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Goal

... describe solvable / nilpotent quandles

Corollaries:

Topologically slice knots cannot be colored by latin quandles.

Bruck loops of odd order are really solvable.
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David Stanovský (Prague) Commutator theory for quandles 2 / 19



Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are Ni E G such that

1 = N0 ≤ N1 ≤ ... ≤ Nk = G

and Ni+1/Ni is an abelian, resp. central subgroup of G/Ni , for all i .

A general algebraic structure A is solvable, resp. nilpotent, if there are
congruences αi such that

0A = α0 ≤ α1 ≤ ... ≤ αk = 1A

and αi+1/αi is an abelian, resp. central congruence of A/αi , for all i .

Need a good notion of abelianness and centrality for congruences.
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Solvability and nilpotence, via commutator

G (0) = G(0) = G , G(i+1) = [G(i),G(i)], G (i+1) = [G (i),G ]

A group G is

solvable iff G(n) = 1 for some n

nilpotent iff G (n) = 1 for some n

α(0) = α(0) = 1A, α(i+1) = [α(i), α(i)], α(i+1) = [α(i), 1A]

A general algebraic structure A is

solvable iff α(n) = 0A for some n

nilpotent iff α(n) = 0A for some n

Need a good notion of commutator of congruences.
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Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of A:

C (α, β; δ) iff for every term t(x , y1, . . . , yn) and every a
α≡ b, ui

β
≡ vi

t(a, u1, . . . , un)
δ≡ t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un)

δ≡ t(b, v1, . . . , vn)

The commutator [α, β] is the smallest δ such that C (α, β; δ).

A congruence α is called

abelian if C (α, α; 0A), i.e., if [α, α] = 0A.

central if C (α, 1A; 0A), i.e., if [α, 1A] = 0A.

An easy but non-trivial fact:
In groups, this gives the usual commutator, abelianness, centrality.

A deep theory: works well in varieties with modular congruence lattices.
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Abelian algebras
An algebra A is called abelian if 1A is abelian, i.e., if [1A, 1A] = 0A, i.e., if

t(a, u1, . . . , un) = t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un) = t(b, v1, . . . , vn)

for every term t(x , y1, . . . , yn) and every a, b, ui , vi .

Observation

Modules are abelian.

Proof: t(x , y1, . . . , yn) = rx +
∑

riyi , cancel ra, add rb.

Observation

An abelian group is commutative.

Proof: t(x , y , z) = yxz , a11 = 11a ⇒ ab1 = 1ba

Observation

An abelian loop is a commutative group.

Pf: t = (xy)(uv), (11)(bc) = (1b)(1c) ⇒ (a1)(bc) = (ab)(1c)
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Abelian algebras = modules

Observation

Modules are abelian.

Theorem (Gumm-Smith, 1970s)

In a variety with modular congruence lattices, TFAE

1 A is abelian

2 A is polynomially equivalent to a module

Example: groups, loops, quasigroups

Non-example: quandles
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Quandles

An algebraic structure (Q, ∗, \) is called a quandle if

x ∗ x = x

all left translations Lx(y) = x ∗ y are automorphisms, with
L−1
x (y) = x\y .

Multiplication group, displacement group:

LMlt(Q) = 〈Lx : x ∈ Q〉 ≤ Aut(Q)

Dis(Q) = 〈LxL−1
y : x , y ∈ Q〉 ≤ LMlt(Q)

A quandle is called connected if LMlt(Q) is transitive on Q.

Affine quandles (aka Alexander) Aff (A, f ):
x ∗ y = (1− f )(x) + f (y) on an abelian group A, f ∈ Aut(A)
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Abelian quandles

Theorem (Jedlička, Pilitowska, S., Zamojska-Dzienio)

TFAE for a quandle Q:

1 abelian

2 embeds into (a reduct of) a module

3 Dis(Q) abelian, semiregular

4 Q ' Ext(A, f , d̄), a certain kind of extension of Aff (A, f )

... see Přemysl’s talk for details (and much more)
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Congruences of quandles

Let N(Q) = {N ≤ Dis(Q) : N is normal in LMlt(Q)}

There is a Galois correspondence

Con(Q)←→ N(Q)

α→ Disα(Q) = 〈LxL−1
y : x α y〉

αN = {(x , y) : LxL−1
y ∈ N} ← N

Proposition (Bonatto, S.)

