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Goal

... describe solvable / nilpotent quandles
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Goal

... describe solvable / nilpotent quandles

Corollaries:
@ Topologically slice knots cannot be colored by latin quandles.

@ Bruck loops of odd order are really solvable.
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Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are N; < G such that
1=Ng<M<..<Ne=6G

and N;;1/N; is an abelian, resp. central subgroup of G/N;, for all i.
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Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are N; < G such that
1=Ng<M<..<Ne=6G

and N;;1/N; is an abelian, resp. central subgroup of G/N;, for all i.

A general algebraic structure A is solvable, resp. nilpotent, if there are
congruences «; such that

and aj1/a; is an abelian, resp. central congruence of A/«;, for all i.

Need a good notion of abelianness and centrality for congruences.
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Solvability and nilpotence, via commutator

GO — Goy) = G, Git1) = [Giy> Gl GU—+1) — [G(i), G]
A group G is
@ solvable iff G(,) =1 for some n

e nilpotent iff G(" =1 for some n
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Solvability and nilpotence, via commutator

GO — Goy) = G, Git1) = [Giy> Gl Gli+1) — [G(i), G]
A group G is
@ solvable iff G(,) =1 for some n

e nilpotent iff G(" =1 for some n

a(o) =) = 14, agiy1) = [a(i),a(i)L a(i+1) = [Oé(i), ]_A]
A general algebraic structure A is
e solvable iff a,) = 04 for some n

@ nilpotent iff alm = 04 for some n

Need a good notion of commutator of congruences.

S ESEEEGIPEEEI  Commutator theory for quandles T



Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences «, 3,9 of A:
«
,¥n) and every a = b, u; = v;

C(a, 3; 0) iff for every term t(x, yi,
t(a,vi,...,vp) = t(b,ur,..., up) 2 t(b,vi,..., V)

§
t(a,un,...,up) =
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Commutator theory
[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]
Centralizing relation for congruences «, 3,9 of A:

C(a, 3; 0) iff for every term t(x,yi1,...,yn) and every a Z b,y é Vi

§ 0
t(a,un,...,upn) = t(a,va,...,vn) = t(byur,...,un) =t(byvi,...,vp)

The commutator [« 5] is the smallest ¢ such that C(a, 3;9).
A congruence « is called

e abelian if C(a, a;04), i.e., if [o,a] = 0a.

o central if C(a,14;04), i.e., if [, 14] = 0a.
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Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences «, 3,9 of A:
,¥n) and every a Z b, u = v

C(a, B;0) iff for every term t(x, y1,

V) = t(byu1,...,up)

t(a, ui, ..., Un) % t(a, Vi, ...
The commutator [« 5] is the smallest ¢ such that C(a, 3;9).

A congruence « is called
e abelian if C(a, a;04), i.e., if [o,a] = 0a.

o central if C(a,14;0p4), i.e., if [a,14] = 0a.

An easy but non-trivial fact:
In groups, this gives the usual commutator, abelianness, centrality.

A deep theory: works well in varieties with modular congruence lattices
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Abelian algebras

An algebra A is called abelian if 14 is abelian, i.e., if [14,14] = 04, i.e., if
t(a,un,...,up) =t(a,v1,...,vn) = t(byur,...,un)=t(byvi,...,vp)

for every term t(x,y1,...,yn) and every a, b, uj, v;.

Modules are abelian.

Proof: t(x,y1,...,¥n) = rx + >_ riyi, cancel ra, add rb.
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Abelian algebras

An algebra A is called abelian if 14 is abelian, i.e., if [14,14] = 04, i.e., if
t(a,ur,...,up) =t(a,va,...,vy) = t(b,ur,...,up) =t(b,v1,...,Vp)
for every term t(x,y1,...,yn) and every a, b, uj, v;.

Observation
Modules are abelian.

Proof: t(x,y1,...,¥n) = rx + >_ riyi, cancel ra, add rb.

Observation

An abelian group is commutative.

Proof: t(x,y,z) = yxz, all=1la = abl = 1lba

Observation

An abelian loop is a commutative group.

Pf: t = (xy)(uv), (11)(bc) = (1b)(1c) = (al)(bc) = (ab)(1c)
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Abelian algebras = modules

Observation
Modules are abelian.

Theorem (Gumm-Smith, 1970s)

In a variety with modular congruence lattices, TFAE
Q A is abelian

@ A is polynomially equivalent to a module

Example: groups, loops, quasigroups

Non-example: quandles
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Quandles

An algebraic structure (Q, %, \) is called a quandle if

@ Xk X=X

@ all left translations Ly(y) = x % y are automorphisms, with
L y) = x\y.

Multiplication group, displacement group:

LMIt(Q) = (Ly : x € Q) < Aut(Q)
Dis(Q) = (L«L,; " : x,y € Q) < LMIt(Q)

A quandle is called connected if LMIt(Q) is transitive on Q.

Affine quandles (aka Alexander) Aff(A, f):
xxy=(1—f)(x)+ f(y) on an abelian group A, f € Aut(A)
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Abelian quandles

Theorem (Jedli¢ka, Pilitowska, S., Zamojska-Dzienio)
TFAE for a quandle Q:
@ abelian

@ embeds into (a reduct of) a module

@ Dis(Q) abelian, semiregular
Q@ Q ~ Ext(A, f,d), a certain kind of extension of Aff(A,f)

.. see P¥emysl's talk for details (and much more)
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Congruences of quandles

Let N(Q) = {N < Dis(Q) : N is normal in LMIt(Q)}
There is a Galois correspondence
Con(Q) +— N(Q)
a — Disy(Q) = (LXL;1 IXxay)
any ={(x,y): LXL;1 €N}« N

" David Stanovsky (Prague) | Commutator theory for quandles 10/ 19



Congruences of quandles

Let N(Q) = {N < Dis(Q) : N is normal in LMIt(Q)}
There is a Galois correspondence
Con(Q) +— N(Q)

a — Disy(Q) = (LXL;1 txay)
any = {(x,y): LXL;1 €N}« N

Proposition (Bonatto, S.)

