cen-

tral simple algebras (csa’s)... some of them will only

have inner automorphisms, as it is the case for the

classical associative csa’s.
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IV. Some structure theory

Let f(t) ∈ R = D[t;σ, δ] have degree ≥ 2.

Theorem (Petit, ‘67)

(i) If f(t) ∈ D[t;σ, δ] is irreducible, then right multipli-

cation with a is bijective for all non-zero a ∈ Sf , hence

Sf is a right division algebra: each non-zero element in

Sf has a left inverse.

(ii) If f(t) is irreducible and Sf is a finite-dimensional

F0-vector space, then Sf is a division algebra.

(iii) Sf has no zero divisors iff f(t) ∈ D[t;σ, δ] is ir-

reducible.
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Theorem (Petit, ‘66)

(i) If Sf is not associative then Nucl(Sf) = Nucm(Sf) =

D, and

Nucr(Sf) = {g ∈ Sf | fg ∈ Rf}.

(ii) If f(t) ∈ D[t;σ, δ] is irreducible then Nucr(Sf) is an

associative division algebra.

IV. Algebras whose right nucleus is a central simple

algebra

char(F ) = 0: Let K/F be a field extension such that

F is algebraically closed in K. Let K[t; δ] = K[t; id, δ],

Const(δ) = {a ∈ K | δ(a) = 0} = F .
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Theorem (Amitsur ‘54) If A is a central simple algebra

over F of degree m that is split by K, then

A ∼= Nucr(Sf)

for some f(t) ∈ K[t; δ] of degree m.

Theorem For every csa A over F of degree m, there is

a field extension K splitting A, where F is algebraically

closed in K, and a differential polynomial f(t) ∈ K[t; δ]

of degree m, such that

Sf = K[t; δ]/K[t; δ]f(t)

is an infinite-dimensional algebra over F with

Nucr(Sf) ∼= A

and Nucl(Sf) = Nucm(Sf) ∼= K.
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Example Let F = R, A = (−1,−1)R, and K be the

function field of the projective real conic x2 +y2 +z2 =

0. K splits (−1,−1)R. Take a derivation δ on K with

R = Const(δ). Then there is f(t) ∈ K[t; δ] of degree 2,

such that

Sf = K[t; δ]/K[t; δ]f(t) = K ⊕Kt

is an infinite-dimensional unital algebra over R with

Nucr(Sf) ∼= (−1,−1)R and Nucl(Sf) = Nucm(Sf) ∼= K.
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char(F ) = p: Let A be a p-algebra of degree m over

F which is split by a purely inseparable extension K of

exponent one (i.e. [K : F ] = pe, A has exponent p).

Define a derivation δ on K with Const(δ) = F .

Theorem (Amitsur ‘54) If m ≤ [K : F ] then A ∼=
Nucr(Sf) for some f ∈ K[t; δ] of degree m.

Theorem Suppose A is a division algebra. Then m ≤
[K : F ] and:

(i) If m = [K : F ] then A ∼= Sf with f ∈ K[t; δ] two-sided

and irreducible of degree m.

(ii) If m < [K : F ] = pe then there exists an irreducible

f ∈ K[t; δ] of degree m such that Sf is a division algebra

of dimension mpe over F . Sf has right nucleus A and

left and middle nucleus K.
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Remark To find an algebra Sf of smallest possible di-
mension which contains a given csa A of degree m as a
right nucleus is equivalent to finding a purely insepara-
ble extension K of exponent one and smallest possible
degree m < [K : F ] = pe splitting A. This is connected
to the question how many cyclic algebras are needed
such that A is similar to a product of cyclic algebras of
degree p in the Brauer group Br(F ).

Theorem Let A be a p-algebra over F of degree m,
index d = pn and exponent p, such that m = r2pn <
pd−1. Then there is a purely inseparable extension K
of exponent one with [K : F ] = pd−1, and f(t) ∈ K[t; δ]
of degree m such that

Sf = K[t; δ]/K[t; δ]f(t)

is an algebra over F of dimension mpd−1 with right
nucleus A.
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VI. The multiplicative loops of the algebras Sf .

Let F = Fq, K = Fqn and Gal(K/F ) = 〈σ〉. If Sf =

K[t;σ]/K[t;σ]f(t) is a division algebra (a semifield),

then its invertible elements form a finite multiplicative

loop.

There are less than r
√
log2(r) non-isotopic semifields Sf

of order r (Kantor), so there are less than r
√
log2(r) non-

isotopic loops of order r − 1 which can be obtained as

their multiplicative loops.
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Let Sf be a proper semifield and Lf = Sf \ {0} be its

multiplicative loop. Then

|Lf | = qmn − 1, Nucl(Lf) = Nucm(Lf) = F×qn

and Nucr(Lf) ∼= F×qm, C(Lf) = F×q .

Proposition Suppose f(t) = tm −
∑m−1
i=0 ait

i ∈ F [t] ⊂
K[t;σ] is irreducible and not invariant.

(i) Aut(Lf) contains a cyclic subgroup isomorphic to

Z/nZ.

(ii) Suppose am−1 ∈ F×. Then Aut(K) is isomorphic

to a subgroup of Aut(Lf).

(iii) The powers of t form a multiplicative group of order

m in Lf .
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Proposition For every prime number m there is a loop

L of order qm
2−1 with center F×q , Nucl(L) = Nucm(L) =

Nucr(L) = F×qm and a non-trivial automorphism group,

which contains a cyclic subgroup of inner automor-

phisms of order (qm − 1)/(q − 1).

VII. Other applications.

• The algebras Sf can be defined using skew polynomi-

al rings D[t;σ, δ], when D is not a division ring, if f(t)

has an invertible leading coefficient. We thus can con-

struct new nonassociative unital algebras on subsets of

quantum planes, Weyl algebras etc.
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• Applications to (f, σ, δ)-codes; e.g. in coset coding,
or to generalize the classical Construction A for lattices
from linear codes, to canonically construct lattices from
cyclic (f, σ, δ)-codes over finite rings.

• We can calculate the automorphism groups of certain
Jha-Johnson semifields (P.-Brown, 2017).

• We can generalize other classical concepts originally
introduced by Jacobson, Albert and Amitsur for central
simple algebras in the 50s, and construct for instance
nonassociative differential algebras (Results in Math.
2017).

• We can obtain results on solvable crossed product
algebras (P.-Brown, 2017).
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