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Definition
The geometric realization |X| of a pre-simplicial set X is a

CW-complex defined as the quotient of the disjoint union
[1(X, x A") by (di(x),t) ~ (x, d(t)), where A" be the standard

n
n-simplex and d’ := d’": A"~1 — A" are maps defined by
di(to, ..., th-1) = (to, ..., ti_1,0,t, ..., t,_1) for 0 <i < n.
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Definition

A pre-cubic set X = (X,, df) consists of a collection of sets X, for
n > 0 and face maps df := d,-fn Xy — X,_1 forl <i<nand

¢ €10, 1} satisfying d,?df’ = clﬂldf for i< j and d,¢ €{0,1}.
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n

On=>_ (—l)i(dlo — d,-l). Then (Cp, 9,,) forms a chain complex, so
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we can define homology groups of it.

Definition

The geometric realization [X| of a pre-cubic set X is a

CW-complex defined as the quotient of the disjoint union

[1(Xn x 1") by (df(x),t) ~ (x, di(t)), where I" =1[0,1]" Cc R"

(n>0) and d! :=d": /"1 — | are maps defined by

di(ty, ..., th1) = (t1, ... ti_1, &ty ..., tp_1) for 1 < i< n.
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SD-homology
Definition
A right SD structure (or a shelf) (X, %) is a set X with the right
self-distributive binary operation *: X x X — X (i.e.
(axb)xc=(axc)*(bxc) forall a, b, ceX).
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SD-homology
Definition
A right SD structure (or a shelf) (X, %) is a set X with the right
self-distributive binary operation *: X x X — X (i.e.
(axb)xc=(axc)*(bxc) forall a, b, ceX).

Definition (Przytycki, 2014)
The homology obtained from the pre-simplicial set (X"*1, d,.(*))

(the pre-cubic set (X"*+1, d,.(*), d,.(*O)), respectively) is said to be a
one-term (two-term, respectively) SD-homology.

XX XX Xiep Xy XX XX Xivp Xy
a \/ b k
\
\ axb * ‘ l ==
XX X322 Xi X Xiy X XX X X X
d’() d/”’

Figure: Graphical descriptions of face maps d'*) and d'**’.
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Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D1 and D, be diagrams of classical knots Ky and K5,
respectively. Then K1 and Ky are equivalent if and only if Dy can
be deformed to D, by a finite sequence of Reidemeister moves.
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Now, we consider a special RDS motivated by Knot Theory.

Theorem (Reidemeister/Alexander and Briggs)

Let D1 and D, be diagrams of classical knots Ky and K5,
respectively. Then K1 and Ky are equivalent if and only if Dy can
be deformed to D, by a finite sequence of Reidemeister moves.

X

axb
a a a b a b a b ¢ a b c
1 ;\*1 a b (axb)sb b c bxc c bxc

Figure: Quandle axioms from Reidemeister moves.
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Quandles

Definition (Joyce/Matveev, 1982)
A quandle (X, %) is an algebraic structure with a set X and a
binary operation x : X x X — X satisfying the following axioms:
1. (ldempotency) For any a€ X, axa=a.
2. (Invertibility) For each b € X, x5, : X — X given by
xp(x) = x * b is invertible.
3. (Right self-distributivity) For any a, b, ¢ € X,
(axb)xc=(axc)*(bxc).

Notice that the three quandle axioms above are motivated by Knot
Theory.
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Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic
set (X7, d{*), d"™) (or (X™*1,d("},d"9)) is called the rack
homology of X.
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Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic
set (X7, d{*), d"™) (or (X™*1,d("},d"9)) is called the rack

homology of X.

ie. Co(X)=ZX"and 8, =Y (—1)/(d*) — ")
i=1

(or Co(X) =ZX"*1 and 3, = 'ZZ(—I)"(di(j)l —d9)).
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Rack Homology Groups and Rack Spaces

Definition (Fenn, Rourke, Sanderson, 1993)

For a rack X, the integral homology obtained from the pre-cubic
set (X7, d{*), d"™) (or (X™*1,d("},d"9)) is called the rack
homology of X.

1

ie. Cp(X)=ZX"and 9,=>_ (—l)i(di(*) _ d-(*O])
i=1

(or Co(X) =ZX"1 and 3, = 'ZZ(—I)"(d,.(j)l —d9)).

The geometric realization of the pre-cubic set (X7, d,.(*), d,.(*O))
(X", d:+1' d,fi)), respectively) is said to be the rack space
(extended rack space, respectively) of X.

We denote it by BX (BxX, respectively).
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Quandle Homology

For a quandle X, we consider the subgroup CP(X) of C,(X)
generated by n-tuples (xi, ..., x,) of elements of X with x; = x; 1
forsomei=1,...,n—1.

