Homotopy link invariants from geometric realizations of SD-homology

Seung Yeop Yang

University of Denver

July 31, 2017
Fourth Mile High Conference on Nonassociative Mathematics
1. Geometric realizations of SD-homology

2. An application to Knot Theory
 - Shadow homotopy invariants of classical links -
Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants
Definition

A **pre-simplicial set** $\chi = (X_n, d_i)$ consists of a collection of sets X_n for $n \geq 0$ and face maps $d_i := d_{i,n} : X_n \to X_{n-1}$ for $0 \leq i \leq n$ satisfying $d_id_j = d_{j-1}d_i$ if $i < j$.
Definition

A **pre-simplicial set** $\chi = (X_n, d_i)$ consists of a collection of sets X_n for $n \geq 0$ and face maps $d_i := d_{i,n} : X_n \to X_{n-1}$ for $0 \leq i \leq n$ satisfying $d_i d_j = d_{j-1} d_i$ if $i < j$.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\partial_n = \sum_{i=0}^{n} (-1)^i d_i$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.
Definition
A **pre-simplicial set** $\chi = (X_n, d_i)$ consists of a collection of sets X_n for $n \geq 0$ and face maps $d_i := d_{i,n} : X_n \rightarrow X_{n-1}$ for $0 \leq i \leq n$ satisfying $d_i d_j = d_{j-1} d_i$ if $i < j$.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\partial_n = \sum_{i=0}^{n} (-1)^i d_i$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.

Definition
The **geometric realization** $|\chi|$ of a pre-simplicial set χ is a CW-complex defined as the quotient of the disjoint union $\bigsqcup_{n} (X_n \times \Delta^n)$ by $(d_i(x), t) \sim (x, d^i(t))$, where Δ^n be the standard n-simplex and $d^i := d^{i,n} : \Delta^{n-1} \rightarrow \Delta^n$ are maps defined by $d^i(t_0, \ldots, t_{n-1}) = (t_0, \ldots, t_{i-1}, 0, t_i, \ldots, t_{n-1})$ for $0 \leq i \leq n$.
Definition

A pre-cubic set $\chi = (X_n, d_i^\varepsilon)$ consists of a collection of sets X_n for $n \geq 0$ and face maps $d_i^\varepsilon := d_i^\varepsilon : X_n \to X_{n-1}$ for $1 \leq i \leq n$ and $\varepsilon \in \{0, 1\}$ satisfying $d_i^\varepsilon d_j^\delta = d_j^{\delta-1} d_i^\varepsilon$ for $i < j$ and $\delta, \varepsilon \in \{0, 1\}$.

For a commutative ring k with unity, we let $C_n = k X_n$ and $\partial_n = \sum_{i=1}^n (-1)^i (d_i^0 - d_i^1)$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.

Definition

The geometric realization $|\chi|$ of a pre-cubic set χ is a CW-complex defined as the quotient of the disjoint union $\bigsqcup_n (X_n \times I_n)$ by $(d_i^\varepsilon(x), t) \sim (x, d_i^\varepsilon(t))$, where $I_n = [0, 1]^n \subset \mathbb{R}^n$ ($n \geq 0$) and $d_i^\varepsilon : I_n \to I_n$ are maps defined by $d_i^\varepsilon(t_1, \ldots, t_{n-1}, \varepsilon, t_i, \ldots, t_n) = (t_1, \ldots, t_{i-1}, \varepsilon, t_i, \ldots, t_n)$ for $1 \leq i \leq n$.

An application to Knot Theory: shadow homotopy invariants

...
Definition

A **pre-cubic set** $\chi = (X_n, d^\varepsilon_i)$ consists of a collection of sets X_n for $n \geq 0$ and face maps $d^\varepsilon_i := d^\varepsilon_{i,n} : X_n \to X_{n-1}$ for $1 \leq i \leq n$ and $\varepsilon \in \{0, 1\}$ satisfying $d^\varepsilon_i d^\delta_j = d^\delta_j d^\varepsilon_i$ for $i < j$ and $\delta, \varepsilon \in \{0, 1\}$.