TFAE for α, β ∈ Con(Q), Q a quandle:

1 α centralizes β over 0Q , i.e., C (α, β; 0Q)

2 Disβ(Q) centralizes Disα(Q) and acts semiregularly on every α-block
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Abelian congruences and solvable quandles

Theorem

TFAE for a congruence α of a quandle Q:

1 α is abelian

2 Disα(Q) is abelian and acts semiregularly on every block of α

3 Q is an abelian extension of F = Q/α, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , ϕx ,y (a) + ψx ,y (b) + θx ,y )

where A is an abelian group, ϕ : Q2 → End(A), ψ : Q2 → Aut(A),
θ : Q2 → A satisfying the cocycle condition.

The last item only assuming that α has connected blocks.

Corollary

Q solvable (of rank n) ⇒ Dis(Q) solvable (of rank ≤ 2n − 1)

Dis(Q) solvable, Q is superconnected ⇒ Q solvable

superconnected = all subquandles are conected (example: latin quandles)
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Central congruences and nilpotent quandles

Theorem

TFAE for a congruence α of a quandle Q:

1 α is central

2 Disα(Q) is central and Dis(Q) acts semiregularly on every block of α

3 Q is a central extension of F = Q/A, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , (1− f )(a) + f (b) + θx ,y )

where A is an abelian group, θ : Q2 → A satisfying the cocycle
condition.

The last item only assuming that Q is superconnected.

Corollary

Q nilpotent (of rank n) ⇒ Dis(Q) nilpotent (of rank ≤ 2n − 1)

Dis(Q) nilpotent, Q is superconnected ⇒ Q nilpotent
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Extensions by constant cocycles (aka coverings)

Theorem

TFAE for a congruence α of a quandle Q:

1 α is strongly abelian

2 Disα(Q) = 1

3 Q is an extension by constant cocycle of F = Q/α, i.e., (F × A, ∗)
with

(x , a) ∗ (y , b) = (xy , ρx ,y (b))
where A is a set, ρ : Q2 → Sym(A) satisfying the cocycle condition.

... coverings are a special case of our abelian extensions (ϕx ,y = 0)

... coverings have a natural universal algebraic meaning (strongly abelian
congruences)
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Abeliannes for quandles vs. loops

Theorem

TFAE for a congruence α of a quandle Q:

1 α is abelian

2 Disα(Q) is abelian and acts semiregularly on every block of α

3 Q is an abelian extension of F = Q/α, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , ϕx ,y (a) + ψx ,y (b) + θx ,y )

Theorem (S., Vojtěchovský)

TFAE for a normal subloop A E Q of a loop:

1 A is abelian (in Q)

2 ϕr ,s(a) = ϕu,v (a) for every a, r/u, s/v ∈ A, ϕ ∈ {L,R,T} ⊆ Inn(Q)

3 Q is an abelian extension of F = Q/A, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , ϕx ,y (a) + ψx ,y (b) + θx ,y )
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Centrality for quandles vs. loops

Theorem

TFAE for a congruence α of a quandle Q:

1 α is central

2 Disα(Q) is central and Dis(Q) acts semiregularly on every block of α

3 Q is a central extension of F = Q/A, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , (1− f )(a) + f (b) + θx ,y )

Theorem

TFAE for a normal subloop A E Q of a loop:

1 A is central (in Q)

2 ϕr ,s(a) = a for every a ∈ A, r , s ∈ Q, ϕ ∈ {L,R,T} ⊆ Inn(Q)

3 Q is an central extension of F = Q/A, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , a + b + θx ,y )
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Solvability and nilpotence for loops
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An application to quandles

Classification of latin quandles of order 3p. See Marco’s talk.
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An application to loop theory

Theorem (Stein 2001)

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Since latin quandles are superconnected, we obtain

Corollary

Finite latin quandles are solvable.

In particular,

involutory latin quandles are solvable,

all of their polynomial reducts are solvable,

in particular,

Corollary

Bruck loops of odd order are solvable (in the stronger sense).

David Stanovský (Prague) Commutator theory for quandles 18 / 19



An application to knot theory

Coloring by affine quandles ! Alexander invariant

Theorem (Bae, 2011)

Let K be a link and f its Alexander polynomial.

f = 0 ⇒ colorable by every affine quandle

f = 1 ⇒ not colorable by any affine quandle

else, colorable by Aff (Z[t, t−1]/(f ), f ).

Corollary

f = 1 ⇒ not colorable by any solvable quandle (in particular, latin)
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