Notice that (CP(X),9,) is a subchain complex of a rack chain

complex (C,(X), 0,).
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Quandle Homology

For a quandle X, we consider the subgroup CP(X) of C,(X)
generated by n-tuples (xi, ..., x,) of elements of X with x; = x; 1
forsomei=1,...,n—1.

Notice that (CP(X),9,) is a subchain complex of a rack chain
complex (C,(X), 0,).

Definition (Carter, Jelsovsky, Kamada, Langford, Saito, 2001)

For a quandle X, the quotient chain complex
(CR(X),0,) = (Ca(X)/CP(X),0,) is called the quandle chain
complex of X.
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Rack Space and Extended Rack Space

Definition (Fenn, Rourke, Sanderson, 1993 / 1995)
Let X be a rack and let d,-(*"), d,-(*) be face maps in the boundary

homomorphism of rack homology.
The geometric realization of the pre-cubic set (X", d,.(*O), d,.(*)) is
called the rack space BX of X.



Contents Geometric realizations of SD-homology An application to Knot Theory: shadow homotopy invariants
0000000000 0®0000000

Rack Space and Extended Rack Space

Definition (Fenn, Rourke, Sanderson, 1993 / 1995)

Let X be a rack and let d,-(*"), d,-(*) be face maps in the boundary
homomorphism of rack homology.

The geometric realization of the pre-cubic set (X", d,.(*O), d,.(*)) is
called the rack space BX of X.

Especially, the geometric realization of (X"*1, dl.(fi), di(j)l) is said
to be the extended rack space Bx X of X.

(axb) ((a*b)«d)
@, c)
(a) (axc) ¢ (a~d)
@ @B
(a,b) (a=c.bxc) 1 1
O (’_’_°a) b o e O(a»d,b»d.c;dl
((axb)*c) —1 =38 (@sb)e)ed)
(axb) ((axb) «c) + -3
(ash,c) /(a‘c‘d)\—
(axc) ((@z=c)=d)
(a) (a,b) (a,b,c) (a,b,c,d)

Figure: Low-dimensional cells of an extended rack space.
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Extended Quandle Space and Action Quandle Space

For a quandle X, Nosaka introduced the quandle space BeX
modifying the rack space of X, and defined the quandle homotopy
invariant using quandle spaces.
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Extended Quandle Space and Action Quandle Space

For a quandle X, Nosaka introduced the quandle space BeX
modifying the rack space of X, and defined the quandle homotopy
invariant using quandle spaces.

Definition

@ BX%

Action Quandle Space

ByX + (a,b,b) @by O

Extended Rack Space (@-b.b)

} BYX

Extended Quandle Space

(a, b)

(a,a,b) (a.a) O

(a,b) A3-ball
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The shadow homotopy invariant of classical links

[Ingredients]

e An oriented link diagram D on /2.

e A shadow coloring Cof D by a quandle X.

e The extended quandle space B)(?X (or the action quandle
space BXJ) of X.
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The shadow homotopy invariant of classical links

[Ingredients]

e An oriented link diagram D on /2.

e A shadow coloring Cof D by a quandle X.

e The extended quandle space B)?X (or the action quandle
space BXJ) of X.

|, 0, 3 I°) — (BX}, r) — (BYX, r)

@)

Figure: A shadow homotopy invariant of an oriented knot.
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The shadow homotopy invariant of classical links

Theorem (Y., 2017)

Let hx(Dy; €): (12,01%) — (BEX, r)(or (BXX, 1)) be the map

defined as above. We denote by ¥x(L; C) the homotopy class of
Px(Dy; €) in mp(BX) (or ma(BXY)).

Then Wx (L; é) is invariant under Reidemeister moves.
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The shadow homotopy invariant of classical links

Theorem (Y., 2017)

Let hx(Dy; €): (12,01%) — (BEX, r)(or (BXX, 1)) be the map
defined as above. We denote by Wx(L; C) the homotopy class of
Px(Dg; C) in~7t2(B)('<7X) (or ma(BXZ)).

Then Wx (L; @) is invariant under Reidemeister moves.

Proof

O 1 o
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The shadow homotopy invariant of classical links

a b

(r) r+a) ((r+a)«b)
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The shadow homotopy invariant of classical links

a b
(r) !r*a) ((r+a)«b)
a b

e bt by ‘ ©T bl (augya(br)
(r,a,b,c)
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The shadow homotopy invariant of classical links

Definition (Y., 2017)

For a connected quandle X, if we let

Yx(l)= Y ¥Wx(LC) e Zlm(BYX)(or Zim(BXS)),
CeSColx (L)

then Wx (L) is a link invariant called the shadow homotopy
invariant of an oriented link L.
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The shadow homotopy invariant of classical links

Theorem (Y., 2017)

Let X be a finite connected quandle, and let Zx (L) be the quandle
homotopy invariant of an oriented link L. Then

Wx (L) =IX[Ex(L).
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Thank you for your attention!
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