For a commutative ring k with unity, we let $C_n = kX_n$ and $\partial_n = \sum_{i=1}^{n} (-1)^i (d^0_i - d^1_i)$. Then (C_n, ∂_n) forms a chain complex, so we can define homology groups of it.
Definition

A **pre-cubic set** \(\chi = (X_n, d_i^\varepsilon) \) consists of a collection of sets \(X_n \) for \(n \geq 0 \) and face maps \(d_i^\varepsilon := d_{i,n}^\varepsilon : X_n \to X_{n-1} \) for \(1 \leq i \leq n \) and \(\varepsilon \in \{0, 1\} \) satisfying \(d_i^\varepsilon d_j^\delta = d_j^\delta d_i^\varepsilon \) for \(i < j \) and \(\delta, \varepsilon \in \{0, 1\} \).

For a commutative ring \(k \) with unity, we let \(C_n = kX_n \) and
\[
\partial_n = \sum_{i=1}^{n} (-1)^i (d_i^0 - d_i^1).
\]
Then \((C_n, \partial_n)\) forms a chain complex, so we can define homology groups of it.

Definition

The **geometric realization** \(|\chi| \) of a pre-cubic set \(\chi \) is a CW-complex defined as the quotient of the disjoint union
\[
\coprod_n (X_n \times I^n) \text{ by } (d_i^\varepsilon(x), t) \sim (x, d_i^\varepsilon(t)), \text{ where } I^n = [0, 1]^n \subset \mathbb{R}^n
\]
\((n \geq 0) \) and \(d_i^\varepsilon := d_{i,n}^\varepsilon : I^{n-1} \to I^n \) are maps defined by
\[
d_i^\varepsilon(t_1, \ldots, t_{n-1}) = (t_1, \ldots, t_{i-1}, \varepsilon, t_i, \ldots, t_{n-1}) \text{ for } 1 \leq i \leq n.
\]
SD-homology

Definition

A right SD structure (or a shelf) \((X, \ast)\) is a set \(X\) with the right self-distributive binary operation \(\ast: X \times X \rightarrow X\) (i.e. \((a \ast b) \ast c = (a \ast c) \ast (b \ast c)\) for all \(a, b, c \in X\)).

Definition (Przytycki, 2014)

The homology obtained from the pre-simplicial set \((X_n + 1, d_\ast)\) (the pre-cubic set \((X_n + 1, d_\ast, d_0)\), respectively) is said to be a one-term (two-term, respectively) SD-homology.
SD-homology

Definition

A right SD structure (or a shelf) (X, \ast) is a set X with the right self-distributive binary operation $\ast : X \times X \rightarrow X$ (i.e. $(a \ast b) \ast c = (a \ast c) \ast (b \ast c)$ for all $a, b, c \in X$).
SD-homology

Definition
A **right SD structure** (or a **shelf**) (X, \star) is a set X with the right self-distributive binary operation $\star : X \times X \to X$ (i.e. $(a \star b) \star c = (a \star c) \star (b \star c)$ for all $a, b, c \in X$).

Definition (Przytycki, 2014)
The homology obtained from the pre-simplicial set $(X^{n+1}, d_i^{(\star)})$ (the pre-cubic set $(X^{n+1}, d_i^{(\star)}, d_i^{(*0)})$, respectively) is said to be a **one-term** (**two-term**, respectively) **SD-homology**.

![Graphical descriptions of face maps $d_i^{(\star)}$ and $d_i^{(*0)}$.](image-url)
Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2, respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.
Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2, respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.

Figure: Quandle axioms from Reidemeister moves.
Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let \(D_1 \) and \(D_2 \) be diagrams of classical knots \(K_1 \) and \(K_2 \), respectively. Then \(K_1 \) and \(K_2 \) are equivalent if and only if \(D_1 \) can be deformed to \(D_2 \) by a finite sequence of Reidemeister moves.

![Quandle axioms from Reidemeister moves](image-url)

Figure: Quandle axioms from Reidemeister moves.
Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D_1 and D_2 be diagrams of classical knots K_1 and K_2, respectively. Then K_1 and K_2 are equivalent if and only if D_1 can be deformed to D_2 by a finite sequence of Reidemeister moves.