TFAE for o, B € Con(Q), Q a quandle:
@ « centralizes 3 over 0q, i.e., C(a,3;0¢)
@ Disg(Q) centralizes Diso(Q) and acts semiregularly on every a-block
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Abelian congruences and solvable quandles

TFAE for a congruence o of a quandle Q:
O « is abelian

@ Dis,(Q) is abelian and acts semiregularly on every block of «
© Q is an abelian extension of F = Q/«, i.e., (F x A, x) with
(x;a) * (v, b) = (xy, pr,y(a) + "/}x,y(b) + ex,y)

where A is an abelian group, ¢ : Q%> — End(A), ¥ : Q> — Aut(A),
6 : Q%> — A satisfying the cocycle condition.

The last item only assuming that o has connected blocks.
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Abelian congruences and solvable quandles

TFAE for a congruence o of a quandle Q:
O « is abelian

@ Dis,(Q) is abelian and acts semiregularly on every block of «
© Q is an abelian extension of F = Q/«, i.e., (F x A, x) with
(X7 a) * (y7 b) — (Xy'/‘ pr,y(a) + /I/)X._y(b) + 0)(7_}/)

where A is an abelian group, ¢ : Q%> — End(A), ¥ : Q> — Aut(A),
6 : Q%> — A satisfying the cocycle condition.

The last item only assuming that o has connected blocks.

e Q solvable (of rank n) = Dis(Q) solvable (of rank < 2n—1)
e Dis(Q) solvable, Q is superconnected = Q solvable

superconnected = all subquandles are conected (example: latin quandles)
Commutator theory for quandles 1 /19



Central congruences and nilpotent quandles

Theorem

TFAE for a congruence « of a quandle Q:
Q « is central

@ Dis,(Q) is central and Dis(Q) acts semiregularly on every block of «
© Q is a central extension of F = Q/A, i.e., (F x A, x) with
(x,a) = (y,b) = (xy, (1 —f)(a) + f(b) + Ox,)

where A is an abelian group, 0 : Q> — A satisfying the cocycle
condition.

The last item only assuming that Q is superconnected.

e Q nilpotent (of rank n) = Dis(Q) nilpotent (of rank < 2n—1)
e Dis(Q) nilpotent, Q is superconnected = Q nilpotent
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Extensions by constant cocycles (aka coverings)

TFAE for a congruence « of a quandle Q:
© « is strongly abelian

@ Disa(Q) =1
@ Q is an extension by constant cocycle of F = Q/a, i.e., (F x A, x)
with

(X7 a) & (y7 b) - (Xy7 px,y(b))
where A is a set, p : Q> — Sym(A) satisfying the cocycle condition.

v

. coverings are a special case of our abelian extensions (¢ , = 0)

. coverings have a natural universal algebraic meaning (strongly abelian
congruences)
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Abeliannes for quandles vs. loops

Theorem

TFAE for a congruence « of a quandle Q:
Q « is abelian
@ Dis,(Q) is abelian and acts semiregularly on every block of «
© Q is an abelian extension of F = Q/«, i.e., (F x A, x) with
(x,a) * (v, b) = (xv, ¥x,y(a) + Uxy(b) + Oxy)

.

Theorem (S., Vojtéchovsky)
TFAE for a normal subloop A < Q of a loop:
Q@ A is abelian (in Q)
Q ¢rs(a) = pu,v(a) forevery a,r/u,s/ve A e {l,R, T} C Inn(Q)
© Q is an abelian extension of F = Q/A, i.e., (F x A, x) with
(x,a) * (v, b) = (xy, ¥xy(a) + Uxy(b) + bx,)

A
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Centrality for quandles vs. loops

Theorem

TFAE for a congruence o of a quandle Q:
Q « is central
@ Dis,(Q) is central and Dis(Q) acts semiregularly on every block of «
© Q is a central extension of F = Q/A, i.e., (F x A, %) with
(x,a) * (v, b) = (xy, (1 —f)(a) + £(b) + bx,)

Theorem
TFAE for a normal subloop A< Q of a loop:
Q A is central (in Q)
Q prs(a)=aforeveryac A r,seQ, e {L,R, T} C Inn(Q)
© Q is an central extension of F = Q/A, i.e., (F x A, %) with
(x,a)*(y,b) =(xy, a+ b+6,)

| A\

\
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Solvability and nilpotence for loops

Q Mlt(Q) Inn(Q)

supernilpotent e e

nilpotent

centrally nilpotent

congruence solvable
o solvable

classically solvable




An application to quandles

Classification of latin quandles of order 3p. See Marco's talk.



An application to loop theory

Theorem (Stein 2001)
If Q is a finite latin quandle, then LMIt(Q) is solvable.

Since latin quandles are superconnected, we obtain

Finite latin quandles are solvable. \

In particular,

@ involutory latin quandles are solvable,
@ all of their polynomial reducts are solvable,

@ in particular,

Bruck loops of odd order are solvable (in the stronger sense). \
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An application to knot theory

Coloring by affine quandles «~+ Alexander invariant

Theorem (Bae, 2011)

Let K be a link and f its Alexander polynomial.
o f =0 = colorable by every affine quandle
e f =1 = not colorable by any affine quandle
o else, colorable by Aff(Z[t, t71]/(f), f).

e f =1 = not colorable by any solvable quandle (in particular, latin) l
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