Figure: Quandle axioms from Reidemeister moves.
Quandles

Definition (Joyce/Matveev, 1982)

A **quandle** \((X, \star)\) is an algebraic structure with a set \(X\) and a binary operation \(\star : X \times X \to X\) satisfying the following axioms:

1. (Idempotency) For any \(a \in X\), \(a \star a = a\).
2. (Invertibility) For each \(b \in X\), \(\star_b : X \to X\) given by \(\star_b(x) = x \star b\) is invertible.
3. (Right self-distributivity) For any \(a, b, c \in X\),
 \[(a \star b) \star c = (a \star c) \star (b \star c).\]

Notice that the three quandle axioms above are motivated by Knot Theory.
Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic set $(X^n, d_i^{(\ast)}, d_i^{(\ast_0)})$ (or $(X^{n+1}, d_{i+1}^{(\ast)}, d_{i+1}^{(\ast_0)})$) is called the rack homology of X.

Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*0)})$ (or $(X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*0)})$) is called the rack homology of X.

i.e. $C_n(X) = \mathbb{Z}X^n$ and $\partial_n = \sum_{i=1}^{n} (-1)^i (d_i^{(*)} - d_i^{(*0)})$

(or $C_n(X) = \mathbb{Z}X^{n+1}$ and $\partial_n = \sum_{i=2}^{n} (-1)^i (d_{i+1}^{(*)} - d_{i+1}^{(*0)})$).
Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*0)})$ (or $(X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*0)})$) is called the rack homology of X.

i.e. $C_n(X) = \mathbb{Z}X^n$ and $\partial_n = \sum_{i=1}^{n} (-1)^i (d_i^{(*)} - d_i^{(*0)})$

(or $C_n(X) = \mathbb{Z}X^{n+1}$ and $\partial_n = \sum_{i=2}^{n} (-1)^i (d_{i+1}^{(*)} - d_{i+1}^{(*0)})$).

The geometric realization of the pre-cubic set $(X^n, d_i^{(*)}, d_i^{(*0)})$ ($(X^{n+1}, d_{i+1}^{(*)}, d_{i+1}^{(*0)})$, respectively) is said to be the rack space (extended rack space, respectively) of X. We denote it by BX ($B_X X$, respectively).
Quandle Homology

For a quandle X, we consider the subgroup $C^D_n(X)$ of $C_n(X)$ generated by n-tuples (x_1, \ldots, x_n) of elements of X with $x_i = x_{i+1}$ for some $i = 1, \ldots, n-1$.

Notice that $(C^D_n(X), \partial_n)$ is a subchain complex of a rack chain complex $(C_n(X), \partial_n)$.

Definition (Carter, Jelsovsky, Kamada, Langford, Saito, 2001)

For a quandle X, the quotient chain complex $(C_Q^n(X), \partial_n) = (C_n(X)/C^D_n(X), \partial_n)$ is called the quandle chain complex of X.

Geometric realizations of SD-homology

An application to Knot Theory: shadow homotopy invariants
Quandle Homology

For a quandle X, we consider the subgroup $C_n^D(X)$ of $C_n(X)$ generated by n-tuples (x_1, \ldots, x_n) of elements of X with $x_i = x_{i+1}$ for some $i = 1, \ldots, n - 1$.

Notice that $(C_n^D(X), \partial_n)$ is a subchain complex of a rack chain complex $(C_n(X), \partial_n)$.

Definition (Carter, Jelsovsky, Kamada, Langford, Saito, 2001)

For a quandle X, the quotient chain complex $(C_n^Q(X), \partial_n) = (C_n(X)/C_n^D(X), \partial_n)$ is called the quandle chain complex of X.
An application to Knot Theory

-Shadow homotopy invariants of classical links-
Rack Space and Extended Rack Space

Definition (Fenn, Rourke, Sanderson, 1993 / 1995)

Let X be a rack and let $d_i^{(0)}$, $d_i^{(*)}$ be face maps in the boundary homomorphism of rack homology. The geometric realization of the pre-cubic set $(X^n, d_i^{(0)}, d_i^{(*)})$ is called the rack space BX of X.

Figure: Low-dimensional cells of an extended rack space.
Rack Space and Extended Rack Space

Definition (Fenn, Rourke, Sanderson, 1993 / 1995)
Let X be a rack and let $d_i^{(*_0)}$, $d_i^{(*)}$ be face maps in the boundary homomorphism of rack homology. The geometric realization of the pre-cubic set $(X^n, d_i^{(*_0)}, d_i^{(*)})$ is called the rack space BX of X. Especially, the geometric realization of $(X^{n+1}, d_{i+1}^{(*_0)}, d_{i+1}^{(*)})$ is said to be the extended rack space B_XX of X.

Figure: Low-dimensional cells of an extended rack space.
Extended Quandle Space and Action Quandle Space

For a quandle X, Nosaka introduced the quandle space $B^Q X$ modifying the rack space of X, and defined the quandle homotopy invariant using quandle spaces.
Extended Quandle Space and Action Quandle Space

For a quandle X, Nosaka introduced the quandle space B^Q_X modifying the rack space of X, and defined the quandle homotopy invariant using quandle spaces.

Definition

\[
B^X_X + \quad B^Q_X
\]

Extended Rack Space

Action Quandle Space

Extended Quandle Space
The shadow homotopy invariant of classical links

[Ingredients]

- An oriented link diagram D on I^2.
- A shadow coloring \widetilde{C} of D by a quandle X.
- The extended quandle space $B^Q_X(X)$ (or the action quandle space BX^X_Q) of X.
The shadow homotopy invariant of classical links

[Ingredients]

- An oriented link diagram D on I^2.
- A shadow coloring \tilde{C} of D by a quandle X.
- The extended quandle space $B_X^Q X$ (or the action quandle space $B_{X_X}^Q$) of X.

Figure: A shadow homotopy invariant of an oriented knot.
The shadow homotopy invariant of classical links

Theorem (Y., 2017)

Let \(\psi_X(D_L; \tilde{C}) : (I^2, \partial I^2) \to (B^Q_X X, r) \) (or \((B^X_Q X, r) \)) be the map defined as above. We denote by \(\Psi_X(L; \tilde{C}) \) the homotopy class of \(\psi_X(D_L; \tilde{C}) \) in \(\pi_2(B^Q_X X) \) (or \(\pi_2(B^X_Q X) \)).

Then \(\Psi_X(L; \tilde{C}) \) is invariant under Reidemeister moves.
The shadow homotopy invariant of classical links

Theorem (Y., 2017)

Let $\psi_X(D_L; \tilde{C}) : (I^2, \partial I^2) \to (B^Q_X, r) \text{ (or } B^X_Q, r) \text{) be the map defined as above. We denote by $\Psi_X(L; \tilde{C})$ the homotopy class of $\psi_X(D_L; \tilde{C})$ in $\pi_2(B^Q_X, X) \text{ (or } \pi_2(B^X_Q, X) \text{).}$

Then $\Psi_X(L; \tilde{C})$ is invariant under Reidemeister moves.

Proof
The shadow homotopy invariant of classical links
The shadow homotopy invariant of classical links
The shadow homotopy invariant of classical links

Definition (Y., 2017)

For a connected quandle X, if we let

$$
\Psi_X(L) = \sum_{\tilde{C} \in SCol_X(L)} \Psi_X(L; \tilde{C}) \in \mathbb{Z}[\pi_2(B^Q_X X)] \text{ (or } \mathbb{Z}[\pi_2(B^X_X Q)])
$$

then $\Psi_X(L)$ is a link invariant called the **shadow homotopy invariant** of an oriented link L.
The shadow homotopy invariant of classical links

Theorem (Y., 2017)

Let X be a finite connected quandle, and let $\Xi_X(L)$ be the quandle homotopy invariant of an oriented link L. Then

$$\Psi_X(L) = |X| \Xi_X(L).$$
Thank you for your attention!